高等代数试题库上课讲义

合集下载

高等代数试题库上课讲义

高等代数试题库上课讲义

高等代数试题库上课讲义高等代数试题库《高等代数》试题库一、选择题1.在[]F x 里能整除任意多项式的多项式是()。

A .零多项式B .零次多项式C .本原多项式D .不可约多项式 2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ()。

A .1B .2C .3D .4 3.以下命题不正确的是()。

A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。

A . 充分B . 充分必要C .必要D .既不充分也不必要5.下列对于多项式的结论不正确的是()。

A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈?,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6.对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号,则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。

A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。

A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D .在[]P x 中, ()()()()()()f x g x f x h x g x h x =?=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n nn nnA A A A A A A A A =( ) 。

数学高等代数习题详解

数学高等代数习题详解

数学高等代数习题详解一、代数式简化与展开代数式的简化是指将一个复杂的代数式化简为更简单的形式,而代数式的展开则是将一个多项式拆分成多个单项式相加的形式。

在进行代数式的简化和展开时,可以运用代数运算中的基本性质:1. 加法性质:a + b = b + a,a + (b + c) = (a + b) + c2. 乘法性质:a * b = b * a,a * (b * c) = (a * b) * c3. 分配性质:a * (b + c) = a * b + a * c示例1:将代数式 2x(3x - 4y) - 5y(x - y) 进行展开和简化。

解:首先,按照分配性质将代数式展开:2x(3x - 4y) - 5y(x - y) = 2x * 3x - 2x * 4y - 5y * x + 5y * y= 6x^2 - 8xy - 5xy + 5y^2= 6x^2 - 13xy + 5y^2接下来,将代数式简化:没有进一步可以简化的形式。

二、代数方程与不等式代数方程是一个包含了未知数和已知数之间相等关系的等式,而不等式则描述了未知数和已知数之间的大小关系。

在解代数方程和不等式时,可根据不同情况运用以下方法:1. 移项:通过加减法将含有未知数的项移到一个侧边,将常数项移到另一个侧边。

2. 因式分解:将复杂的代数式分解成几个简单的代数式的乘积形式。

3. 分离变量:若方程中存在多个未知数,则将未知数分离到各自一侧,然后分别解方程。

4. 同解法:通过变形将两个方程或不等式转化为相同形式,然后在相等形式下进行求解。

示例2:解方程 2x^2 + 5x - 3 = 0。

解:首先,尝试应用因式分解来解方程。

通过分解2x^2 + 5x - 3 = 0,得到:(2x - 1)(x + 3) = 0根据零乘法,得到2x - 1 = 0 或 x + 3 = 0解得x = 1/2 或 x = -3因此,方程 2x^2 + 5x - 3 = 0 的解为x = 1/2 或 x = -3。

《高等代数》(上)题库

《高等代数》(上)题库

《高等代数》(上)题库《高等代数》(上)题库第一章多项式填空题(1.7)1、设用x-1除f(x)余数为5,用x+1除f(x)余数为7,则用x2-1除f(x)余数是。

(1.5)2、当p(x)是多项式时,由p(x)| f(x)g(x)可推出p(x)|f(x)或p(x)|g(x)。

(1.4)3、当f(x)与g(x) 时,由f(x)|g(x)h(x)可推出f(x)|h(x)。

(1.5)4、设f(x)=x3+3x2+ax+b 用x+1除余数为3,用x-1除余数为5,那么a= b。

(1.7)5、设f(x)=x4+3x2-kx+2用x-1除余数为3,则k= 。

(1.7)6、如果(x2-1)2|x4-3x3+6x2+ax+b,则a= b= 。

(1.7)7、如果f(x)=x3-3x+k有重根,那么k= 。

(1.8)8、以l为二重根,2,1+i为单根的次数最低的实系数多项式为f(x)= 。

(1.8)9、已知1-i是f(x)=x4-4x3+5x2-2x-2的一个根,则f(x)的全部根是。

(1.4)10、如果(f(x),g(x))=1,(h(x),g(x))=1 则。

(1.5)11、设p(x)是不可约多项式,p(x)|f(x)g(x),则。

(1.3)12、如果f(x)|g(x),g(x)|h(x),则。

(1.5)13、设p(x)是不可约多项式,f(x)是任一多项式,则。

(1.3)14、若f(x)|g(x)+h(x),f(x)|g(x),则。

(1.3)15、若f(x)|g(x),f(x)| h(x),则。

(1.4)16、若g(x)|f(x),h(x)|f(x),且(g(x),h(x))=1,则。

(1.5)17、若p(x) |g(x)h(x),且则p(x)|g(x)或p(x)|h(x)。

(1.4)18、若f(x)|g(x)+h(x)且f(x)|g(x)-h(x),则。

(1.7)19、α是f(x)的根的充分必要条件是。

(1.7)20、f(x)没有重根的充分必要条件是。

武汉大学高等代数内部讲义

武汉大学高等代数内部讲义

武汉大学高等代数(基础课程内部讲义)目录武汉大学数学专业基础知识点框架梳理及其解析........................................................................................ 第一章多项式 ................................................................................................................................................... 第二章行列式 ................................................................................................................................................... 第三章线性方程组 ........................................................................................................................................... 第四章矩阵 ....................................................................................................................................................... 第五章二次型 ..................................................................................................................................................... 第六章线性空间 ................................................................................................................................................. 第七章线性变换 ................................................................................................................................................. 第八章入—矩阵与约当标准型 ......................................................................................................................... 第九章欧几里得空间 ......................................................................................................................................... 第十章双线性函数与辛空间 .............................................................................................................................武汉大学数学专业初试线性代数考研知识点深度分析真题分析年份题型分值考察范围考察难度(了解、理解、掌握、应用)2009 计算40 行列式计算,根据行列式的秩求未知数,求线性空间的一个基计算的题目都不是很难,只要是按定义来做都是可以做出来的证明110 证明向量的线性相关性,证明与方程组解个数有关的不等式,特殊矩阵有关的证明,特征值的范围,矩阵相似,线性变换证明题中前面几个很简单属于理解定义就可以做的,后面关于线性变换的题目有一定难度2008 计算70 行列式求值球线性空间的位数和一组基,求满足条件的正交变换,求零化多项式,极小多项式,Jordan标准型,求双线性变换的矩阵。

高等代数习题精选精讲

高等代数习题精选精讲

高等代数习题精选精讲高等代数是数学中非常重要的一个研究方向,它不仅深刻地影响了很多数学分支的发展,也对其他学科产生了广泛的影响。

作为数学领域中的一个重要学科,高等代数的习题也是非常重要的一部分。

本文将精选几道高等代数习题,帮助读者更好地掌握和应用高等代数的相关知识。

1. 对于一个域F上的矩阵A,如果它满足A²=I,其中I表示单位矩阵。

请问,A的行列式是多少?解: 首先,根据特征值的性质,A的特征值必须是1或-1,因为从A²=I可以推出A的特征值一定是这两个值之一。

又因为A的两个特征值都不为0,所以A可逆,因此有det(A)≠0。

考虑如果A 的特征值都是1,则A=I;如果特征值都是-1,则A=-I。

因此,要么det(A)=1,要么det(A)=-1,这取决于矩阵A的实际情况。

2. 设有一个域F上的线性空间V和它的两个子空间U和W,如果V=U⊕W,则有什么性质?解: 首先,由V=U⊕W可知,任何向量v∈V都可以唯一地表示为v=u+w,其中u∈U,w∈W。

又因为U和W是子空间,所以它们都有零向量0,即u+w=0当且仅当u=0且w=0。

由于向量v可以被唯一地表示为u和w的和,如果v=0,则必有u=0且w=0,即U∩W={0}。

因此,V的维数等于U的维数加上W的维数。

此外,任何向量v∈V都可以表示为U和W中向量的线性组合,证明了V=U+W。

3. 将一个4行3列的矩阵A按列分成两个2行3列的矩阵B和C,设D=B-C的转置,求D的秩。

解: 首先,由于A是一个4行3列的矩阵,所以B和C都是2行3列的矩阵,因此D是一个3行2列的矩阵。

又因为D=B-C的转置,所以D的转置为D的相反数,即D+(-D^T)=0。

因此,D和它的转置具有相同的秩,即rank(D)=rank(D^T)。

又因为D和C的列空间相同,所以rank(D)=rank(C)。

综上所述,只需求出C的秩即可。

C是一个2行3列矩阵,其列向量线性无关的充要条件是它的行列式不为0,而C的行列式是0。

高等代数试题库

高等代数试题库

《高等代数》试题库一、 选择题1.在[]F x 里能整除任意多项式的多项式是( )。

A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。

A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。

A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。

A . 充分B . 充分必要C .必要D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。

A 。

如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B 。

如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C 。

如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD 。

如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。

A .甲成立, 乙不成立;B 。

甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。

A . 奇数次实系数多项式必有实根;B 。

代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。

高等代数讲义 (PDF经典版)

高等代数讲义 (PDF经典版)

第一学期第一次课第一章 代数学的经典课题§1 若干准备知识1.1.1 代数系统的概念一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。

1.1.2 数域的定义定义(数域)设K 是某些复数所组成的集合。

如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有b a K a b K K b ab ∈≠∈/0时,,且当,∈±为一个数域。

,则称K 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {i |∈Q },其中i =b a +b a ,1−。

命题 任意数域K 都包括有理数域Q 。

证明 设K 为任意一个数域。

由定义可知,存在一个元素0≠∈a K a ,且。

于是K aaK a a ∈=∈−=10,。

进而Z ,∈∀m 0>K m ∈+……++=111。

最后,Z ,∈∀n m ,0>K n m ∈,K nmn m ∈−=−0。

这就证明了Q ⊆K 。

证毕。

1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念定义(集合的交、并、差) 设是集合,与S A B 的公共元素所组成的集合成为与A B 的交集,记作B A ∩;把和B 中的元素合并在一起组成的集合成为与A A B 的并集,记做B A ∪;从集合中去掉属于A B 的那些元素之后剩下的元素组成的集合成为与B 的差集,记做。

A B A \定义(集合的映射) 设、A B 为集合。

如果存在法则,使得中任意元素在法则下对应f A a f B 中唯一确定的元素(记做),则称是到)(a f f A B 的一个映射,记为).(,:a f a B A f a →如果B b a f ∈=)(,则称为在下的像,a 称为在下的原像。

的所有元素在下的像构成的b a f b f A f B 的子集称为A 在下的像,记做,即f )A (f {}A a f A f ∈a =|)()(。

高等代数教案高等代数试题以及解答

高等代数教案高等代数试题以及解答

高等 代 数(上 )(No. 8)一、填空 ( 每小 1 分 , 共 8分 )1.一非空复数集 P 数域 ,假设其 包含 0 和 1, 且 加减乘除四种运算封 .2.d(x) f (x), g(x) 的一个最大公因式 ,d(x)与 (f (x), g(x)) 的关系倍数关系即 d(x)= k(f (x), g(x)) .3. { i 1,i 2, ⋯,i⋯ in )+( i n i n 1 ⋯ i1)=n(n 1).n }={1 ,2, ⋯,n}, ( i 1 i 22x a 1 ... a 14. n ≥ 2, a 1, ⋯,a n 两两不同 ,a2x ... a 2 的不同根a 1, a 2,⋯,a n.... ... ... ...a n a n (x)r 1 ), i =1, ⋯,r 性无关.5. t 1, ⋯,t r 两两不同 ,i =(1,t i , ⋯,ti6.假设 可由 1, ⋯,r 唯一表示 , 1, ⋯,r 性 无关.7. 1, ⋯,m n 向量 , 且 R ( 1, ⋯,m )=n,n≤m. 8.假设 A n 称 且 AA = O,A=O.二、 ( 每小 1 分 ,共 8 分 )1. 于“命 甲:将n(>1) 行列式 D 的主 角 上元素反号 , 行列式D ;命 乙: 行列式中两行的位置, 行列式反号〞有 ( B) .A . 甲成立 , 乙不成立B . 甲不成立 , 乙成立C . 甲 , 乙均成立D . 甲 , 乙均不成立2.整系数多 式f (x)在 Z 不可 是 f (x)在 Q 上不可 的 ( B ) 条件 .A . 充分B . 充分必要C . 必要D . 既不充分也不必要A11A21...An13. D=|a ij |n , A ijA12 A22...An2C ) .a ij 的代数余子式 ,D=(... ... ... ...A1nA2 n...AnnA . DB . DC .D nD . ( 1)nD4.下述中 , 的是 ( D) .A . 奇数次 系数多 式必有 根B . 代数根本定理适用于复数域C . 任一数域包含 QD . 在 P[x]中 , f ( x)g(x)= f (x)h(x) g(x)=h(x)5. A, B n 方 , m N, “命 甲: | A|= A ;命 乙: (AB )m = A m B m〞中正确的选项是( D ) .A . 甲成立 , 乙不成立B . 甲不成立 , 乙成立C.甲 , 乙均成立 D .甲 ,乙均不成立6. 任 n 矩 A 与 A,下述判断成立的是 (B) .A. | A|= |A|B.AX=0与 ( A)X=0 同解C.假设 A 可逆 , (A) 1=(1)n A 1 D . A 反称 , - A 反称7.向量1, ⋯,s性无关(C) .A.不含零向量B.存在向量不能由其余向量性表出C.每个向量均不能由其余向量表出D.与位向量等价8.A, B 均 P 上矩 , 由 (A) 不能断言 A≌ B.A.R(A)= R(B)B.存在可逆 P 与 Q 使 A=PBQC. A 与 B 均 n 可逆D. A 可初等成 B三、要答复 ( 每小 5 分 ,共 20分 )1. f (x), g(x) P[x], g(x) 0,假设 f (x)= g(x)q(x)+r(x),(f (x), g( x))=( f (x), r(x))成立?什么?答 : 不一定成立 . 如: f (x)=6 x2, g (x)=2x, q(x)=3 x, r( x)=0, ( f ( x), g(x))= x, ( f (x), r (x))=x2.2.Aa bc , 当 a,b,c,d 足何条件 , A=A ? A=A2?什么?d答 :当 b=c , A 是一个称矩 , 因此 A=A .当 a+d =1 或 c=b= 0 且 a, d{0,1} , A=A2.直接根据矩相等的定 .3.假设1, ⋯,s与1,⋯,s 均相关,1+ 1,⋯,s+s 相关?什么?答 : 不一定 . 如:1=(0, 2, 0),2=(1, 0, 1),3=(2, 1, 2), 1=(0,1, 0),2=(1, 0, 0), 3=(1, 1, 0),然 1,2,3;1,2,3两向量均相关 ,但 1+1,2+ 2,3+ 3是性无关的 .4.假设 A, B 均 n, 且 A≌ B, A 与 B 的行向量等价?什么?答:等价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等代数试题库《高等代数》试题库一、选择题1.在[]F x 里能整除任意多项式的多项式是( )。

A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。

A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。

A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。

A . 充分 B . 充分必要 C .必要 D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。

A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。

A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。

A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。

A . DB . D -C ./D D . (1)n D -9.行列式41032657a --中,元素a 的代数余子式是( )。

A .4067-B .4165C .4067-- D .4165- 10.以下乘积中( )是5阶行列式ij D a =中取负号的项。

A .3145122453a a a a a ; B .4554421233a a a a a ;C .2351324514a a a a a ;D .1332244554a a a a a11. 以下乘积中( )是4阶行列式ij D a =中取负号的项。

A .11233344a a a a ;B .14233142a a a a ;C .12233144a a a a ;D .23413211a a a a12. 设,A B n 均为阶矩阵,则正确的为( )。

A . det()det det AB A B +=+ B .AB BA =C . det()det()AB BA =D .222()2A B A AB B -=-+13. 设A 为3阶方阵,321,,A A A 为按列划分的三个子块,则下列行列式中与A 等值的是( )A .133221A A A A A A --- B .321211A A A A A A +++ C .32121A A A A A -+ D .311132A A A A A +- 14. 设A 为四阶行列式,且2-=A ,则=A A ( )A .4B .52C .52-D .815. 设A 为n 阶方阵,k 为非零常数,则=)det(kA ( )A .)(det A kB .A k detC .A k n detD .A k n det16.设A ,B 为数域F 上的n 阶方阵,下列等式成立的是( )。

A .det()det()det()A B A B +=+;B . det()det()kA k A =;C .1det()det()n kA k A -=;D .det()det()det()AB A B =17. 设*A 为n 阶方阵A 的伴随矩阵且A 可逆,则结论正确的是( )A . **1()||n A A A -=B . **1()||n A A A +=C .**2()||n A A A -=D .**2()||n A A A +=18.如果11AA A A I --==,那么矩阵A 的行列式A 应该有( )。

A .0A =; B .0A ≠; C .,1A k k =>; D .,1A k k =<-19.设A , B 为n 级方阵, m N ∈, 则“命题甲:A A -=-;命题乙:()m m m AB A B =”中正确的是( ) 。

A . 甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立20.设*A 为n 阶方阵A 的伴随矩阵,则*A A =( )。

A .2n AB .n AC .2n n A -D .21n n A -+21.若矩阵A ,B 满足AB O =,则( )。

A .A O =或B O =;B .A O ≠且B O ≠;C .A O =且B O =;D .以上结论都不正确22.如果矩阵A 的秩等于r ,则( )。

A .至多有一个r 阶子式不为零;B .所有r 阶子式都不为零;C .所有1r +阶子式全为零,而至少有一个r 阶子式不为零;D .所有低于r 阶子式都不为零23.设n 阶矩阵A 可逆(2)n ≥,*A 是矩阵A 的伴随矩阵,则结论正确的是( )。

A .()1n A A A *-*=;B .()1n A A A *+*=;C .()2n A A A *-*=;D .()2n A A A *+*=24. 设*A 为n 阶方阵A 的伴随矩阵,则||||*A A =( )A . 2||n AB .||n AC .2||n n A -D . 21||n n A -+25.任n 级矩阵A 与-A , 下述判断成立的是( )。

A . A A =-; B .AX O =与()A X O -=同解;C .若A 可逆, 则11()(1)n A A ---=-;D .A 反对称, -A 反对称26.如果矩阵rankA r =,则 ( )A . 至多有一个r 阶子式不为零;B .所有r 阶子式都不为零C . 所有1r +阶子式全为零,而至少有一个r 阶子式不为零;D .所有低于r 阶子式都不为零27. 设A 为方阵,满足11AA A A I --==,则A 的行列式||A 应该有 ( )。

A . ||0A = B . ||0A ≠ C . ||,1A k k => D . ||,1A k k =<- 28. A 是n 阶矩阵,k 是非零常数,则kA = ( )。

A . k A ;B . k A ;C . n k AD . ||n k A29. 设A 、B 为n 阶方阵,则有( ).A .A ,B 可逆,则A B +可逆 B .A ,B 不可逆,则A B +不可逆C .A 可逆,B 不可逆,则A B +不可逆D .A 可逆,B 不可逆,则AB 不可逆30. 设A 为数域F 上的n 阶方阵,满足220A A -=,则下列矩阵哪个可逆( )。

A .AB .A I -C .A I +D 2A I -31. B A ,为n 阶方阵,O A ≠,且()0R AB =,则( )。

A .OB =; B .()0R B =;C .O BA =;D .()()R A R B n +≤32. A ,B ,C 是同阶方阵,且ABC I =,则必有( )。

A . ACB I =; B . BAC I =; C .CAB I =D . CBA I =33. 设A 为3阶方阵,且()1R A =,则( )。

A .*()3R A =;B .*()2R A =;C .*()1R A =;D .*()0R A =34. 设B A ,为n 阶方阵,O A ≠,且O AB =,则( ).A .OB = B .0=B 或0=AC .O BA =D .()222B A B A +=- 35. 设矩阵00400000100000000200A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则秩A =( )。

A .1 B .2 C .3 D .436. 设A 是m n ⨯矩阵,若( ),则AX O =有非零解。

A .m n <;B .()R A n =;C .m n >D .()R A m = 37. A ,B 是n 阶方阵,则下列结论成立得是( )。

A .AB O A O ≠⇔≠且B O ≠; B . 0A A O =⇔=;C .0AB A O =⇔=或B O =;D . 1||=⇔=A I A38. 设A 为n 阶方阵,且()n r A R <=,则A 中( ).A .必有r 个行向量线性无关B .任意r 个行向量线性无关C .任意r 个行向量构成一个极大无关组D .任意一个行向量都能被其他r 个行向量线性表示39. 设A 为34⨯矩阵,B 为23⨯矩阵,C 为43⨯矩阵,则下列乘法运算不能进行的是( )。

A .T T A BCB .T ACBC .BACD .ABC40.设A 是n 阶方阵,那么A A '是( )A . 对称矩阵;B . 反对称矩阵;C .可逆矩阵;D .对角矩阵41.若由AC AB =必能推出C B =(C B A ,,均为n 阶方阵),则A 满足( )。

A .0A ≠B .O A =C .O A ≠D .0≠AB42.设A 为任意阶)3(≥n 可逆矩阵,k 为任意常数,且0≠k ,则必有=-1)(kA ( )A .1-A k nB .11--A k nC .1-kAD .11-A k43.A ,B 都是n 阶方阵,且A 与B 有相同的特征值,则( ) A . A 相似于B ; B . A B =; C . A 合同于B ; D .A B =44. 设)(21I B A +=,则A A =2的充要条件是( ) A .B I =; (B )I B -=;C .I B =2 D .I B -=245. 设n 阶矩阵A 满足220A A I --=,则下列矩阵哪个可能不可逆( )A . 2A I +B . A I -C . A I +D . A46. 设n 阶方阵A 满足220A A -=,则下列矩阵哪个一定可逆( ) A . 2A I -; B . A I -; C . A I + D . A47. 设A 为n 阶方阵,且()n r A R <=,则A 中( ).A .必有r 个列向量线性无关;B .任意r 个列向量线性无关;C .任意r 个行向量构成一个极大无关组;D .任意一个行向量都能被其他r 个行向量线性表示48.设A 是m n ⨯矩阵,若( ),则n 元线性方程组0AX =有非零解。

相关文档
最新文档