论公路桥涵混凝土结构设计与建筑结构的不同
宣贯资料公路钢筋混凝土及预应力混凝土桥涵设计规范学习

宣贯资料公路钢筋混凝土及预应力混凝土桥涵设计规范学习引言在交通基础设施的建设中,桥梁和涵洞的设计与施工至关重要。
为了确保这些结构的安全性、耐用性和经济性,需要遵循一定的设计规范。
本文将重点介绍宣贯资料中关于公路钢筋混凝土及预应力混凝土桥涵设计规范的学习内容,以帮助读者更好地理解与应用相关规范。
一、公路钢筋混凝土桥涵设计规范1、结构形式与荷载在公路钢筋混凝土桥涵设计中,首先需要根据桥梁的跨度、荷载及地形条件选择合适的结构形式。
常见的结构形式包括梁式桥、拱式桥、悬索桥等。
同时,需要了解并掌握各种荷载形式及其对结构的影响,如车辆荷载、风荷载、地震荷载等。
2、材料与基本要求钢筋混凝土桥涵的主要材料包括混凝土、钢筋和钢材。
混凝土应具有足够的强度、耐久性和稳定性,钢筋应满足承载力要求,钢材应具有优良的塑性和韧性。
还需材料的基本性能及使用要求,如混凝土的配合比、钢筋的连接与锚固等。
3、设计与计算在设计钢筋混凝土桥涵时,应进行整体结构分析和局部应力计算。
结构分析需要考虑桥梁的承载能力、稳定性和变形要求。
局部应力计算需关键部位的应力分布和极限承载力。
还需进行施工阶段的详细设计,确保施工过程中的安全性。
二、预应力混凝土桥涵设计规范1、预应力原理与工艺预应力混凝土桥涵通过在混凝土中引入预应力来提高结构的承载能力。
预应力可以通过高强度钢绞线、螺纹钢筋或钢丝提供。
预应力工艺包括先张法和后张法两种,各有其适用范围和特点。
2、结构设计与分析预应力混凝土桥涵的结构设计需考虑承载能力、变形和裂缝控制等因素。
通过整体结构分析和局部应力计算,确定合理的结构形式和预应力分布。
同时,还需考虑施工阶段的临时支撑和张拉要求。
3、耐久性与维护预应力混凝土桥涵的耐久性取决于材料性能、结构设计及施工质量控制等因素。
为确保桥梁的长期安全使用,应重视后期的检测和维护工作。
定期检查桥梁的整体结构、预应力状态及关键部位的损伤情况,及时采取必要的维修和加固措施。
桥梁设计荷载

第4.2.2条 预加力 在结构进行正常使用极限状态设计和使用 阶段应力计算时,应作为永久作用计算其主效 应和次效应,并计入相应阶段的预应力损失, 但不计由于偏心距增大引起的附加效应; 在结构进行承载能力极限状态设计时,预 加力不作为作用,而将预应力钢筋作为结构抗 力的一部分,但在连续梁等超静定结构中,仍 需考虑预加力引起的次效应。
支座摩阻力
F = µ ⋅W
偶然作用
偶然作用
偶然作用是指在结构使用期间出现的 概率很小,一旦出现,其值很大且持续时 间很短的作用。《桥规》中的偶然荷载包 括地震作用、船舶或漂流物的撞击作用和 汽车撞击作用。
地震作用
在地震区建造桥梁,必须考虑地震作用。
第4.4.1条 地震作用 地 震 动 峰 值 加 速 度 等 于 0.10g 、 0.15g 、 0.20g、0.30g地区的公路桥涵,应进行抗震设 计。 地震作用的计算及结构的设计,应符合现 行《公路工程抗震设计规范》的规定。
车辆荷载
前轮: 0.3×0.2 中、后轮: 0.6×0.2 各荷载等 级采用相同的 车辆荷载。
横向布载
车道荷载横向分布系数应按设计车道数如下图布 置车辆荷载进行计算。
横向布载
桥涵设计车道数应符合下表的规定:
桥面宽度 车辆单向行驶时 车辆双向行驶时 W<7.0 7.0≤W<10.5 6.0≤W<14.0 10.5≤W<14.0 14.0≤W<17.5 14.0≤W<21.0 17.5≤W<21.0 21.0≤W<24.5 21.0≤W<28.0 24.5≤W<28.0 28.0≤W<31.5 28.0≤W<35.0 桥涵设计车道数 1 2 3 4 5 6 7 8
公路桥涵新旧设计规范的安全比较探讨

公路桥涵新旧设计规范的安全比较探讨摘要:随着工程经验的总结和科学理论的发展,公路桥涵的设计规范一直处于不断的完善修改之中,本文以预应力板梁和普通钢筋混凝土梁为例,通过对结构中配筋的不同、预应力损失的不同、抗裂验算要求等方面的对比分析,对公路桥涵新、旧设计规范的安全进行了比较探讨,从而促进新规范的推广使用。
关键词:公路桥涵;新、旧设计规范;安全比较探讨随着科学研究的进步发展和工程经验的不断总结,公路桥涵设计理论一直处于发展之中,2004年颁布执行了新的公路桥涵设计规范,新规范在车辆布载模式和配筋方面有了很大的修改,并且在内力计算方面,新规范更加安全、合理和简洁。
相比于以往的旧规范而言,新规范最大的区别在于:冲击系数、配筋、挠度、裂缝、预应力损失、材料的强度取值、车辆的布载模式等,在这些方面新规范都有了明显的调整,笔者将以宽度为15m,长度为20m和16m的预应力板梁以及T型普通钢筋混凝土为例,对几个重要方面进行分析。
1. 冲击系数的对比根据旧规范规定:对于钢筋混凝土已经预应力混凝土构件的冲击系数,当跨径L不超过5m时,u取为0.30;当跨径L不小于45m时,u取为0。
当跨径L在5m和45m之间时,冲击系数的取值可用线性内插法求得,以20m板梁为例,u=0.188,冲击系数1+u=1.188。
同样以20m板梁为例,在新规范中,冲击系数的求法为1+u=1+ 0. 25= 1. 25。
同理,对于16m板梁、16m和20mT梁的冲击系数可计算得到。
在旧规范中,冲击系数的决定因素主要为桥梁的跨径和荷载长度。
而新规范中的冲击系数加入了桥梁结构动力因素的影响,冲击系数采用的求解方法为桥梁结构基频法,相比于旧规范此方法计算得到的冲击系数偏大,新规范中考虑的因素涉及到了结构的截面尺寸和材料特征,更接近于桥梁结构在车辆荷载作用下的受力特征,因此最终求得的车辆冲击力更加接近现实。
2. 内力的对比根据新、旧规范分别计算20 m, 16 m 板梁和20 m, 16 mT梁对应的公路一ⅳ级、公路一级和汽车一超20 级、汽车一20级的车道荷载组合边梁弯矩,同时计算汽车活载弯矩。
国开形成性考核02181《混凝土结构设计原理》形考任务(1-4)试题及答案

国开形成性考核《混凝土结构设计原理》形考任务(1-4)试题及答案(课程ID:00053,整套相同,如遇顺序不同,Ctrl+F查找,祝同学们取得优异成绩!)形考任务一第一章题目多项选择题,每题0.4分,共1.6分。
题目:1、关于素混凝土梁与钢筋混凝土梁在承载力和受力性能方面的说法,错误的是(BC)。
【A】:适筋钢筋混凝土梁的破坏形态属延性破坏【B】:相同截面尺寸的素混凝土梁和钢筋混凝土梁,前者的受弯承载力更高【C】:素混凝土梁的破坏形态属延性破坏【D】:相同截面尺寸的素混凝土梁和钢筋混凝土梁,后者的受弯承载力更高题目:2、关于钢筋混凝土结构的优点,下列说法正确的是(ABC)。
【A】:承载力高【B】:耐火性好【C】:耐久性佳【D】:自重轻题目:3、关于钢筋混凝土结构的缺点,下列说法正确的是(BCD)。
【A】:取材不方便【B】:需用大量模板【C】:施工受季节性影响【D】:抗裂性差题目:4、钢筋与混凝土之所以能够有效地结合在一起共同工作,主要基于(ABD)。
【A】:接近的温度线膨胀系数【B】:钢筋和混凝土之间良好的黏结力【C】:接近的抗拉和抗压强度【D】:混凝土对钢筋的保护作用第二章题目不定项选择题,每题0.4分,共2分。
题目:5、我国《混凝土规范》规定:钢筋混凝土构件的混凝土强度等级不应低于(A)。
【A】:C20【B】:C15【C】:C10【D】:C25题目:6、关于高强混凝土的强度和变形性能,下列说法正确的是(ABC)。
【A】:与普通混凝土相比,高强混凝土与峰值应力对应的应变值较高;【B】:与普通混凝土相比,高强混凝土的弹性极限较高;【C】:与普通混凝土相比,高强混凝土在荷载长期作用下的强度以及与钢筋的粘结强度均较高;【D】:高强混凝土的极限应变比普通混凝土高。
题目:7、影响混凝土徐变的主要因素有(ABCD)。
【A】:加荷龄期【B】:混凝土组成成分以及构件的尺寸。
【C】:养护和使用条件下的温湿度【D】:施加的初应力水平题目:8、钢筋经冷拉后,(D)。
公路桥涵设计通用规范(JTGD60-2015)条文说明

公路桥涵设计通用规范JTGD60-2015条文说明1总则1.0.1 本次修订对公路桥涵设计原则进行了调整和修改。
近些年的桥梁安全事故,使桥梁工程设计者和管理者认识到结构物的安全、耐久是最基本的要求。
在保证安全和耐久的前提下,桥涵设计要优先考虑满足功能需求,即要满足“适用”的要求,再根据具体情况考虑环保、经济和美观的要求。
环保问题关系到社会的可持续发展,须给予高度重视。
1.0.3 桥梁上的可变作用是随时间变化的,所以它的统计分析要用随机过程概率模型来描述。
随机过程所选择的时间域即为基准期。
根据《工程结构可靠性设计统一标准》(GB50153)的规定,公路桥涵结构的设计基准期取100 年。
1.0.4 设计使用年限是体现桥涵结构耐久性的重要指标,美国、英国、新西兰和日本等多国的桥梁设计规范对桥梁设计使用年限均有明确的规定。
现行《公路工程技术标准》(JTGB01)修订时综合考虑了国标的规定、公路功能、技术等级和桥涵重要性等因素,规定了桥涵主体结构和可更换部件设计使用年限的最低值。
本条规定与《公路工程技术标准》(JTGB01-2014)保持一致。
1.0.5 本条中的桥涵分类标准采用了两个指标:一个是单孔跨径L K,用以反映桥涵的技术复杂程度;另一个是多孔跨径总长L,用以反映建设规模。
本条与《公路工程技术标准》(JTGB01-2014) 保持一致。
在确定桥涵分类时,符合其中一个指标即可归类,存在差异时,可采取“就高不就低”的原则。
在计算桥梁长度时,曲线桥宜按弧长计,斜桥宜按斜长计。
1.0.7 可持续发展已成为国内外工程界普遍关注的问题。
当前环境、资源对公路桥涵建设的约束不断强化,加快资源节约型、环境友好型行业建设已成为行业转型发展的重要途径,为此,交通运输部适时地提出了“绿色交通”的发展战略,旨在将可持续发展的理念贯穿落实到交通运输发展的各个领域和各个环节。
增加本条规定一方面是贯彻国家和行业的宏观要求,另一方面将有助于提高设计人员对环境和资源的重视。
裂缝宽度验算及减小裂缝宽度地主要要求措施

8.2.5 裂缝宽度验算及减小裂缝宽度的主要措施对裂缝宽度的限制,应从保证结构耐久性,钢筋不被锈蚀及过宽的裂缝影响结构外观,引起人们心理上的不安两个因素来考虑。
《混凝土结构设计规范》(GB50010)规定,钢筋混凝土构件在荷载的标准组合下,并考虑长期作用影响的最大裂缝宽度,应符合下式规定:(8-20)式中w max——按荷载的标准组合并考虑长期作用影响计算的构件最大裂缝宽度,按式;w lim——裂缝宽度限值,根据构件所处的环境类别(表8-1)不同,裂缝宽度限值取表8-2中的值。
表8-1 混凝土结构的使用环境类别环境类别说明一室内正常环境;无侵蚀性介质、无高温高湿影响、不与土壤直接接触的环境a室内潮湿环境、露天环境及与无侵蚀性的水或土壤直接接触的环境二b严寒和寒冷地区的露天环境及与无侵蚀性的水或土壤直接接触的环境三使用除冰盐的环境、严寒及寒冷地区冬季的水位变动环境、滨海室外环境四海水环境(海水潮汐区、浪溅区、海面大气区、海水水下区)表8-2 混凝土结构构件的最大裂缝宽度限值w lim (mm)《公路钢筋混凝土和预应力混凝土桥涵设计规范》(JTJ023)规定,钢筋混凝土构件在正常使用极限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应影响进行验算,且不得超过以下规定的限值:一般环境0.20mm有气态、液态或固态侵蚀物质环境0.10mm这里,一般环境系指寒冷和严寒、无侵蚀物质影响的地面和水下及与土直接接触的环境;有气态、液态或固态侵蚀物质环境系指包括海水、使用除冰盐在内及工业污染的环境。
从影响裂缝宽度的主要因素以及两本规范的裂缝宽度计算公式中我们发现,当设计计算发现裂缝宽度超限,或要求减小裂缝宽度时,选择较细直径的钢筋及变形钢筋是最为经济的措施。
因为同样面积的钢筋,直径小则其周长与面积比就大,这就增大了钢筋与混凝土间的粘结力,采用变形钢筋亦是这个道理。
粘结力大,可使裂缝间距缩短,裂缝即多而密,裂缝间距内钢筋与混凝土之间的变形差就小,裂缝宽度减小。
混凝土结构设计原理 考试 判断题
混凝土结构设计原理二、判断题1.通常所说的混凝土结构是指素混凝土结构,而不是指钢筋混凝土结构。
(×)2.混凝土结构是以混凝土为主要材料,并根据需要配置钢筋、预应力筋、型钢等,组成承力构件的结构。
(√)3.我国《混凝土规范》规定:钢筋混凝土构件的混凝土强度等级不应低于C10。
(×)4.钢筋的伸长率越小,表明钢筋的塑性和变形能力越好。
(×)5.钢筋的疲劳破坏不属于脆性破坏。
(×)6.对于延性要求比较高的混凝土结构(如地震区的混凝土结构),优先选用高强度等级的混凝土。
(×)7.粘结和锚固是钢筋和混凝土形成整体、共同工作的基础。
(√)8.只存在结构承载能力的极限状态,结构的正常使用不存在极限状态。
(×)9.一般来说,设计使用年限长,设计基准期可能短一些;设计使用年限短,设计基准期可能长一些。
(×)10.钢筋和混凝土的强度标准值是钢筋混凝土结构按极限状态设计时采用的材料强度基本代表值。
(√)11.荷载设计值等于荷载标准值乘以荷载分项系数,材料强度设计值等于材料强度标准值乘以材料分项系数。
(√)12.混凝土强度等级的选用须注意与钢筋强度的匹配,当采用HRB335、HRB400钢筋时,为了保证必要的粘结力,混凝土强度等级不应低于C25;当采用新HRB400钢筋时,混凝土强度等级不应低于C30。
(√)13.一般现浇梁板常用的钢筋强度等级为HPB235、HRB335钢筋。
(√)14.混凝土保护层应从受力纵筋的内边缘起算。
(×)15.钢筋混凝土受弯构件正截面承载力计算公式中考虑了受拉区混凝土的抗拉强度。
(×)16.钢筋混凝土受弯构件斜截面受剪承载力计算公式是以斜拉破坏为基础建立的。
(×)17.钢筋混凝土梁斜截面破坏的三种形式是斜压破坏,剪压破坏,斜拉破坏。
(√)18.钢筋混凝土无腹筋梁发生斜拉破坏时,梁的抗剪强度取决于混凝土的抗拉强度,剪压破坏也基本取决于混凝土的抗拉强度,而发生斜压破坏时,梁的抗剪强度取决于混凝土的抗压强度。
公路桥涵设计通用规范
3.3.5车行天桥桥面净空按交通量和通行农业机械类型可选用4.5m或7.0m;其汽车荷载应符合本规范第4.3.1条有关四级公路汽车荷载的规定。
人行天桥桥面净宽应大于或等于3.0m;其人群荷载应符合本规范第4.3.5条的规定。
3.3.6电讯线、电力线、电缆、管道等的设立不得侵入公路桥涵净空限界, 不得妨害桥涵交通安全, 并不得损害桥涵的构造和设施。
严禁天然气输送管道、输油管道运用公路桥梁跨越河流。
天然气输送管道离开特大、大、中桥的安全距离不应小于100m, 离开小桥的安全距离不应小于50m。
高压线跨河搭架的轴线与桥梁的最小间距, 不得小于一倍塔高。
高压线与公路桥涵的交叉应符合现行《公路路线设计规范》的规定。
3.4桥上线形及桥头引道3.4.1桥上及桥头引道的线形应与路线布设互相协调, 各项技术指标应符合路线布设的规定。
桥上纵坡不宜大于4%, 桥头引道纵坡不宜大于5%;位于市镇混合交通繁忙处, 桥上纵坡和桥头引道纵坡均不得大于3%。
桥头两端引道线形应与桥上线形相配合。
3.4.2在洪水泛滥区域以内, 特大、大、中桥桥头引道的路肩高程应高出桥梁设计洪水频率的水位加壅水高、波浪爬高、河弯超高、河床淤积等影响0.5m以上。
小桥涵引道的路肩高程, 宜高出桥涵前壅水水位(不计浪高)0.5m以上。
3.4.3桥头锥体及引道应符合以下规定:1 桥头锥体及桥台台后5~10m长度内的引道, 可用砂性土等材料填筑。
在非严寒地区当无透水性土时, 可就地取土经解决后填筑。
2 锥坡与桥台两侧正交线的坡度, 当有铺砌时, 路肩边沿下的第一个8m高度内不宜陡于1:1;在8~12m高度内不宜陡于1:1.25;高出12m的路基, 其12m以下的边坡坡度应由计算拟定, 但不应陡于1:1.5, 变坡处台前宜设宽0.5~2.0m的锥坡平台;不受洪水冲刷的锥坡可采用不陡于1:1.25的坡度;经常受水淹没部分的边坡坡度不应陡于1:2。
埋置式桥台和钢筋混凝土灌注桩式或排架桩式桥台, 其锥坡坡度不应陡于1:1.5, 对不受洪水冲刷的锥坡, 加强防护时可采用不陡于1:1.25的坡度。
公路桥涵设计通用规说明
公路桥涵设计通用规范JTG D60主要修订内容介绍现行公路桥涵设计通用规范JTG D60-2004于2004年颁布实施.近几年的实践应用表明,规范总体上能够满足我国公路桥涵建设的需要,但随着我国公路运营状况、桥涵设计理念和方法的发展和变化,也有一些需要完善的内容:公路桥梁设计汽车荷载标准的适应性问题日渐突出;设计使用年限、耐久性设计、全寿命设计、风险评估、桥梁运营期结构安全监测等新方法、新理念逐渐得到广泛应用和发展;环境保护和可持续发展也成为工程设计中需考虑的重要因素.为了吸纳近年来的成熟经验和科研成果,提高规范的适应性,促进公路桥梁科学健康发展,交通运输部2009年下达了公路桥涵设计规范的修编任务.在规范修订过程中,编写组进行了大量的科研工作,吸取了已有的成熟科研成果和实际工程设计经验,并且参考、借鉴国内外相关的标准规范.在规范条文初稿编写完成以后,通过多种方式广泛征求设计、施工、建设、管理等有关单位和个人的意见,并经过反复讨论、修改后定稿.总体而言,本规范主要做了如下几个方面的修订:1 增加了桥涵结构的设计使用年限和耐久性要求;2 完善了极限状态的设计理论和方法;3 改进了作用组合分类及计算方法;4 调整了公路桥梁设计汽车荷载标准;5 增加、完善了各种作用标准值的计算规定;6 完善了有关桥涵总体设计、环境保护、交通安全保障工程等的相关规定;7 增加了桥涵风险评估和安全监测的相关规定.为了清晰地说明本规范的具体修订内容,现将主要修订内容的确定理由及作用和影响分章节论述如下.1 第1章总则1公路桥涵的设计原则修改为“安全、耐久、适用、环保、经济和美观”.长期以来,公路桥涵设计都遵循着“技术先进、安全可靠、适用耐久、经济合理”的基本原则,这是与我国当时的经济条件和技术水平相适应的.安全、耐久、适用是公路桥涵结构最基本的要求.随着社会的发展和进步,环境保护日益引起重视.环保问题关系到社会的可持续发展,必须在交通基础设施建设中贯彻落实.在满足上述要求的前提下,还要注重桥涵设计的经济性,不能一味追求“新”、“最”、“第一”等,造成严重的浪费.另外,随着我国社会经济的发展,公众对于桥涵结构的要求也逐步提高,美观成为桥涵设计考虑的一个重要因素.因此,本次修订将公路桥涵的设计原则调整为“安全、耐久、适用、环保、经济和美观”,这也是与公路工程技术标准JTG B01-2014保持一致.2增加桥涵设计使用年限的规定.可持续发展已成为本世纪主要课题之一,作为工程结构而言,其使用年限的长短是工程可持续发展的重要指标.随着我国对可持续发展的重视,工程结构的设计使用年限的规定也逐步具体化.1997年4月1日颁布的中华人民共和国建筑法的第六十条规定:“建筑物在合理使用寿命内,必须确保地基基础工程和主体结构的质量”.国务院2000年279号令建设工程质量管理条例第21条明确规定:“设计文件应当符合国家规定的设计深度要求、注明工程合理使用年限.工程合理使用年限是指从工程竣工验收合格之日起,工程的地基基础、主体结构能保证在正常情况下安全使用的年限”.为了响应国家政策,适应工程设计理念的发展,2009年7月1日颁布实施的工程结构可靠性统一标准GB 50153-2008给出了设计使用年限的定义以及设计使用年限的有关规定,并在附录中给出了各类桥涵结构的设计使用年限.相应地,公路行业也根据相关要求在公路工程结构可靠性设计统一标准中给出了桥涵结构的设计使用年限,总体原则是遵循国标的规定.公路工程技术标准JTG B01-2014编写时综合考虑了国标的规定、公路功能、技术等级和桥涵重要性等因素,规定了桥涵主体结构和可更换部件设计使用年限的最低值.本规范作为桥涵设计规范的统领性规范,需根据上位规范的规定给出桥涵结构的设计使用年限,在具体规定方面与公路工程技术标准JTG B01-2014保持一致.2 第2章术语和符号本章的术语和符合均来自各章节的内容,主要根据新修订的公路工程结构可靠性设计统一标准进行修改并补充个别术语,这里不再赘述.3 第3章设计要求1增加了地震设计状况.地震作用是一种特殊的偶然作用,与撞击等偶然作用相比,地震作用能够统计并有统计资料,可以根据地震的重现期确定其标准值,而其它偶然作用无法通过概率的方法确定其标准值,两者的设计表达式在本质上是不同的.鉴于此,工程结构可靠性设计统一标准GB 50153-2008和正在修编的公路工程结构可靠性设计统一标准在原有三种设计状况的基础上,增加了地震设计状况.按照上述上位规范的规定,本次修订也增加了地震设计状况.2增加了桥梁钢结构的抗疲劳设计要求.在重复车辆荷载、风等交变荷载的作用下,公路桥梁钢结构可能会产生疲劳裂纹,疲劳裂纹不断扩展,将影响钢结构的使用,甚至导致断裂破坏.近几十年来,钢结构在我国的公路桥梁建设中得到了广泛应用,实践中发现钢结构的疲劳问题也比较突出.疲劳已成为影响公路桥梁钢结构安全和耐久的主要因素之一.在相关的钢结构设计规范中,对抗疲劳设计均有具体的规定,但公路桥涵设计通用规范JTG D60-2004中没有抗疲劳设计的要求.因此,本次修订增加了公路桥梁钢结构部分应根据需要进行抗疲劳设计的要求.3增加了设计阶段风险评估要求.2010年4月,为了加强公路桥梁和隧道工程安全管理,增强安全风险意识,优化工程建设方案,提高工程建设和运营安全性,交通运输部发布了在初步设计阶段实行公路桥梁和隧道工程安全风险评估制度的通知交公路发〔2010〕175号,桥梁和隧道设计阶段风险评估工作开始正式实施.目前,桥梁、隧道等结构均已在设计阶段实施了安全风险评估,有效地降低和规避了可预见的工程风险,提高了结构安全和防范风险能力,这是一项非常有效并应长期坚持的工作.作为指导公路桥涵设计的基础性规范,公路桥涵设计通用规范中应相应增加风险评估相关要求.4增加了耐久性设计要求.如前所述,耐久是公路桥涵结构设计最基本的要求之一.耐久性直接影响结构的安全性和适用性,也关系到桥涵的实际寿命是否能达到其设计使用年限要求.耐久性设计已经成为结构设计的一个重要组成部分.在现行公路工程规范体系中,也设立了耐久性设计规范,并且在各本结构设计规范中都包含耐久性设计的有关规定.本规范增加耐久性设计要求,主要目的是保证规范内容的完整性,同时,协调现行规范体系,从内容上体现规范之间的一致性和继承性.5增加了公路桥涵进行“可到达、可检查、可维修和可更换设计”的要求.养护是公路桥涵安全性和耐久性的重要保障.实践发现,在我国的公路桥涵设计中,存在对桥梁结构未来养护需求考虑不充分的情况.主要表现在某些桥梁构件难以到达,例如缆索承重体系桥梁的梁底、变高度箱梁的根部区域等;某些桥梁构件难以检查,例如悬索桥大缆底部、埋置于混凝土中的拉索锚头、桥塔外表面等.不可到达、不可检查导致了桥梁部分病害的不可预知,造成了安全隐患.因此,本次修订增加了可到达、可检查的设计要求.公路桥涵结构中,可更换构件的设计使用年限低于桥涵主体结构的设计使用年限,在设计使用年限内需要进行维修和更换,比较典型的构件包括斜拉索、吊杆、伸缩装置、支座等.在桥梁设计中,应考虑未来维修、更换的需要.因此,本次修订增加了可维修、可更换的设计要求.6从桥墩防撞方面考虑,增加了通航水域中桥梁及跨线桥桥墩设置的相关规定.桥墩是桥梁上部结构的支撑,对结构的安全至关重要.近年来,由于船舶或车辆撞击桥墩导致桥梁损坏甚至倒塌的事故时有发生.考虑撞击因素进行设计时,桥墩的安全主要从“防”和“抗”两个方面考虑.在桥跨布置时,就应该充分考虑桥墩防撞的问题.随着桥梁建筑材料、结构形式、设计水平的提高和发展,桥梁的跨越能力越来越大,因此,对于通航水域中的桥梁,建议尽量减少在通航水域中设置桥墩;对于跨线桥,则不宜在中央分隔带内设墩.如果无法避免,可能遭受撞击的桥墩应设置必要的防撞设施和警示标志.7规定路侧危险情况下桥梁路缘石高度应取0.25~0.35m的较高值.在目前的桥梁设计中,一般不考虑路缘石对车辆的防撞作用,设置路缘石仅是为了起到视线诱导、排水和警示的作用.但是,如果路缘石能够对失控车辆起到第一道防护作用,则能更有效的降低事故严重程度,保护行人和车辆安全,减少事故损失.“山区公路网安全保障技术体系研究与示范工程”项目从路缘石对车辆所起的拦护作用方面考虑,基于车辆动态仿真实验对公路桥梁路缘石合理高度进行了研究.根据不同车速、不同碰撞角度、不同路缘石高度条件的路缘石碰撞仿真实验结果,路缘石对偏驶车辆的拦护效果优劣程度为35cm > 30cm > 25cm > 40cm > 15cm > 20cm,这与现行规范路缘石高度可取用25cm~35cm的规定基本吻合.考虑到35cm高路缘石的拦护效果最佳,本次修订建议路侧环境危险时,桥梁路缘石高度取用较大值.8提高了冰雪环境下桥梁纵坡的限值.作为公路的一个组成部分,桥梁纵坡首先应满足路线相关技术指标的要求.桥梁上纵坡的设置应有利于排水,但同时还应考虑桥梁纵坡对桥梁自身结构安全和行车安全的影响.对于冬季结冰地区的桥梁,由于结构特点和材料与道路不同,桥梁往往较其他路段更容易结冰、冰雪更难消融.恶劣气象条件下,桥面结冰导致交通安全事故的风险更大,事故后果更严重.因此,从保障行车安全、桥梁结构安全使用等的角度,本次修订规定对于易结冰、积雪的桥梁,桥上纵坡不宜大于3%.9增加了桥梁护栏与桥面板可靠连接的规定.设置路侧桥梁护栏对保护桥上车辆和行人的安全极为重要,而桥梁护栏与桥面板的牢固连接则是保证桥梁护栏有效发挥作用的前提条件.桥梁护栏与桥面板连接的构造设计和计算应在桥梁设计阶段进行统一考虑.因此,本次修订增加了桥梁护栏与桥面板可靠连接的要求,给出了可选的连接方式.10细化了桥头搭板的设计要求.桥头跳车是行车中常见的问题,且危害性较大.桥头跳车一方面对桥梁结构的工作状况和路面使用品质产生不利的影响,导致公路和桥梁养护费用增加,另一方面将增加行车风险甚至造成交通事故,影响行车的高速、舒适和经济性,而且也增加了车辆对桥头的冲击力,对桥和路具有较大的破坏力.在路桥过渡段设置桥头搭板是目前常用的一种处理桥头跳车的方法.国家科技支撑计划项目“山区公路网安全保障技术体系研究与示范工程”项目为了有效解决桥头跳车的问题,从搭板长度、宽度、厚度等方面对桥头搭板设计进行了研究.本次修订采用了该项目的研究成果.①桥头搭板长度的确定主要从两个方面来考虑:保证搭板的工后沉降坡差小于容许值;保证搭板长度稍大于台背后填土缺口的上口宽度.综合考虑这两种因素的估算结果及我国桥梁设计的常规做法,本次修订规定搭板长度不宜小于5m,当桥台高度不小于5m时,搭板长度不宜小于8m.②搭板宽度影响因素较少.从搭板的受力看,当车轮直接压在搭板的纵向边缘时,对搭板的受力是不利的,因此搭板做宽点对受力有利.同时,为避免行车道范围内由于搭板宽度不足导致差异沉降、影响行车安全,规定搭板宽度不应小于行车道宽度.实践中,一般将搭板宽度做到两侧与路缘石边缘相齐,并用柔性材料隔离.③搭板的厚度主要根据受力要求来确定.搭板的受力要求可分为强度要求和变形要求.但是,由于搭板受力复杂,很难简单的确定搭板的受力状况,因而通常采用的处理方法是将搭板换算为等效简支板,找出搭板长度与计算跨径之间的关系,大致研究出各种板长的相应计算跨径,从而按简支板的方法确定搭板的厚度.根据研究结果,搭板厚度一般取搭板长度的 .我国近年来的桥梁设计中,搭板厚度根据具体情况一般取25、30或35cm.综合考虑理论分析结果和我国的工程实践经验,本次修订规定搭板厚度不宜小于0.25m,当搭板长度不小于6m时,其厚度不宜小于0.30m.11增加了大型桥梁工程设置必要的结构监测设施的要求. 随着技术的进步,桥梁安全监测系统技术已经日臻成熟,在公众对工程结构安全性日益关注的背景下,根据桥梁的结构特点、地理环境及系统目标,结合国内外的最新研究成果和经验,开展桥梁结构安全监测已成为行业发展到一定阶段的内在需求,为此,近年来从不同层面均对桥梁结构的安全监测给出了指导性的意见,公路桥梁养护管理工作制度交公路发〔2007〕336号、2013年交通运输部交通运输部进一步加强公路桥梁养护管理的若干意见、交通运输部建立公路桥梁安全运行长效机制的若干意见中均要求“特大、特殊结构和特别重要桥梁的养管单位,要利用现代信息和物联网技术,建立符合自身特点的养护管理系统和健康监测系统”.开展结构安全监测一方面可以促进大型桥梁养护技术、结构可靠性评定及相关技术的进步,也是桥梁学科贯彻落实国家、行业有关要求的重要举措.大型桥梁是国家或地区的交通命脉,耗资巨大,一旦发生桥梁坍塌事故,将造成重大的人员伤亡和巨大的经济损失,并且带来恶劣的社会影响.为了及时掌握大桥的性能表现,防止突发性的坍塌事故的发生,采用科学的方法对大桥进行运营期安全监测是极为必要的,目前这一点已逐渐得到了学术界、工程界以及政府部门的广泛认同,桥梁运营期结构安全监测技术也逐渐在我国新建大桥中得到推广应用.据不完全统计,我国已有四十余座桥梁布设了结构安全监测系统.从发展趋势来看,桥梁结构安全监测与安全评价系统已成为大桥建设工程的一部分,目前国内外新建大跨桥梁结构安全监测系统大多与主体工程一同招标,要在设计阶段统筹考虑,因此,本次修订增加了设置桥梁结构监测设施的要求.4 第4章作用1以“作用组合”取代“作用效应组合”,修改完善了作用组合的设计表达式.原规范在术语上都是沿用作用效应组合,在概念上主要强调的是在设计时将不同作用在桥涵结构上所产生的效应进行叠加的过程.实际上在桥涵结构设计中,当作用与作用效应间为非线性关系时,采用简单的线性叠加就不再有效,因此,在采用效应叠加时,还必须强调作用与作用效应“可按线性关系考虑”的条件.公路桥梁特别是大型桥梁的非线性特征显着,设计中需考虑合理的成桥状态、合理的施工状态,一般情况下会呈现明显的几何非线性特征,此时,原规范作用效应组合的概念就不再适用.为此,工程结构可靠性设计统一标准GB 50153-2008和正在修编的公路工程结构可靠性设计统一标准以作用组合取代作用效应组合,并以此为基础给出了作用与作用效应为线性关系和非线性关系都普遍适用的作用效应设计表达式.本规范根据上位规范的规定作了调整.2改进了作用组合分类及计算方法.现行工程结构可靠性设计统一标准GB 50153-2008和正在修编的公路工程结构可靠性设计统一标准改进了作用组合分类及计算方法,本规范与上位规范一致,相应进行了修改.修改后,承载能力极限状态包括基本组合、偶然组合和地震组合;正常使用极限状态包括频遇组合和准永久组合.3将原规范组合系数改为组合值系数,并统一取为0.75. 根据Turkstra 组合规则,按设计值法确定的组合值系数与可变荷载的数目无关.而现行规范的组合系数随可变荷载数目的增多而减小,计算发现按现行规范作用效应的组合系数计算的可靠指标随可变荷载数目的增加而减小,不符合其定义的初衷.现行工程结构可靠性设计统一标准GB 50153-2008、正在修编的公路工程结构可靠性设计统一标准以及国内外相关规范均采用作用的组合值系数,并取为固定值.试算表明,当2、3、4和5个可变荷载组合的组合系数均取0.74时,随可变荷载数目的增加,所有钢筋混凝土构件的可靠指标增大,但变化不大.因此,为了保持不同可变荷载组合数目时构件的可靠指标不变,并与上位规范一致,本次修订将现行规范中“作用效应的组合系数”改为“作用的组合值系数”,并统一取为0.75,这样可保证结构可靠指标不会随可变荷载数目的增加而降低,保证桥梁结构构件在多重荷载作用下具有比较一致的可靠度.4完善了汽车荷载标准:调整了二级公路的汽车荷载等级;提高了中小跨径桥梁的车道荷载标准;修改了车辆荷载的分项系数.1 自2009年起,我国各省市开始陆续取消二级公路收费,部分二级公路的交通量和荷载水平有了较大增长.因此,本次修订调整了二级公路的汽车荷载等级:一般情况下,二级公路桥涵的设计应采用公路—I级汽车荷载;二级公路为非干线公路且重型车辆不多时,其桥涵的设计可采用公路—Ⅱ级汽车荷载.2 2008~2011年,本规范编写组结合交通运输部西部交通建设科技项目桥梁设计荷载与安全鉴定荷载的研究,开展了全国汽车荷载现状调查和统计分析.利用全国23个省、市、自治区的汽车荷载数据、针对5米~60米标准跨径桥梁的效应分析结果表明,小跨径桥梁汽车荷载效应0.95分位值较规范标准值效应最大提高了30%.实际中我国近年来出现的重载车辆压垮桥梁的事故,也多为中小跨径桥梁.鉴于此,本次修订提高了跨径在50m 以下桥梁的车道荷载集中载标准值,对50m跨径以内的桥梁设计汽车荷载效应有所增加.3 全国汽车荷载研究中,轴组重的研究结果显示,三联轴数量多且超载非常严重,并且这类轴型对于桥梁结构的局部和小跨径桥涵的整体安全影响很大,因此,规范应当予以考虑.为了探讨三联轴重量的确定标准,轴组重研究中,项目组对全国数据的轴重限值保证率进行了研究,各种方案中,在现行规范双轴组的基础上增加一个后轴42t的三轴组模型其保证率达到了98.6%以上.为了既能反映实际情况中三联轴居多且偏重的实际,又能维持规范的延续性,本次修订仍采用现行规范的车辆荷载,只是在利用车辆荷载计算时,将1.4的分项系数提高至1.8,提高的比率是按照42t的三联轴效应与双联轴效应等效的原则确定的.5增加了汽车疲劳荷载以及计算方法.汽车疲劳荷载是桥梁钢结构抗疲劳设计的重要依据,而现行规范中没有相关规定,使得我国公路桥梁钢结构抗疲劳设计中没有统一的荷载标准.公路钢结构桥梁设计规范修订过程中,项目组参考欧洲规范并结合我国公路交通运输的实际情况建立了疲劳设计标准车辆荷载模型,并选取南京三桥为研究对象进行了验证,最终确定了疲劳设计标准车辆荷载模型,并规定了详细的计算要求、疲劳强度曲线及疲劳细节分级.本次,修订采纳了公路钢结构桥梁设计规范对疲劳设计荷载的研究成果.6完善了温度作用计算规定.1 根据规范答疑和修编意见征集情况,技术人员对竖向梯度温度曲线T1起算点的选择疑问较多.为了解决规范应用过程中的疑问,本次修订增加了竖向温度梯度曲线使用的相关说明与要求.2 考虑到公路桥梁都带有较长的悬臂,两侧腹板受太阳直接辐射较少,所以我国现行规范设计时认为只有梁顶全天日照,不计横向梯度温度的作用.根据已有的科研成果及工程设计经验,对于无悬臂的宽幅箱梁,横向温度梯度效应不宜忽略.本次修订时,参考“超大跨混合梁斜拉桥建设关键技术”项目的研究成果,增加了横向温度梯度作用的相关规定.3 近年来高等级公路桥面铺装已广泛采用沥青混凝土铺装.沥青混凝土摊铺时要求高温操作,施工时摊铺温度往往可高达150℃左右,如此高的温度将在主梁内引起较大的温差分布.对于采用混凝土桥面板的桥梁,沥青高温摊铺可能会导致主梁混凝土原有裂缝的扩展及新裂缝的产生,影响桥梁结构的耐久性,必要时设计须考虑沥青摊铺温度作用影响.因此,本次修订增加了相关要求.7增加了波浪力作用.近年来,我国修建了一批近海和跨越海湾、海峡的桥梁工程,其下部结构在波浪和海流共同作用下,受到较大强度的波浪力作用,波浪力的效应不能忽略.因此,本次修订增加了波浪力作用.各海域的水文条件不同,波浪和海流的影响因素复杂,且桥梁墩台的结构形式多样,难以规定统一的波浪力标准值.我国几座大桥都是在设计前期,开展专门的波浪水流数学模型或物理模型试验来确定桥梁下部结构所受的波浪力,并通过现场波浪力观测,对试验研究成果的准确性、正确性进。
南昌市中考满分作文 结构设计原理(填空、简答、明解、判别)
(一)填空题1、在钢筋混凝土构件中钢筋的作用是替混凝土受拉或协助混凝土受压。
2、混凝土的强度指标有混凝土的立方体强度、混凝土轴心抗压强度和混凝土抗拉强度。
3、混凝土的变形可分为两类:受力变形和体积变形。
4、钢筋混凝土结构使用的钢筋,不仅要强度高,而且要具有良好的塑性、可焊性,同时还要求与混凝土有较好的粘结性能。
5、影响钢筋与混凝土之间粘结强度的因素很多,其中主要为混凝土强度、浇筑位置、保护层厚度及钢筋净间距。
6、钢筋和混凝土这两种力学性能不同的材料能够有效地结合在一起共同工作,其主要原因是:钢筋和混凝土之间具有良好的粘结力、钢筋和混凝土的温度线膨胀系数接近和混凝土对钢筋起保护作用。
7、混凝土的变形可分为混凝土的受力变形和混凝土的体积变形。
其中混凝土的徐变属于混凝土的受力变形,混凝土的收缩和膨胀属于混凝土的体积变形。
(二)判断题1、素混凝土的承载能力是由混凝土的抗压强度控制的。
………………………………【×】2、混凝土强度愈高,应力应变曲线下降愈剧烈,延性就愈好。
………………………【×】3、线性徐变在加荷初期增长很快,一般在两年左右趋以稳定,三年左右徐变即告基本终止。
………………………………………………………………………………………………【√】4、水泥的用量愈多,水灰比较大,收缩就越小。
………………………………………【×】5、钢筋中含碳量愈高,钢筋的强度愈高,但钢筋的塑性和可焊性就愈差。
…………【√】(一)填空题1、结构设计的目的,就是要使所设计的结构,在规定的时间内能够在具有足够可靠性性的前提下,完成全部功能的要求。
2、结构能够满足各项功能要求而良好地工作,称为结构可靠,反之则称为失效,结构工作状态是处于可靠还是失效的标志用极限状态来衡量。
3、国际上一般将结构的极限状态分为三类:承载能力极限状态、正常使用极限状态和“破坏一安全”极限状态。
4、正常使用极限状态的计算,是以弹性理论或塑性理论为基础,主要进行以下三个方面的验算:应力计算、裂缝宽度验算和变形验算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 . 9 5 = 1 0 A5 MP a 则 x =( 1 - 1 . ) X4 6 0 = 1 0 8 . 5 mm,As = ( 1 0 . 4 5 x
2 5 0 x1 0 8 . 5)/ 3 1 0 =9 1 4. 4 mm 2
从 上述 计 算 中看 出,按 T J T 0 2 3 . 8 5比按 GB J 1 0 . 8 9 钢 筋 用 量多1 7 . 7 %。 2 . 6受弯构件斜截面强度计算 在斜截面强度计算 中,两 规范都是根据斜截 面发生剪 压破
经验的极限状态设计方法。 在设计中 ,对这种系数的差别要注意区别 ,不能混淆 。 mm= 4 6 0 mm 由得 解 得 X = 1 3 3 m m<‘ 1 g h o = o . 5 5 X 4 6 0 = 2 5 3 mm。 求 所 需钢 筋 数 量 A g ,由 R g Ag = R a・ b x ,得 A g : 一l O 7 6
凝土 的强度等级 , 用混凝土标号表示 , 一共分为七级 , 即1 5 号、 2 0 号 、2 5 号、3 O 号 、4 0 号、5 O 号、6 0 号。 2 . 2钢筋强度 两 规 范中,钢 筋的标 准强度 取 值是一 样的 ,都 采用 钢材 的废 品限制值作 为取值依据 。但 钢筋的设计 强度取值 不一样 , G BJ 1 0 . 8 9 中 以标准 强度 值 除 以材料 分项 系数 作 为取 值依 据 , 而T J T 0 2 3 . 8 5 中设计强度取值与标准强度取值是一样的。这样 , 相 同的钢 筋等 级,T J T 0 2 3 . 8 5 中钢 筋的设计 强度取值大。
c mb x/ f y =( 1 l x 2 5 0X 1 0 2 - 3)/ 3 1 0 = 9 0 7 . 5 mm  ̄ > mi n b h 0 = 0 . 1 5 % 值来 确 定混凝 土 的强度 等级 ,一共分 为十 级 ,即 C 1 0 ,C 1 5 , f C 2 0 ,C 2 5 ,C 3 0 ,C3 5 ,C 4 0 ,C 4 5 ,C 5 0 ,C6 0 。T J T 0 2 3 . 8 5中, x2 5 0 ×4 6 0 = 1 7 2 . 5 删[ n 2 如果 扣 除 由于 2 0 号 混凝 土 与 C 2 0 混凝 0 号混 凝土按 G B J 1 0 . 8 9 ,f e n=1 r 1 X 根据 测得到具 有 8 4 . 1 3 % 保证率 的立方体抗 压极 限值 来确定混 土 之间强度 取值 的差别 ,2
r 1  ̄ ̄ 1 2
2材料强度取值的不同 验算最小配筋率 | I = = 1 %> mi n = 0 . 1 %,满 足规范要求。 2 . 1混凝土的强度 混凝土立方体抗压强度是混凝土 的基本强度指标 ,是用标 按 GB J 1 0 . 8 9 计算 : C 2 0 混 凝 土, 弯 曲抗 压 强 度 设 计 值 准试 块在 标准养 护条件 下养护 后用 标准试 验方法 测得 的强度 f e m= l 1 Mp a ,钢 筋抗 拉强度设计值 f y = 3 1 0 Mp a 混凝土相对界 指标 。两规 范 中所 采用 的试块 尺寸 是不 同的。GB J 1 0 . 8 9中采 限受压 区高度 ∈ b - 0 . 5 4 4 。求 X 有 Mj = f e mb X ( h 0 . )得 1 1 5 × 0 6 = 1 1 ×2 5 0 X ( 4 6 0 . ) , 解得 x =( 1 . 1 . )h 0 = l 0 2 . 3 am<§ r b h 0 = 用1 5 0 am 立方体试块 ,T r J T 0 2 3 . 8 5中用 2 0 0 am 的立 方体试块。 r 1 . 5 4 x4 6 0 = 2 5 0 . 2 mm 满 足要 求 ;求 As由 As f y = f c mb x得 As = G B J 1 0 . 8 9 中,根据测得 的具有 9 5 % 保 证率 的立 方体抗 压极 限 0
’ 上 的差 别 。
关键词 : 公路桥 涵 ; 结构设 计 ; 建筑结构 中图分类号 : T u 7 文献标识码 : A
文章编 号 : 1 6 7 1 ・ 5 5 8 6( 2 0 1 5 )2 7 — 0 2 0 9 — 0 1
按T J T 0 2 3 . 8 5 计 算 :己 知 2 O号 混 凝 土 抗 压 强 度 设 计 值 1设 计 方 法 的 不 同 a = l 1 Mp a I I 级钢 筋抗拉 强度设计值 Rg = 3 4 0 Mp a 混凝 土相 在建筑结构专业的《 混凝土结构设计规范) ) GB J 1 0 - 8 9 中( 以 R i g = 0 . 5 5 ,材料安全系数 丫c =丫s = 1 . 2 5 。 下简称 G B J 1 0 . 8 9 ) ,采用 的是近似概率极 限状态 设计方法 ; 在 对 界限受压 区高度 § 求混凝土受 压区高度 X:先假定钢筋按 一排 布置 ,钢筋重 公路桥梁专业的 《 公路钢筋混凝土及预应力混凝土桥涵设计规 - 4 O mm, 则有效高度 h 0 = ( 5 0 0 - 4 0 ) 范》T J T 0 2 3 — 8 5中 ( 以下简称 T J T 0 2 3 . 8 5 ) ,采用 的是 半概 率半 心到混凝土受拉边缘的距离 a
中文科技期刊数据库 ( 文摘版 ) 工程技术
路桥 工程
2 0 1 5 年6 月 ・ 2 0 9・
论公路桥涵混凝土结构设 计与建筑结构的不 同
钱会灵工程有限公 司,河南周 口 4 6 6 0 0 0
要: 文 中从相 关规范在设计方法 ,在材料 强度 取值 、计算公 式、计算结果 中得 出公路桥 涵混凝土结构设计与 建筑结构