非线性系统李雅普诺夫稳定性分析35页PPT

合集下载

非线性系统的李雅普诺夫稳定性分析

非线性系统的李雅普诺夫稳定性分析

(t ) f ( x ) x
克拉索夫斯基法(2/7)
定理5-11 非线性定常连续系统的平衡态xe=0为渐近稳定的充 分条件为
ˆ ( x ) J ( x) J ( x) J
为负定的矩阵函数,且
x f ( x) f ( x) V ( x) x
为该系统的一个李雅普诺夫函数。

a11 a21 a22 x12 0 a12 a22 0 a 0 21
时,V'(x)为负定。
即上述 aij 所满足的条件是 V'(x) 负定的一个充分条件。
而rot(gradV)=0的充分必要条件是: gradV的雅可比矩阵
Vi gradV ( x) x x j
nn
是对称矩阵,即
Vi V j x j xi i, j 1, 2, , n
当上述条件满足时,式(5-29)的积分路径可以任意选择,故 可以选择一条简单的路径,即依各个坐标轴xi的方向积分
由 场 论 知 识 可 知 , 若 梯 度 gradV 的 n 维 旋 度 等 于 零 , 即 rot(gradV)=0,则V可视为保守场,且上式所示的线积分与路 径无关。
V ( x ) (gradV ) dx

0
x
x n
0
V dx
i 1 i
i
(5 29)
变量梯度法 (4/10)
通常将aij选择为常数或t的函数。
变量梯度法 (6/10)
V ( x ) V1 (x ,0,,0) dx1 V2 (x , x ,0,,0) dx2 Vn
0
1
x1
x2

李雅普诺夫方法ppt课件

李雅普诺夫方法ppt课件
第三章 动态系统的稳定性及李雅普诺夫
分析方法
1
§1 稳定性基本概念
一、外部稳定性与内部稳定性 1.外部稳定性
考虑一个线性因果系统,在零初始条件下,如果对应于任意有界输 入的输出均为有界,则称该系统是外部稳定的。
u(t) k1
y(t) k2
系统的外部稳定性也称有界输入-有界输出(BIBO)稳定性。
10
单摆是Lyapunov意义下稳定或渐近稳定的例子。
xe
11
§2 李雅普诺夫稳定性分析方法
一、李雅普诺夫第一法
又称间接法,通过系统状态方程的解来分析系统的稳定性, 比较适用于线性系统和可线性化的非线性系统。
1.线性系统情况
线性定常连续系统平衡状态 xe 0 为渐近稳定的充要条件
是系统矩阵A的所有特征值都具有负实部。
S( ) ,则称平
衡状态 xe 为不稳定。
二维状态空间中零平衡状态 xe 0 为不稳定的几何解释如右图。
对于线性系统一般有:
lim
t
x(t, x0,t0 ) xe

对于非线性系统,也有可能趋于
S ( ) 以外的某个平衡点或某个极限环。
x2
x(t)
x(t0 ) xe
S( ) S( ) x1
4
3. 平衡状态
对于系统

x
f
(
x ,t )
(线性、非线性、定常、时变)
x (t0 ) x0
如果存在 xe,对所有的t有 f (xe,t) 0 成立,称状态 xe为上述 系统的平衡状态。
通常情况下,一个自治系统的平衡状态不是唯一的。而对于 线性定常连续系统的平衡状态有:
x Axe 0 ①若A非奇异,xe 0 唯一的平衡状态

5.4_非线性系统的李雅普诺夫稳定性分析解析

5.4_非线性系统的李雅普诺夫稳定性分析解析

克拉索夫斯基法(3/7)
V ( x ) [ f ( x ) f ( x )] f ( x ) f ( x ) x f ( x ) f ( x ) x x x f ( x) J ( x) f ( x) f ( x) J ( x) f ( x) ˆ ( x) f ( x) f ( x) J
克拉索夫斯基法(6/7)
例4-12 试确定如下非线性系统的平衡态的稳定性:
3x1 x2 f ( x) x 3 x x x 2 1 2
(t ) f ( x ) x
克拉索夫斯基法(2/7)
定理5-11 非线性定常连续系统的平衡态xe=0为渐近稳定的充 分条件为
ˆ ( x ) J ( x) J ( x) J
为负定的矩阵函数,且
V ( x) x x f ( x) f ( x)
为该系统的一个李雅普诺夫函数。

由于 V ( x) f ( x) f ( x)为系统的一个李雅普诺夫函数,即
f ( x) f ( x) 正定。
ˆ (x)负定,则 V ( x, t ) f ( x ) J ˆ ( x) f ( x )必为负定。 因此,若 J
所以 , 由定理 5-4 知 , 该非线性系统的平衡态 xe=0 是渐近稳 定的。
0 1 ˆ J ( x) J ( x) J ( x) 1 14
不是负定矩阵 , 故由克拉索夫斯基定理判别不出该系统 为渐近稳定的。
可见,该定理仅是一个充分条件判别定理。
克拉索夫斯基法(5/7)
若 V(x)=f(x)f(x) 正定 , 为 Lyapunov 函数 , 则说明只有当 x=0 时,才有V(x)=0,即原点是唯一的平衡态。 因此,只有原点是系统的由该定理判别出的渐 近稳定的平衡态一定是大范围渐近稳定的。 由克拉索夫斯基定理可知 ,系统的平衡态xe=0是渐近稳定 的条件是J(x)+J(x)为负定矩阵函数。 由负定矩阵的性质知 , 此时雅可比矩阵 J(x) 的对角线 元素恒取负值 , 因此向量函数 f(x) 的第 i 个分量必须包 含变量xi, 否则 , 就不能应用克拉索夫斯基定理判别该 系统的渐近稳定性。 将克拉索夫斯基定理推广到线性定常连续系统可知 :对称 矩阵A+A负定,则系统的原点是大范围渐近稳定的。

李雅普诺夫稳定性分析方法

李雅普诺夫稳定性分析方法
则是根据G(s)的特征值来分析其在小扰动 范围内运动稳定性.
(2)李雅普诺夫第二方法
• 也称直接法,属于直接根据系统结构判断内 部稳定性的方法.
• 该方法直接面对非线性系统,基于引入具有 广义能量属性的Lyapunov函数和分析李氏 函数的定量性, 建立判断稳定性的相应结 论.
• 因此直接法也是一般性方法----Lyapunov 第二法更具有一般性.
(2).平衡状态的形式.平衡状态 可由方程定 出,对二维自治系统, 的形式包括状态空 间中的点和线段.
(3).不唯一性.平衡状态 一般不唯一.
对定常线性系统而言,平衡状态 的解.
• 若矩阵A非奇,则有唯一解 • 若矩阵A奇异,则解 不唯一.
为方程
(4).孤立平衡状态,该状态是指状态空间彼此 分隔的孤立点形式的平衡状态,孤立平衡状 态的重要特征是:通过坐标移动可将其转换 为状态空间的原点.
• Lyapunov函数与
有关,用V(x)来
表示.
• 一般情况下V(x)>0 , 间的变化率.
表示能量随时
•当 少.
表明能量在运动中随时间推移而减
•当 加.
表明能量在运动中随时间推移而增
1.预备知识 1).标量函数V(x)性质意义:
令V(x)是向量x的标量函数,Ω是x空间包含 原点的封闭有限区域. (1).如果对所有区域Ω中的非零向量x,有 V(x)>0,且在x=0处有V(x)=0则在域Ω内称 V(x)为正定.
(3)用李氏方法分析的必要性 • 以一个例子说明:用特征值来判断线性时变
系统一般稳定性是会失效的.
• 其中特征值为 -1,-1.
• 但由于其解为
• 当 时,若 则必有 • 故平衡状态是不稳定的,即系统的实际表现

李雅普洛夫稳定性分析精品PPT课件

李雅普洛夫稳定性分析精品PPT课件
4、孤立平衡状态:如果多个平衡状态彼此是孤立的,则称这样 的状态为孤立平衡状态。单个平衡状态也是孤立平衡状态。
2.2 状态向量范数
符号 称为向量的范数,
为状态向量端点至
平衡状态向量端点的范数,其几何意义为“状态偏差
向量”的空间距离的尺度,其定义式为:
①范数 X 0 X e 表示初始偏差都在以Xe 为中心,δ为半径的 闭球域S(δ)内.
(2) 求系统的特征方程:
det(I
A)
1
求得:1 2,2 3
系统不是渐近稳定的。
6
1
(
2)(
3)
0
3.2 非线性系统的李亚普洛夫第一法
对非线性系统 X f (X ,t)
当f (X,t)为与X 同维的矢量函数,且对X 具有连续偏导数,则可将
向于无穷大时,有:
lim x
t
xe
0
即收敛于平衡状态xe,则称平衡状态xe为渐近稳定的。
如果 与初始时刻 t0无关,则称平衡状态xe为一致渐近稳定。
渐近稳定几何表示法:
Hale Waihona Puke 3、大范围渐近稳定如果对状态空间的任意点,不管初始偏差有多大,都有渐
近稳定特性,即:lim x t
xe
0
对所有点都成立,称平衡状态xe为大范围渐近稳定的。其
渐近稳定的最大范围是整个状态空间。
必要性:整个状态空间中,只有一个平衡状态。 (假设有2个平衡状态,则每个都有自己的稳定范 围,其稳定范围不可能是整个状态空间。)
结论:如果线性定常系统是渐近稳定的,则它一定是大范 围渐近稳定的。
4、不稳定 如果对于某一实数 0 ,不论 取得多么小,由 S( )内
域 S( ) ,当初始状态 x0 满足 x0 xe ( , t0 ) 时,对由此出发

李雅普诺夫稳定判据.ppt

李雅普诺夫稳定判据.ppt

例4.13 非线性系统的状态方程为


x1 x 2

x2

x1 (x12

x
2 2
)
x1 x2 (x12 x22 )
分析其平衡状态的稳定性。
解:确定平衡点:
xxe2e1
xe2 xe1
xe1(xe21 xe22 ) 0 xe2 (xe21 xe22 ) 0
取Q=I,P

P11

P12
P12
P22

,代入

T

0 1
1 P11

1

P12
P12 P22


P11

P12
P12 0
P22


1
1 1

10
0 1
P12

P11

P12
P12
P22 P22
不恒等于0,V (x) 也不恒等于0,因此, 系统平衡状态是大范围渐进稳定的。
李雅普诺夫函数不是唯一的。本例也可
取 则
V ( x)

1 2
[( x1
x2 ) 2
2 x12

x
2 2
]
V (x) (x1 x2 )(x1 x 2 ) 2x1 x1 x2 x 2
根据上述定义容易检验下列标量函数的正定性
1) V (x) = x12 2x22 是正定的;
2) V (x) = (x1 x2 )2 是半正定的,因为当 x1 x2 时 , V ( x) =0;
3)V (x) 0

非线性系统的李雅普诺夫稳定性分析共34页文档

非线性系统的李雅普诺夫稳定性分析共34页文档
ห้องสมุดไป่ตู้

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
非线性系统的李雅普诺夫稳定性分析

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

李雅普诺夫稳定性理论PPT学习教案

李雅普诺夫稳定性理论PPT学习教案

xe 0
的解
Axe 是系统唯一存在的平衡状态,当A为非奇异时,则
0
xe
会有无穷多个。
5) 由于任意一个已知的平衡状态,都可以通过坐标变换将其变
0
换到坐标原点 xe 处。所以今后将只讨论系统在坐标原点处的
稳定性就可以了。
6) 稳定性问题都是相对于某个平衡状态而言的。(这一点从
线性定常系统中的描述中可以得到理解)
种平衡状态xe不稳定。
第26页/共66页
1.2 李雅普诺夫稳定性及判别方法
球域s()限制着初始状态x0的取值,球域s()规定了系统自由 响
(t ; x0 , t0 )
应 x(t ) 的边界。
如果x(t)为有界,则称xe稳定。
如果x(t)不仅有界而且有: lim x(t ) 0 则称 xe 渐近稳定
如果与t0无关,则称这种平衡状态是一致稳定的
第22页/共66页

1.2 李雅普诺夫稳定性及判别方法
若对应于每一个s(),都存在一个s(),使当t无限增长使,从
s()出发的状态轨线(系统的响应)总不离开s(),即系统响应的
幅值是有界的,则称平衡状态xe为李雅普诺夫意义下的稳定,
简称为稳定。
第23页/共66页
第28页/共66页
1.2 李雅普诺夫稳定性及判别方法
如果系统 对于有 界输入 u所引 起的输 出y是有 界的, 则称系 统为输 出稳定 。
线性定常 系统 ∑=(A ,b,c )输出 稳定的 充要条 件是其 传递函 数
W s c sI A b
1
的极点全 部位于s 的左半 平面。
线性系统的稳定判据
线性定常 系统 ∑=(A ,b,c )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
非线性系统李雅普诺夫稳定性分析
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
Thank youFra bibliotek
相关文档
最新文档