椭圆及其标准方程

合集下载

椭圆的一般方程和标准公式

椭圆的一般方程和标准公式

椭圆的一般方程和标准公式
椭圆是一个常见的二维几何图形,其一般方程和标准公式如下:
1.椭圆的一般方程:
椭圆的一般方程表示为:
A(x - h)^2 + B(y - k)^2 = 1
其中,(h, k)表示椭圆的中心坐标,A和B是正实数,且A > B。

2.椭圆的标准公式:
椭圆的标准公式表示为:
(x - h)^2/a^2 + (y - k)^2/b^2 = 1
其中,(h, k)表示椭圆的中心坐标,a和b分别表示椭圆在x轴和y轴上的半长轴长度。

具体详细解释如下:
●中心坐标(h, k):椭圆的中心点在坐标平面上的位置,坐标为(h, k)。

●半长轴长度a:椭圆在x轴上的半长轴长度,表示椭圆沿着x轴正方向延伸
的距离。

●半短轴长度b:椭圆在y轴上的半短轴长度,表示椭圆沿着y轴正方向延伸
的距离。

椭圆的标准公式以中心点(h, k) 为中心,沿x轴和y轴方向分别以a和b为轴长度绘制。

当a和b相等时,椭圆退化为一个圆。

若a大于b,则椭圆在x轴方向上更为扁平,称为长轴椭圆;若b大于a,则椭圆在y轴方向上更为扁平,称为短轴椭圆。

注意事项:
●椭圆的方程中,A和B的值与a和b的关系为A = 1/a^2,B = 1/b^2。

●当椭圆的中心不在原点时,方程中的坐标需要进行平移,即(x - h) 和(y - k)。

●椭圆的方程也可以表示为离心率和焦点的形式,但这超出了一般方程和标准
公式的范围。

通过了解椭圆的一般方程和标准公式,您可以利用这些公式来描述和绘制椭圆的几何形状,并对椭圆的中心、半长轴和半短轴进行准确的计算和描绘。

椭圆及其标准方程

椭圆及其标准方程

例: ( 1 ) 已知 F , F 是两定点, F F 6 ,动点 M 满足 1 2 1 2
线段 MF MF 6 ,则动点的轨迹为 ___ 1 2
(2 ) 已知 A ( -1 ,0 ), B ( 1 ,0 ), M 是一个动点 M 到 AB 两点的距离之和为 6 ,
椭圆 则 M 的轨迹为 ______
3 2 2
+
2 5 +2 2
+
3 2 2
+
2 5 -2 =2 2
10.即
������2 ������2 ∴ 所求椭圆的方程为 + =1. 10 6
反思根据已知条件,判定焦点的位置,设出椭圆的方程是解决此
题的关键.
“神五”飞船的运行轨道是以地心为一个焦点的椭圆,地 球半径为R公里,飞船的近地点距地球地面200公里,远 地点距地球地面350公里,则飞船的椭圆轨道的标准方程 为——
♦自然界处处存在着椭圆,我们如
何用自己的双手画出椭圆呢?
先 回 忆 如 何 画 圆
·
· F
1
·
F2
一、椭圆的定义
椭圆定义的文字表述:
• 平面内到两个定点F1,F2的距离的和等于定长 (2a)(大于|F1F2 |)的点的轨迹叫椭圆。
• 定点F1、F2叫做椭圆的焦点。 • 两焦点之间的距离叫做焦距(2c)。
������2 ������2 A 的轨迹方程是 + =1(y≠0). 25 16
【典型例题 2】 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点 P 到两焦点的 距离的和等于 10; (2)两个焦点的坐标分别为(0,-2),(0,2),并且椭圆经过点 - ,

《椭圆及其标准方程》课件

《椭圆及其标准方程》课件

感谢观看
THANKS
《椭圆及其标准方 程》ppt课件
目 录
• 椭圆的定义 • 椭圆的方程 • 椭圆的性质 • 椭圆的图像 • 椭圆的实际应用
01
椭圆的定义
椭圆的几何定义
01
椭圆是由平面内两个定点F1、F2 的距离之和等于常数(常数大于 F1、F2之间的距离)的点的轨迹 形成的图形。
02
两个定点F1、F2称为椭圆的焦点 ,焦点的距离c满足关系式: c²=a²-b²,其中a为椭圆长轴半径 ,b为短轴半径。
椭圆的范围
总结词
椭圆的范围是指椭圆被坐标轴所限制的范围。
详细描述
这意味着椭圆永远不会出现在坐标轴之外。在x轴上,椭圆的范围是从-a到a;在y轴上,椭圆的范围是从-b到b。 其中a和b是椭圆的长轴和短轴的半径。
椭圆的顶点
总结词
椭圆的顶点是指椭圆与坐标轴的交点 。
详细描述
椭圆的顶点是椭圆与x轴和y轴的交点 。这些点是椭圆的边界点,并且它们 位于椭圆的长轴和短轴上。具体来说 ,椭圆的顶点是(-a,0),(a,0),(0,-b) 和(0,b)。
小和形状。
平移变换
将椭圆在坐标系中移动,可以实现 椭圆的平移变换。平移变换不会改 变椭圆的大小和形状,只会改变椭 圆的位置。
旋转变换
通过旋转椭圆,可以实现椭圆的旋 转变换。旋转变换会改变椭圆的方 向,但不会改变椭圆的大小和形状 。
椭圆的图像应用
天文学
在天文观测中,行星和卫星的轨道通常可以用椭圆来近似 描述。通过研究椭圆的性质,可以更好地理解天体的运动 规律。
焦点位置
离心率
定义为c/a,其中c是焦点到椭圆中心 的距离,a是椭圆长轴的半径。离心率 越接近0,椭圆越接近圆;离心率越 大,椭圆越扁。

椭圆及其标准方程ppt课件

椭圆及其标准方程ppt课件
依题意有
( 3)2
(-2)2
+ 2
2

(-2 3)2
1
+ 2
2
2
轴上时,设椭圆的标准方程为 2
= 1,
2 = 15,
解得 2

=
5,
= 1,
2
故所求椭圆的标准方程为
15
+
2
=1.
5
+
2
=1(a>b>0).
2
②当焦点在 y
(-2)2
( 3)2
+
2

2
1
(-2 3)2
+ 2
2
接设所求椭圆方程为mx2+ny2=1(m>0,n>0,m≠n).
解 (1)因为椭圆的焦点在 x 轴上,
2
所以设它的标准方程为 2

+
2
=1(a>b>0).
2
因为 2a= (5 + 4)2 + (5-4)2 =10,所以 a=5.
又 c=4,所以 b2=a2-c2=25-16=9.
2
故所求椭圆的标准方程为25
O
为什么?
D
解1:(相关点代入法) 设点M的坐标为(x, y),点P的坐标
为(x0, y0),则点D的坐标为(x0, 0).
y0
寻求点M的坐标(x,y)中x, y
.
由点M是线段PD的中点,得 x x0 ,y
2
与x0, y0之间的关系,然后消
∵点P ( x0 ,y0 )在圆x 2 y 2 4上, ∴x02 y02 4,
2
a
a c

椭圆及其标准方程

椭圆及其标准方程

第一节 椭圆1.椭圆的定义(1) 第一定义:|)|2(2||||2121F F a a PF PF >=+ (21,F F 为焦点,c F F 2||21=为焦距) 注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2)第二定义:)10(,||<<=e e dPF注:第二定义中焦点与准线应对应2.椭圆的标准方程(中心在原点,对称轴为坐标原点)(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+by ax ,其中( > >0,且=2a )(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx a y ,其中a ,b 满足: .说明:(1)焦点在22,y x 分母大的对应的坐标轴上; (2)222c b a +=及c b a ,,的几何意义 (3)标准方程的统一形式:),0,0(122n m n m nymx≠>>=+适用于焦点位置未知的情形(4)参数方程:⎩⎨⎧==θθsin cos b y a x 3.椭圆的几何性质(对12222=+by ax ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;(4)离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 椭圆的准线方程为 .【课前预习】1.若方程11322=-+-k ykx为焦点在y 轴上的椭圆,则k 的取值范围是_______________2.已知椭圆的长轴长是8,离心率是43,则此椭圆的标准方程是_____________3.若椭圆1222=+myx的离心率为21,则实数=m ______4.已知21,F F 为椭圆1422=+yx的左、右焦点,弦AB 过1F ,则AB F 2∆的周长为______85.已知椭圆121622yx+=1的左、右焦点分别为F 1、F 2,M 是椭圆上一点,N 是MF 1的中点,若6||2=MF ,则|ON|的长等于 .1 【例题讲解】例1:根据下列条件求椭圆方程(1)已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P (3,0),求椭圆的方程; (2)中心在原点的椭圆,一条准线方程为5=y ,且它的离心率55=e ;(3)已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点;(4)中心在原点,以坐标轴为对称轴的椭圆,经过两点)2,3(),1,6(21--P P 小结:求椭圆的方法 例2:(1)椭圆1162522=+yx上一点P 到它的左焦点1F 的距离为6,则点P 到椭圆右准线的距离为_________(2)已知21,F F 是椭圆148:22=+yxC 的焦点,在C 上满足21PF PF ⊥的点P 的个数为________2小结:(3)椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,这个椭圆的方程是_________________1129,19122222=+=+yxyx(4)已知椭圆192522=+yx的焦点21,F F ,P 是椭圆上一点,9021=∠PF F ,则=∆21PF F S _______变式1: 6021=∠PF F ,则=∆21PF F S _______变式2:θ=∠21PF F ,则=∆21PF F S _______变式3:已知椭圆12222=+bya x的焦点21,F F ,椭圆上存在一点P ,使6021=∠PF F ,则离心率e 的取值范围是____________ 例3:关于离心率的运算(1)设椭圆的两个焦点分别为21,F F ,过2F 作椭圆长轴的垂线交椭圆于点B A ,,若1ABF ∆为正三角形,则椭圆的离心率为_________ (2)在平面直角坐标系中,椭圆12222=+by ax (a >b >0)的焦距为2,以O 为圆心,a 为半径作圆,过点⎪⎪⎭⎫⎝⎛0,2c a 作圆的两切线互相垂直,则离心率e= .(3)在ABC ∆中,187cos ,-==B BC AB ,若以B A ,为焦点的椭圆经过点C ,则该椭圆的离心率e=(4) 以椭圆12222=+by ax 的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则e 的取值范围是_______________1215<<-e小结: 例4:(最值问题) (1)设P 是椭圆1162522=+yx上任意一点,F A ,分别为椭圆的左顶点和右焦点,则AFPA PF PA ⋅+⋅41的最小值为________-9变式:P 为椭圆13422=+yx上任一点,A 为右顶点,B 为下顶点则AB PA ⋅最大值为________(2)椭圆1162522=+yx内有两点)0,3(),2,2(B A P 为椭圆上一动点则||35||PB PA +的最小值为____319变式:若)0,3(-C 则||||PC PA +最大值为__________510+例5:设椭圆()22221,0x y a b ab+=>>的左右焦点分别为12,F F,离心率2e =,点2F 到右准线为l 的距离为1)求,a b 的值;(2)设,M N 是l 上的两个动点,120F M F N ⋅=,证明:当M N 取最小值时,12220F F F M F N ++=。

椭圆及其标准方程

椭圆及其标准方程

椭圆及其标准方程(一)一.引入问题1:曲线可以看作是适合某种条件的点的集合或轨迹,请问圆是满足什么条件的点的轨迹?问题2:椭圆是满足什么条件的点的轨迹呢?问题3:假设绳长(设为2a)不变,改变两个图钉之间的距离(设为2c),请问椭圆有何变化?二.新课1.椭圆的定义:在平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆. 其中定点F1,F2叫做椭圆的焦点,| F1F2|叫做椭圆的焦距.说明:1)若常数等于| F1F2|,则轨迹为线段F1F22)若常数小于| F1F2|,则轨迹不存在练习1:平面内到两定点F[1](-2,0)和F[2](2,0)距离之和为4的点M的轨迹是( )A.椭圆B.线段C.圆D.以上都不对变:1)和为5呢? 2)和为3呢?练习2:命题甲:动点P到两定点A、B的距离之和|PA|+|PB|=2a(a>0,常数)命题乙:P点轨迹是椭圆,则命题甲是命题乙的( )A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件2.椭圆的标准方程建系设点----写出条件----列式----化简----检验3.椭圆的标准方程练习3:说出下列椭圆的焦点坐标(1)1322=+y x (2)13222=+y x 变形:62322=+y x 练习4:化简方程6222222=+-+++y x y x )()(变形1:4222222=+-+++y x y x )()(变形2:6222222=-++++)()(y x y x三. 例题讲解例1:求适合下列条件的椭圆的标准方程(1) 两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点距离的和等于10; (2) 两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点),(2523-.变形:焦距为8,且椭圆上一点P 到两焦点距离的和等于10练习5:写出适合下列条件的椭圆的标准方程 (1) a=4,b=1,焦点在x 轴上; (2) a=4,c=15,焦点在y 轴上; (3)a+b=10,c=52.补充:方程1162422=++-ky k x 表示椭圆,求k 的取值范围. 变形:(1)焦点在x 轴上的椭圆;(2)焦点在y 轴上的椭圆.椭圆及其标准方程(二)一. 复习练习1.椭圆191622=+y x 的a = b = c = ,焦点坐标是 . 练习2.动点P 到两个定点F 1(-4,0),F 2(4,0)的距离之和为8,则P 点的轨迹为( )A 、椭圆B 、线段F 1F 2C 、直线F 1F 2D 、不能确定练习3.椭圆13610022=+y x 上一点P 到焦点F 1 的距离为6,则点P 到另一个焦点F 2的距离为?练习4.写出适合下列条件的椭圆的标准方程: (1) 焦点在x 轴上,a =4,b =1 (2) a+b=10,c =2练习5.方程x 2+ky 2=2的曲线是焦点在y 轴上的椭圆,则k 的取值范围是( ) A 、(0,+∞) B 、(0,2) C 、(1,+ ∞ ) D 、(0,1)练习6. 方程1162422=++-ky k x 表示焦点在x 轴的椭圆,求k 的取值范围. 若去掉x 轴呢?二. 例题讲解.题型一.用待定系数法求椭圆的标准方程例1:求中心在原点,焦点在坐标轴上,且经过两点P ),(3131,Q ),(210-的椭圆的标准方程.练习1. 求中心在原点,焦点在坐标轴上,且经过两点P ),(222-,Q ),(232--的椭圆的标准方程.题型二.轨迹问题例2:在圆422=+y x 上任取一点P ,过点P 作x 轴的垂线段PD,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?练习2.已知点M 在椭圆193622=+y x 上,MP 0垂直于椭圆焦点所在的直线,垂足为P 0,并且M 为线段PP 0的中点,求P 点的轨迹方程式.例3:设点A,B 的坐标分别是(-5, 0), (5, 0), 直线AM 、BM 相交于点M,且它们的斜率之积等于-4/9,求点M 的轨迹方程。

椭圆的定义及其标准方程

椭圆的定义及其标准方程

标准方程 及图形
条件 范围
2a>2c,a2=b2+c2,a>0,b>0,c>0
|x|≤a;|y|≤b
|x|≤b;|y|≤a
曲线关于 对称性
x轴

y 轴、原点 对称
曲线关于

x轴、y轴、原点

顶点 焦点
长轴顶点( ±a,0 ) 短 轴顶点(0,±b )
( ±c,0 )
长轴顶点( 0,±a)短轴顶点 ( ±b,0 )
13.1 椭圆的定义及其标准方程
一、椭圆的定义
平面内到两个定点F1,F2的距离之 等和于常数 ( 大于|F1F2)|的点的集合叫作椭圆,这两个定点F1,F2 叫作椭圆的 焦点,两焦点F1,F2间的距离叫做椭圆的 焦距 .
二、椭圆的标准方程及其几何
意义
条件
2a>2c,a2=b2+c2,a>0,b>0,c>0
()
A.椭圆
B.线段
C.椭圆或线段或不存在 D.不存在
解析:当a<6时,轨迹不存在;
当a=6时,轨迹为线段;
当a>6时,轨迹为椭圆. 答案:C
3.已知椭圆
上一点P到椭圆一个焦点的距离
为3,则P到另一个焦点的距离为 ( )
A.2
B.3
C.5
D.7
解析:

答案:D
4.椭圆
的焦点坐标为________.
【解】 设所求的椭圆方程为 =1(a>b>0),
由已知条件得解得 故所求方程为
a=4,c=2,b2=12,
练习1.已知椭圆的中心在原点,以坐标轴为对称轴,且经
过两点 P1( 6,1), P2( 3, ,2求) 椭圆的方程.
解:设椭圆的方程为mx2+ny2=1(m>0,n>0且m≠n).

3.1.1椭圆及其标准方程

3.1.1椭圆及其标准方程

△ F1PF2 称为焦点三角形,解关于椭圆中的焦点三角形问题时 要充分利用椭圆的定义、三角形中的正弦定理、余弦定理、勾 股定理等知识.对于求焦点三角形的面积,若已知∠F1PF2, 1 可利用 S=2|PF1|· |PF2|sin∠F1PF2 求面积,这时可把|PF1|· |PF2| 看成一个整体,运用公式 |PF1|2+|PF2|2=4a2-2|PF1||PF2|及余 弦定理求出|PF1|· |PF2|,而无需单独求出|PF1|和|PF2|,这样可以 减少运算量.
x2 y2 y2 x2 ∴椭圆的标准方程为 当焦点在 x 轴上时,设椭圆的标准方程为 x2 y2 + =1(a>b>0). a2 b2
2 2 - 2 3 2 + 2 =1, b a 依题意有 2 - 2 3 1 + 2=1, 2 b a 2 a =15, 解得 2 b =5.
即|PF2|=4-|PF1|. 6 将②代入①解得|PF1|=5,

1 1 6 3 3 3 ∴S△ PF1F2=2|PF1|· |F1F2|· sin 120° =2× 2× 2 = 5 . 5× 3 因此所求△ PF1F2 的面积是5 3.
[一点通]
椭圆上一点 P 与椭圆的两焦点 F1、F2 构成的
[一点通] 求椭圆标准方程的一般步骤为:
[例 2]
如图所示, 已知椭圆的方程
x2 y2 为 4 + 3 =1,若点 P 在椭圆上,F1,F2 为椭圆的两个焦点,且∠PF1F2=120° , 求△ PF1F2 的面积. [思路点拨] 因为∠PF1F2=120°,|F1F2|=2c,所以要
求S△PF1F2,只要求|PF1|即可.可由椭圆的定义|PF1|+|PF2| =2a,并结合余弦定理求解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
F1 (-c,0) O
F2(c,0) x
2 2 可得 | PF1 || PF2 | a, | OF1 || OF2 | c, | PO | a c
令b | PO | a 2 c 2
x2 y2 那么①式 2 1 (a>b>0) 2 a b
思考5:你能有其他的建系方法求得椭圆的标准方 程吗?猜想此时的方程是什么?并证明你的结论。
本 专 题 栏 目 开 关
x2 y2 解析 ∵方程 - 2 =1 表示焦点在 y 轴上的椭圆, m m -2 y2 x2 将方程改写为 2+ =1, 2-m m 2-m2>m, ∴有 m>0,
解得 0<m<1.
题型四 椭圆的定义及标准方程的应用 焦点三角形的有关问题 探究点三 x2 y2 例 3 已知椭圆的方程为 + = 1,椭圆上 4 3
本 专 题 栏 目 开 关
3 从而有(4-|PF1|) =|PF1| +4.解得|PF1|= . 2 1 1 3 3 所以 △PF1F2 的面积 S = 2 · |PF1 |· |F1F2 |= 2 ³ 2 ³2 = 2 ,即 3 △PF1F2 的面积是 . 2

C
F1 D
F2
∆F2CD的周长为 20

题型二
用待定系数法求椭圆的标准方程
【例1】 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P
到两焦点距离的和是10;
(2)焦点在y轴上,且经过两个点(0,2)和(1,0); 6 2 2 (3)经过点( , 3)和点( ,1). 3 3
MF1 MF2 2a 2c
M
F1
2c
F2
探究二:椭圆的标准方程 思考4:求轨迹方程的步骤是什么?如何建系并求 得椭圆方程?
(1)建系设点; (2)写出条件; (3)列出方程; (4)化简方程; (5)排除杂点; (6)得出方程。
y
M (x,y)
如图所示:F1、F2为两定点,且
|F1F2|=2c,求平面内到两定点
c 2
求椭圆标准方程的解题步骤: (1)确定焦点的位置; ②
解得 a 10,b 6 (3)用待定系数法或者几何关系确定
2 2
(2)设出椭圆的标准方程; a、b、c的值 x2
y2 1. 10 6
题型三
由椭圆方程求参数范围
x2 y2 例 2 已知方程 - =1 表示焦点在 x 轴上的椭圆, k- 4 k- 10
(3)法一 ①当椭圆的焦点在 x 轴上时,设椭圆的方程为 x2 y2 + =1(a>b>0). a2 b2 6 2 2 ∵点( , 3)和点( ,1)在椭圆上, 3 3
( 6)2 2 ( 3 ) 3 a2 + b2 = 1, ∴ 2 2 2 ( 3 ) 12 + 2= 1. a2 b
2 2
焦距为 6 。
2 2 x y (3)若椭圆方程为 1 , 16 25
其焦点坐标为 (0,3)、(0,-3)
.
2 2 x y 例1.已知椭圆方程为 1 , 25 16
(4)已知椭圆上一点 P到左焦点F1的距离等于6,
则点P到右焦点的距离是 4
(5)若CD为过左焦点F1的弦, 则∆CF1F2的周长为 16 ,
有一点 P 满足∠PF1F2=90° (如图).求 △PF1F2 的面积.
本 专 题 栏 目 开 关
解 由已知得 a=2,b= 3,
所以 c= a2-b2= 4-3=1.从而|F1F2 |=2c=2.
在△PF1F2 中,由勾股定理可得|PF2|2=|PF1 |2+|F1 F2|2, 即|PF2|2=|PF1 |2+4. 又由椭圆定义知|PF1|+|PF2 |=2³2=4, 所以|PF2|=4-|PF1 |.
2 a = 1, ∴ 2 而 b = 9.
a>b>0.
∴ a2= 1, b2= 9 不合题意, 即焦点在 x 轴上的椭圆的方程不存在.
②当椭圆的焦点在 y 轴上时,设椭圆的标准方程为 y2 x2 + =1(a>b>0). a2 b2 6 2 2 ∵点( , 3)和点( ,1)在椭圆上, 3 3
(2)因为椭圆的焦点在 y 轴上,所以设它的标准方程为 y2 x2 + = 1(a>b>0). a2 b2 因为 2a= 26, 2c= 10, 所以 a= 13, c= 5. 所以 b2= a2- c2= 144. y2 x2 所以所求椭圆标准方程为 + = 1. 169 144
变式2:求以椭圆9 x 2 5 y 2 45的焦点为焦点,且经过点 M (2, 6)的椭圆的标准方程
如何化简?
即 ( x c )2 y 2 ( x c )2 y 2 2a ( x c )2 y 2 2a ( x c )2 y 2
( x c )2 y 2 2a ( x c )2 y 2
你能在图中找出 整理得a cx a ( x c )2 y 2 2 2, 表示a4,c, a c 两边平方得: a 2a 2cx c 2 x 2 a 2 x 2 2a 2cx a 2c 2 a 2 y 2 的线段吗? y 整理,得 (a2-c2)x2+a2y2=a2(a2-c2)
7<k<10 则实数 k 的取值范围为 _______________ .
x2 y2 解析 化成椭圆标准形式得 + =1, 根据其表示 k-4 10-k 焦点在 x 轴上的椭圆,
本 专 题 栏 目 开 关
k-4>0, 则10-k>0, k-4>10-k,
解得 7<k<10.
x2 y2 跟踪训练 2 若方程 - 2 =1 表示焦点在 y 轴上的椭 m m -2 圆,那么实数 m 的取值范围是 A.m>0 C.-2<m<1 B.0<m<1 D.m>1 且 m≠ 2 ( B )
[思路探索] 对于(1)、(2)可直接用待定系数法设出方程求
解,但要注意焦点位置.对于(3)由于题中条件不能确定椭圆 焦点在哪个坐标轴上,所以应分类讨论求解,为了避免讨 论,还可以设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B) 然后代入已知点求出A,B.
解 (1)∵椭圆的焦点在 x 轴上, x2 x2 ∴设它的标准方程为 2+ 2= 1(a>b>0). a b ∵ 2a= 10,∴ a= 5, 又∵ c= 4,∴ b2= a2- c2= 52- 42= 9. x2 x2 ∴所求椭圆的标准方程为 + = 1. 25 9
预习问题:
问题一:椭圆的定义和圆的定义有何异同?
问题二:椭圆的标准方程和圆的标准方程有 何异同?
若取一条长度一定且没有弹性的细绳,把它的两端 都固定在图板的同一点处,套上铅笔,拉紧绳子,移动 笔尖,这时笔尖画出的轨迹是什么图形?
引例:
平面内到一定点的距离等于定长的点的 轨迹是圆.
思考1: 平面内到两定点的距离之和等于定长的点的轨迹 又是什么呢?
y 2 x2 2 1(a b 0) 2 a b
a 2 b2 c 2
椭圆的标准方程 y
M
焦点F1 (c,0), F2 (c,0)
F2
F1
O
x
x2 y 2 2 1(a b 0) 2 a b
这里c 2 a 2 b2
y
F2 M O F1
焦点F1 (0,c ), F2 (0, c )
【变式1】 求适合下列条件的标准方程: (1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5, 0); (2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P到 两焦点的距离之和为26.
解 x2 (1)因为椭圆的焦点在 x 轴上,所以设它的标准方程为 2 a
y2 + 2=1(a>b>0). b 因为 2a= (5+3)2+02+ (5-3)2+02=10,2c=6, 所以 a=5,c=3, 所以 b2=a2-c2=52-32=16. x2 y2 所以所求椭圆的标准方程为 + =1. 25 16
F1(-c,0) O
F2(c,0) x F1、F2距离之和为定值2a(2a>2c)
的动点M的轨迹方程。
解:以F1F2所在直线为x轴,线段F1F2的垂直平分线为y轴
建立直角坐标系,则焦点F1、F2的坐标分别为(-c,0)、(c,0)。 设M(x,y)为所求轨迹上的任意一点, 则椭圆就是集合P={M||MF1|+ |MF2|=2a}
探究一:椭圆的定义
思考2:若将细绳的两端拉开一段距离,分别固定在图板上 不同的两点F1、F2处,并用笔尖拉紧绳子,再移动笔尖一 周,这时笔尖画出的轨迹是什么图形呢?
思考3:如果把细绳的两端的距离拉大,是否还能画出椭 圆?椭圆的形状随两端点的距离如何变化?
结论:绳长记为2a,两定点间的距离记为2c(c≠0).
2
则( x c )2 y 2 4a 2 4a ( x c )2 y 2 ( x c )2 y 2
∵2a>2c>0,即a>c>0,∴a2-c2>0, 两边同除以a2(a2-c2)得:
P
M (x,y)
x y 2 2 1 ① 2 a a c
如图点P是椭圆与y轴正半轴的交点
2 m=1, y 2 ∴ 1 ∴所求椭圆的标准方程为 x + 9 =1. n=9.
规律方法
求椭圆的标准方程时出适合题意的椭圆的标准
方程,最后由条件确定待定系数即可.当所求椭圆的焦点位置
不能确定时,应按焦点在x轴上和焦点在y轴上进行分类讨论, 但要注意a>b>0这一条件.当已知椭圆经过两点,求椭圆的标 准方程时,把椭圆的方程设成mx2+ny2=1(m>0,n>0,m≠n)的 形式有两个优点:①列出的方程组中分母不含字母;②不用讨 论焦点所在的坐标轴,从而简化求解过程.
相关文档
最新文档