分支定界算法
python分支定界算法解决问题范例

Python分支定界算法解决问题范例一、概述分支定界算法是一种用于解决组合优化问题的算法。
它通过不断地分解问题和减少搜索空间来找到最优解。
Python是一种广泛应用的编程语言,其简洁、灵活的特性使其成为实现分支定界算法的理想工具。
本文将以一个例子来展示如何使用Python实现分支定界算法解决问题,以帮助读者更好地理解和运用这一算法。
二、问题描述假设有一个物品清单,每个物品有其对应的价值和重量。
同时有一个背包,其最大承重为W。
现需要将物品放入背包,使得背包中的物品总价值最大,但总重量不能超过背包的承重。
如何选择物品并放置到背包中才能使得总价值最大化呢?三、分支定界算法解决方案1. 定义问题我们需要明确问题的定义和目标。
通过对问题进行数学建模,可以将其表示为一个0-1背包问题。
具体而言,我们可以定义以下几个参数:- n:物品的数量- weight[i]:第i个物品的重量- value[i]:第i个物品的价值- W:背包的最大承重通过以上定义,我们可以将问题表述为,在给定n个物品、其对应的重量和价值以及背包的最大承重情况下,如何选择物品并放置到背包中,使得背包中的物品总价值最大,但总重量不能超过背包的承重。
2. 分支定界算法实现接下来,我们将使用Python实现分支定界算法来解决上述问题。
具体步骤如下:我们定义一个Node类来表示搜索树的节点,其中包括以下几个属性:level、value、weight、bound和include。
- level表示当前节点所处的层级;- value表示当前节点已获得的总价值;- weight表示当前节点已获得的总重量;- bound表示当前节点的价值上界;- include表示一个列表,记录了每个物品是否被选择放入背包中。
```pythonclass Node:def __init__(self, level, value, weight, bound, include):self.level = levelself.value = valueself.weight = weightself.bound = boundself.include = include```我们定义一个bound函数来计算当前节点的价值上界。
干货 | 10分钟教你用branch and bound(分支定界)算法求解TSP旅行商问题

4. 如果没有到达最底层,则对该支进行定界操作。如果该支的bound也比当前最优解还要大,那么也要砍掉的,就像林志炫的单身情歌里面唱的一样:每一个单身狗都得砍头。
然后讲讲定界过程,TSP问题是如何定界的呢?
我们知道,每个节点保存的城市序列可能不是完整的解。bound的计算方式:bound=当前节点path序列的路径距离 + 访问下一个城市的最短路径距离 + 从下一个城市到下下城市(有可能是起点)的最短路径距离。
- level:记录节点处于搜索树的第几层。
- computeLength:记录当前城市序列的distance。
可能大家还没理解节点是如何分支的,看一张图大家就懂了。我们知道TSP问题的一个solution是能用一个序列表示城市的先后访问顺序,比如现在有4座城市(1,2,3,4):
比如城市节点5个{1,2,3,4,5}。当前path={1,2},那么:
- 当前节点path序列的路径距离=d12
- 访问下一个城市的最短路径距离= min (d2i), i in {3,4,5}
- 从下一个城市到下下城市(有可能是起点)的最短路径距离=min (dij), i in {3,4,5} , j in {3,4,5,1}, i !=j 。
注意这两个是可以不相等的。
运行说明
03
目前分支定界算法解不了大规模的TSP问题,10个节点以内吧差不多。input里面有算例,可以更改里面的DIMENSION值告诉算法需要读入几个节点。
更改算例在main函数下面,改名字就行,记得加上后缀。
感兴趣的同学可以该一下heap大小跑一跑,不过按照上述的分支思路,很容易爆掉的。小编出差在外没有好的电脑就不跑了。
三类非凸规划问题的分支定界算法研究

三类非凸规划问题的分支定界算法研究三类非凸规划问题的分支定界算法研究随着科学技术的飞速发展和应用领域的扩大,非凸规划问题在实际生活中显得越来越重要。
然而,由于非凸性质的存在,这类问题的解决变得更加困难。
在此背景下,分支定界算法作为一种有效的求解非凸规划问题的方法引起了研究人员的广泛关注。
分支定界算法是一种基于分解和递归的优化方法,通过将原问题分解为若干个子问题,并对子问题进行求解,最终得到原问题的最优解。
具体来说,分支定界算法通过不断地划分问题空间,将其限制在一个可行解区域内,并逐步缩小该区域的范围,最终得到最优解。
在非凸规划问题的研究中,可以将其分为三类:凸约束规划问题、非凸约束规划问题和无约束规划问题。
下面将对这三类问题分别进行介绍和分析。
首先,凸约束规划问题是指目标函数为凸函数,约束条件为凸集的规划问题。
这类问题在实际生活中很常见,例如最小二乘问题、线性规划等。
针对凸约束规划问题,分支定界算法可以通过划分约束集合,将其限制在凸集内,并通过逐步缩小搜索空间的范围,最终求解问题的最优解。
这种方法在实践中已得到了广泛的应用和验证。
其次,非凸约束规划问题是指目标函数为非凸函数,约束条件为非凸集的规划问题。
这类问题的求解相对更加困难,因为非凸性质的存在导致了问题空间的复杂性和多样性。
然而,分支定界算法仍然具有一定的应用潜力和实际价值。
在这种算法中,可以通过将问题空间划分为若干个子空间,并对子空间利用局部搜索算法进行求解。
通过递归地处理子空间,可以逐步接近最优解。
然而,由于子问题的划分和搜索算法的选择会直接影响算法的效率和结果质量,如何选择合适的划分策略和搜索算法成为了问题的关键。
最后,无约束规划问题是指目标函数为非凸函数,且无约束条件的规划问题。
这类问题的解决更加复杂,因为问题空间的自由度更高,搜索范围更大。
然而,分支定界算法也可以用于求解这类问题。
在算法的具体实现中,可以通过将问题空间划分为若干个子空间,并通过局部搜索算法对子空间进行求解。
分支定界算法实验报告

一、实验目的通过本次实验,掌握分支定界算法的基本原理,并学会在实际问题中运用分支定界法求解整数规划问题。
了解算法的搜索策略、分支与定界方法,以及剪枝技巧,从而提高解决实际问题的能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 运行环境:Python 3.8三、实验原理分支定界算法是一种用于求解整数规划问题的方法。
它通过构建一个搜索树,将问题分解为一系列子问题,并对这些子问题进行求解。
在搜索过程中,算法会根据子问题的上下界和当前最优解进行剪枝,以减少搜索空间,提高求解效率。
四、实验步骤1. 问题建模:根据实际问题,建立整数规划模型,并确定决策变量、目标函数和约束条件。
2. 分支策略:选择一个分支变量,按照该变量的取值范围进行分支。
例如,如果决策变量x只能取整数,则将x分别取上界和下界,得到两个子问题。
3. 定界策略:对每个子问题,求解其线性松弛问题的最优解,得到该子问题的上界和下界。
4. 剪枝策略:根据子问题的上下界和当前最优解,判断是否需要剪枝。
如果子问题的上界小于当前最优解,则可以剪枝。
5. 求解子问题:对需要求解的子问题,重复执行步骤2-4,直到找到最优解。
五、实验内容本次实验以背包问题为例,说明分支定界算法的求解过程。
背包问题:给定一组物品,每个物品具有重量和价值,背包的容量有限。
求解在不超过背包容量的情况下,如何选择物品,使得背包中的物品总价值最大。
模型:设背包容量为C,物品数量为n,决策变量为x_i(i=1,2,...,n),表示是否选择第i个物品。
目标函数:最大化总价值V = Σ(v_i x_i)约束条件:- 背包容量约束:Σ(w_i x_i) ≤ C- 决策变量约束:x_i ∈ {0,1} (i=1,2,...,n)分支定界算法求解过程:1. 问题建模:根据背包问题的描述,建立整数规划模型。
2. 分支策略:选择重量最大的物品作为分支变量,将x_i分别取0和1,得到两个子问题。
分支定界法

分支定界法
分支定界法(branch and bound)是一种求解整数规划问题的最常用算法。
这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。
定义
分支定界法(branch and bound)是一种求解整数规划问题的最常用算法。
这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。
算法步骤
第1步:放宽或取消原问题的某些约束条件,如求整数解的条件。
如果这时求出的最优解是原问题的可行解,那么这个解就是原问题的最优解,计算结束。
否则这个解的目标函数值是原问题的最优解的上界。
第2步:将放宽了某些约束条件的替代问题分成若干子问题,要求各子问题的解集合的并集要包含原问题的所有可行解,然后对每个子问题求最优解。
这些子问题的最优解中的最优者若是原问题的可行解,则它就是原问题的最优解,计算结束。
否则它的目标函数值就是原问题的一个新的上界。
另外,各子问题的最优解中,若有原问题的可行解的,选这些可行解的最大目标函数值,它就是原问题的最优解的
一个下界。
第3步:对最优解的目标函数值已小于这个下界的问题,其可行解中必无原问题的最优解,可以放弃。
对最优解的目标函数值大于这个下界的子问题,都先保留下来,进入第4步。
第4步:在保留下的所有子问题中,选出最优解的目标函数值最大的一个,重复第1步和第2步。
如果已经找到该子问题的最优可行解,那么其目标函数值与前面保留的其他问题在内的所有子问题的可行解中目标函数值最大者,将它作为新的下界,重复第3步,直到求出最优解。
运筹学课件第三节分支定界法

针对不同问题的特点,分支定界法在算法实现上 不断进行优化和改进,以提高求解效率。
3
理论分析
分支定界法的理论分析涉及算法的收敛性、复杂 度等方面,为算法的改进提供了理论支持。
分支定界法的发展趋势
混合整数规划问题求解
随着混合整数规划问题的广泛应用,分支定界法在求解这类问题 上的研究逐渐成为热点。
理论深化与完善
进一步深化分支定界法的理论分析,完善算法的理论体系。
应用拓展
拓展分支定界法的应用领域,解决更多实际问题。
THANKS
感谢观看
运筹学课件第三节分支定界法
contents
目录
• 分支定界法的概述 • 分支定界法的算法原理 • 分支定界法的实现过程 • 分支定界法的案例分析 • 分支定界法的优缺点分析 • 分支定界法的前沿研究与展望
01
分支定界法的概述
分支定界法的定义
分支定界法是一种求解整数规划问题 的算法个子问题的解的 界,来逐步逼近最优解。
03
分支定界法的实现过程
问题建模与参数设定
确定决策变量
根据问题的具体情况,确定决策 变量,并为其设定合适的取值范
围。
定义目标函数
明确问题的目标,将其表示为一个 数学表达式,以便进行优化。
约束条件
根据问题的限制条件,建立相应的 约束条件。
建立搜索树与初始化
建立搜索树
根据问题建模的结果,建立一个 搜索树,用于表示问题的解空间 。
的获取概率。
优化分支策略
02
通过改进分支策略,减少算法产生的分支数量,降低算法的复
杂度和计算量。
引入智能搜索策略
03
将智能搜索策略(如遗传算法、模拟退火等)与分支定界法结
最优化 分支定界

最优化分支定界最优化问题是指在一组约束条件下,寻找某个或某组变量的值,使得目标函数达到最优(最大或最小)的问题。
这类问题在科学研究、工程技术和经济管理等领域中都有广泛的应用。
分支定界法(Branch and Bound)是一种求解最优化问题的经典算法,尤其适用于整数规划、混合整数规划以及组合优化问题。
以下是该方法的详细说明:1.基本思路(1)分支:将问题的可行解空间不断划分为更小的子集,这个过程称为“分支”。
每个子集代表原问题的一个子问题。
(2)定界:对每个子集(或子问题)计算一个目标函数的界(上界或下界),这称为“定界”。
对于最小化问题,通常会计算每个子集的下界;对于最大化问题,则会计算上界。
(3)剪枝:在每次分支后,通过比较子集的目标函数界和当前已知的最优解,可以判断某些子集不可能包含更优的解,因此这些子集可以被“剪枝”,即不再进一步考虑。
(4)迭代:通过不断重复分支、定界和剪枝的过程,直到找到最优解或确定最优解的范围。
2.优点(1)适用性广:分支定界法可以应用于各种类型的最优化问题,包括整数规划、混合整数规划和组合优化问题。
(2)求解效率高:通过有效的剪枝策略,可以大大减少需要探索的解空间,从而提高求解效率。
(3)可以找到全局最优解:与某些只能找到局部最优解的启发式算法不同,分支定界法可以保证找到全局最优解(在给定时间内)。
3.缺点(1)内存消耗大:由于需要存储大量的子问题和它们的界,分支定界法可能会消耗大量的内存空间。
(2)实现复杂:分支定界法的实现通常比较复杂,需要仔细设计分支策略、定界方法和剪枝策略。
(3)可能受问题特性影响:对于某些特定类型的问题,分支定界法可能不是最有效的求解方法。
例如,当问题的解空间非常复杂或难以有效划分时,分支定界法的效率可能会受到严重影响。
4.应用领域分支定界法被广泛应用于各种实际问题的求解中,如生产调度、物流配送、资源分配、网络设计等。
在这些领域中,通过合理地定义变量、约束条件和目标函数,可以将实际问题抽象为最优化问题,并利用分支定界法进行求解。
求解整数规划问题的分支定界法

求解整数规划问题的分支定界法整数规划问题是运筹学和数学中非常重要的一个分支,它本身又有着非常广泛的应用,例如资源分配、制造流程规划等等。
但是,由于整数规划问题的复杂性,导致绝大部分问题都是NP困难问题,即使运用最先进的算法,也很难找到一个高效的解决方案。
然而,分支定界法就是其中一种能够求解整数规划问题的有效方法。
一、什么是整数规划整数规划是指在线性规划(LP)问题的基础上,需要将变量的取值限制为整数类型(不是实数类型),其数学描述如下所示:$$\begin{aligned} \max \ \ & c^Tx \\s.t. \ \ & Ax \leq b\\& x_i\in\mathbb{Z} \ \ (i=1,2,...,n)\end{aligned}$$其中$c,x, b$以及 $A$分别是问题中的参数,表示目标函数的系数、变量向量、约束条件以及约束矩阵。
二、什么是分支定界法分支定界法,又被称为分支剪枝法,是求解整数规划问题的一个常用方法。
它的核心思想在于,将整数规划问题分解为多个子问题,并通过将问题空间不断地分割,不断缩小问题的范围,从而找到最优解。
分支定界法大致分为以下几个步骤:(1)确定目标函数与约束条件,即整数规划问题的数学模型;(2)运用松弛法将整数规划问题转化为线性规划问题,从而求解该线性规划问题及其最优解;(3)根据最优解的情况,判断该最优解是否为整数解,如果不是,则选择其中一个变量进行分支(通常是将其约束为下取整和上取整);(4)根据变量的分支,得到两个新的整数规划问题,需要分别对其进行求解;(5)执行步骤(3)和(4),直到分支出的所有问题均已求解完毕,即得到原问题的最优解。
三、分支定界法的优缺点分支定界法虽然是一种有效的求解整数规划问题的方法,但是也有其优点和缺点。
优点:(1)能够精确求解整数规划问题。
(2)适用于各种规模的整数规划问题,虽然时间复杂度大,但是运作效率相对较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分支定界算法
分支定界算法(Branch and Bound Algorithm)是一种以穷举搜索方式解决多项选择问题(Multiple Choice Problem)的算法。
它是一种深度优先(Depth-First)搜索算法,通过在搜索树上建立一种叫做“定界函数”的辅助函数来记录搜索树的叶子节点(Leaf Node)状态,从而剪枝,从而达到节省时间的目的。
基本思想:在搜索树的每一层,先将该层所有可能的节点都搜索一遍,如果发现某一个节点存在更好的解,就把这个节点的值作为“定界函数”的值,然后对于后续搜索而言,如果发现某一节点的值比“定界函数”的值还要差,就不必再继续搜索下去,因为这样的节点是不可能得到更好的解的。
步骤:
(1)将根节点加入到搜索树中,并设定当前最优解为最大值(或最小值)。
(2)从根节点开始,对搜索树中每一个节点进行搜索。
(3)如果发现某一节点的值比当前最优解还要优,则更新当前最优解;如果发现某一节点的值比当前最优解差,则可以放弃搜索这个节点的子树,即剪枝。
(4)重复步骤2和步骤3,直到搜索树中所有叶子节点都被搜索完毕,则找到了最优解。