分支定界法演示课件

合集下载

第六章 分支限界法.ppt

第六章 分支限界法.ppt
得到的解 继续搜索
13
单源最短路径问题
1. 问题描述
下面以一个例子来说明单源最短路径问题:在下 图所给的有向图G中,每一边都有一个非负边权。要 求图G的从源顶点s到目标顶点t之间的最短路径。
14
单源最短路径问题
1. 问题描述
下图是用优先队列式分支限界法解有向图G的 单源最短路径问题产生的解空间树。其中,每一个结 点旁边的数字表示该结点所对应的当前路长。
// 取下一扩展结点
i++;}
// 进入下一层
}
26
装载问题
3. 算法的改进
结点的左子树表示将此集装箱装上船,右子树 表示不将此集装箱装上船。设bestw是当前最优解; ew是当前扩展结点所相应的重量;r是剩余集装箱 的重量。则当ew+rbestw时,可将其右子树剪去, 因为此时若要船装最多集装箱,就应该把此箱装 上船。
(2)回溯求解TSP也是盲目的(虽有目标函数,也 只有找到一个可行解后才有意义)
7
解空间树的动态搜索
分支限界法首先确定一个合理的限界函数,并根据限 界函数确定目标函数的界[down, up]; 然后按照广度优先策略遍历问题的解空间树,在某一 分支上,依次搜索该结点的所有孩子结点,分别估算 这些孩子结点的目标函数的可能取值(对最小化问题, 估算结点的down,对最大化问题,估算结点的up)。 如果某孩子结点的目标函数值超出目标函数的界,则 将其丢弃(从此结点生成的解不会比目前已得的更 好),否则入待处理表。
A->E->Q->M
21
单源最短路径问题
Dijakstra算法和分支限法在解决该问题的异同:
优先队列式分支限界法的搜索方式是根据活结点的优先级确 定下一个扩展结点。结点的优先级常用一个与该结点有关的 数值p来表示。最大优先队列规定p值较大的结点点的优先级 较高。在算法实现时通常用一个最大堆来实现最大优先队列, 体现最大效益优先的原则。类似地,最小优先队列规定p值 较小的结点的优先级较高。在算法实现时,常用一个最小堆 来实现,体现最小优先的原则。采用优先队列式分支定界算 法解决具体问题时,应根据问题的特点选用最大优先或最小 优先队列,确定各个结点点的p值。

5.2 分支界定解法PowerPoint 演示文稿

5.2 分支界定解法PowerPoint 演示文稿
12
已完成的求解过程和所得到的计算结果可用框 图来表示,见下图。
x2≤3
B
x1=2.25 x2=3.75 y=41.25
x2≥4
UB=41.25 LB=0
B1 x1=3 x2=3 y=39
B2 x1=1.8 x2=4 y=41
UB=41 LB=39
13
3.定界:由图可知。界为max { 39,41 } = 41。于是
4
③如果相应线性规划有最优解, 但不符合原整数规划问题的整数条件, 则这个最优解不是原整数规划的最优解,
记此最优值为原整数规划问题Z*的上界, 然后, 用观察法求出下界, 转入第二步。
5
第二步:
主要特征是分支。 具体作法: 从相应线性规划的最优解中, 任意选择一个不满足原整数规划整数条件
的决策变量xj=bj
x2 4
x1 1
x1, x2 0
5 x 1 9 x 2 45
B21
x1 x2 6
x2 4
B22
x1 2 x1, x2
0
解B21得:最优解(x1,x2)=(1,4),最优值ymax=40. 解B22得: B22无可行解。
14
至此,已完成的求解过程和所得到的计算结果运用 框图来表示,如图所示:
UB=14 LB=14
22
例2:A问题为
MaxZ=40x1+90x2 9x1+7x2≤56 7x1+20x2 ≤70 x1,x2≥0 x1,x2 都为整数
B问题为 MaxZ=40x1+90x2 9x1+7x2≤56 7x1+20x2 ≤70 x1,x2≥0
23
问题B
Z=356
x1=4.81 ,x2=1.82 Z=356

分支限界法(课堂PPT)

分支限界法(课堂PPT)
与回溯法不同的是,分支限界法首先扩展解空间树 中的上层结点,并采用限界函数,有利于实行大范围 剪枝,同时,根据限界函数不断调整搜索方向,选择 最有可能取得最优解的子树优先进行搜索。所以,如 果选择了结点的合理扩展顺序以及设计了一个好的限 界函数,分支界限法可以快速得到问题的解。
分支限界法的较高效率是以付出一定代价为基础的,其 工作方式也造成了算法设计的复杂性。首先,一个更好的限 界函数通常需要花费更多的时间计算相应的目标函数值,而 且对于具体的问题实例,通常需要进行大量实验,才能确定 一个好的限界函数;其次,由于分支限界法对解空间树中结 点的处理是跳跃式的,因此,在搜索到某个叶子结点得到最 优值时,为了从该叶子结点求出对应的最优解中的各个分量, 需要对每个扩展结点保存该结点到根结点的路径,或者在搜 索过程中构建搜索经过的树结构,这使得算法的设计较为复 杂;再次,算法要维护一个待处理结点表PT,并且需要在表 PT中快速查找取得极值的结点,等等。这都需要较大的存储 空间,在最坏情况下,分支限界法需要的空间复杂性是指数 阶。
➢ 依次从表PT中选取使目标函数取得极值的结点成为 当前扩展结点,重复上述过程,直至找到最优解。
分支限界法需要解决的关键问题
➢ 如何确定合适的限界函数。(提示:计算简单,减 少搜索空间,不丢解)
➢ 如何组织待处理结点表。(提示:表PT可以采用 堆的形式,也可以采用优先队列的形式存储。各有什 么特点?)
例如:对于n=3的0/1背包问题解空间树
1 1
2
1
0
0
9
1
0
3
1
0
4
5
6
1
0
7
8
Hale Waihona Puke 101011 12

运筹学课件第三节分支定界法

运筹学课件第三节分支定界法
算法改进
针对不同问题的特点,分支定界法在算法实现上 不断进行优化和改进,以提高求解效率。
3
理论分析
分支定界法的理论分析涉及算法的收敛性、复杂 度等方面,为算法的改进提供了理论支持。
分支定界法的发展趋势
混合整数规划问题求解
随着混合整数规划问题的广泛应用,分支定界法在求解这类问题 上的研究逐渐成为热点。
理论深化与完善
进一步深化分支定界法的理论分析,完善算法的理论体系。
应用拓展
拓展分支定界法的应用领域,解决更多实际问题。
THANKS
感谢观看
运筹学课件第三节分支定界法
contents
目录
• 分支定界法的概述 • 分支定界法的算法原理 • 分支定界法的实现过程 • 分支定界法的案例分析 • 分支定界法的优缺点分析 • 分支定界法的前沿研究与展望
01
分支定界法的概述
分支定界法的定义
分支定界法是一种求解整数规划问题 的算法个子问题的解的 界,来逐步逼近最优解。
03
分支定界法的实现过程
问题建模与参数设定
确定决策变量
根据问题的具体情况,确定决策 变量,并为其设定合适的取值范
围。
定义目标函数
明确问题的目标,将其表示为一个 数学表达式,以便进行优化。
约束条件
根据问题的限制条件,建立相应的 约束条件。
建立搜索树与初始化
建立搜索树
根据问题建模的结果,建立一个 搜索树,用于表示问题的解空间 。
的获取概率。
优化分支策略
02
通过改进分支策略,减少算法产生的分支数量,降低算法的复
杂度和计算量。
引入智能搜索策略
03
将智能搜索策略(如遗传算法、模拟退火等)与分支定界法结

运筹学 第三节 分支定界法

运筹学 第三节 分支定界法

的子集,这两个子问题的最优解的目标函数值都不会比原
线性规划问题的最优解的目标函数值更大。如果这两个问
题的最优解仍不是整数解,则继续选择一个非整数的变量,
继续将这个子问题分解为两个更下一级的子问题。这个过
程称为“分支(Branch)”。
精品课件
运筹学教程
每一次分支得到的子问题最优解的目标函数值,都小于 或等于分支前问题的最优解的目标函数值。非整数解的 最大值作为新的上界。
意图),并设最优解位于C。如
果这个最优解中所有的变量都
是整数,则已经得到整数规划
的最优解。如果其中某一个变 量Xr不是整数,则在可行域中 X2
除去一块包含这个最优解但不 E
包含任何整数解的区域
DC
Ir<Xr<Ir+1(其中Ir是变量Xr
的整数部分),线性规划的可
行域被划分成不相交的两部分,
分别以这两部分区域作为可行
Z=4
精品课件
运筹学教程
不同的搜索策略会导致不同的搜索树,一般 情况下,同一层的两个子问题,先搜索目标 函数比较大的较有利(如果是极小问题,则 应先搜索目标函数值小的较为有利)。这样 可能得到数值比较大的下界,下界越大被剪 去的分支越多。
分支定界算法对于混合整数规划特别有效, 对没有整数要求的变量就不必分支,这将大 大减少分支的数量。
X1 ,
运筹学教程
说明: 1、在B121,B122 的可行域中不可能存在比以上所求解 的2个最优解更好的解。 2、目标函数值maxZ=4作为IP规划的最优解的目标函 数的一个界限(MAX,下界;MIN,上界);
求极小问题时,LP问题的解是IP问题的下界。每次分支后的子 问题最优解的目标函数值都大于或等于分支前的最优值。如分 支中得到整数解,则最小的整数解为上界。如分支的目标函数 值大于上界,则停止分支。

算法讲稿5分枝定界法

算法讲稿5分枝定界法

Q.Delete(Ew); // 取下一扩展结 点
15
四、构造最优解
为了在算法结束后能方便 地构造出与最优值相应的 最优解,算法必须存储相 应子集树中从活结点到根 结点的路径。为此目的, 可在每个结点处设置指向 其父结点的指针,并设置 左、右儿子标志。
找到最优值后,可以根据 parent回溯到根节点,找到 最优解。
for (int i = 0; i <= n+1; i++) grid[i][0] = grid[i][m+1] = 1; // 左翼和右翼
for (int i = 0; i < NumOfNbrs; i++) {
}
}
11
6.3 装载问题
一、问题描述 二、队列式分支限界法 三、算法的改进 四、构造最优解 五、优先队列式分支限界法
12
一、问题描述
有 的一轮批船共,个其集 中装 集箱 装要 箱装i的上重2量艘为载w重i,量且分∑别wi为≤CC1+1和C2 C2 装载问题要求确定是否有一个合理的装载方案可将
优先队列式分支限界法:
[A] B, C => B(45), C(0) [B, C] D, E => E(45) [E, C] J, K => K(45) [1, 0, 0] [C] F, G => F(25), G(0) [F, G] L, M => L(50), [0, 1, 1] M(25) [G] N, O => N(25), O(0)
在优先队列式分支限界法中,一旦有一个叶结 点成为当前扩展结点,则可以断言该叶结点所 相应的解即为最优解。此时可终止算法。
17
6.4 布线问题

整数规划-割平面法-分枝定界法18页PPT

整数规划-割平面法-分枝定界法18页PPT

在求解实际问题中,割平面法经常会遇到收敛很慢的情
况,但若和其它方法,如分枝定界法,联合使用,一般能收 到比较好的效果。
§3 分枝定界法
分枝定界法是求解整数规划的常用算法,既可用来解全部变量 取值都要求为整数的纯整数规划,又可用以求解混合整数规划。
该算法的基本思路是:先不考虑整数限制,求出相应的线性规 划的最优解,若此解不符合整数要求,则去掉不包含整数解的部分 可行域,将可行域D分成D1、D2两部分(分枝) ,然后分别求解这 两部分可行域对应的线性规划,如果它们的解仍不是整数解,则继 续去掉不包含整数解的部分可行域,将可行域D1或D2分成D3与D4两 部分,再求解D3与D4对应的线性规划,……,在计算中若已得到一 个整数可行解X0,则以该解的目标函数值Z0作为分枝的界限,如果 某一线性规划的目标值Z≤ Z0 ,就没有必要继续分枝,因为分枝( 增加约束)的结果所得的最优解只能比Z0 更差。反之若Z> Z0 ,则 该线性规划分枝后,有可能产生比Z0 更好的整数解,一旦真的产生 了一个更好的整数解,则以这个更好的整数解目标值作为新的界限 ,继续进行分枝,直至产生不出更好的整数解为止。
所以有
x1-x3=3/4-3/4x3-1/4x4
因而有切割方程: 3/4x3+1/4x4 ≥ 3/4

3x3+x4 ≥3
引入松弛变量x5,得方程 -3x3-x4+x5=-3
将新约束方程加到原最优表下面(切割),求得新的最优解如下 :
由于x1,x2的值已是整数,所以该题经一次切割已得最优解: x1=1,x2=1,最优值:Z※=2
46
10
x1
x1=4.81,x2=1.82,Z0=356(见图) 该解不是整数解。选择其中一个

分支界法-PPT课件

分支界法-PPT课件

贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉
9
6.2 单源最短路径问题
while (true) { // 搜索问题的解空间 for (int j=1;j<=n;j++) if(a[enode.i][j] < Float.MAX_VALUE && enode.length+a[enode.i][j] < dist[j])
装箱i的重量为Wi,且
w c c
i 1 i 1
n
2
装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上 这2艘轮船。如果有,找出一种装载方案。 容易证明:如果一个给定装载问题有解,则采用下面的策略可得到 最优装载方案。 (1)首先将第一艘轮船尽可能装满;
(2)将剩余的集装箱装上第二艘轮船。 贵有恒何必三更眠五更起,最无益
贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉 2
6.1 分支限界法的基本思想
1. 分支限界法与回溯法的不同
(1)求解目标:回溯法的求解目标是找出解空间树中满 足约束条件的所有解,而分支限界法的求解目标则是 找出满足约束条件的一个解,或是在满足约束条件的 解中找出在某种意义下的最优解。 (2)搜索方式的不同:回溯法以深度优先的方式搜索解 空间树,而分支限界法则以广度优先或以最小耗费优 先的方式搜索解空间树。
贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉 4
6.1 分支限界法的基本思想
3. 常见的两种分支限界法
(1)队列式(FIFO)分支限界法 按照队列先进先出(FIFO)原则选取下一个节点为扩 展节点。 (2)优先队列式分支限界法
按照优先队列中规定的优先级选取优先级最高的节点 成为当前扩展节点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51 14
2 x1
x2
Hale Waihona Puke 1 3x1 , x 2 0 且取整数
其松弛问题的最优解为:A(3/2,10/3)
2
因X1=3/2, 所以IP问题的最优解中x1的取值范围一定满 足x1≤1(区域1)或x1≥2(区域2),如下图所示。
A(32,103)
区域1

区域2
x1
23
3
⑴ 分支
假设松弛问题中 xi bi 不是整数,则构造两
第三节 分支定界法
一、分支定界法步骤 二、示例
1
一、分支定界法步骤
使用范围:纯整数、混合整数规划。 基本思想:求松弛问题最优解,逐步缩小可域。
1、求解松弛问题的最优解,若非整数解,转2。
2、分支与定界。下面我们先通过示例来了解一下第2 步的思路。例:max Z x1 x 2
x1
9 14
x2
个约束条件 xi bi 及 xi bi 1
分别加入松弛问题中得到子问题LP1与LP2,即 两个后继问题,并求解之。
⑵ 定界
就没有分支的线性规划问题而言,以最优目 标函数值中的最大者为上界,以符合整数条件 的各子问题中目标函数值最大者作为下界,若
无整数解,在Z≥0的情况下,令 z 0
4
⑶ 比较与剪枝
x1 2
x2 3
z4 z 4 S211
LP211
x1 2, x2 2 z0 4
LP212
S212 x1 3, x 2 1
z0 4
返回
7
8
x1 1
x1 2
LP1
S1
x1 1, x 2 7 / 3 z 0 10 / 3
LP2
z 41 9
S2
x1 2, x 2 23 / 9 z 0 41 / 9
z0
x2 2
x2 3
z 61 14 z0
LP21
S21 x1 33 / 14, x2 2
z0 61 / 14
LP22 S22 无可行解
5 zDz21 6/14

A(32,103)
zEz2114 zFz2124

B(1,7 3)
C(2,239)

D(3314,2)

E(2,2) s2
F(3,1) s212
s1
s21

1s211 2

x1
6
LP0
z 29 6
S x1 1.5, x 2 10/3 z 0 29 / 6 z 0
若上界等于下界,则停止;否则,剪去小于下 界的分支,对于大于下界的分支继续重复步骤2 (优先分支函数值较大者)。
二、示例
例3 用分枝定界法求解
max Z x 1 x 2
x
1
9 14
x2
51 14
2 x1
x2
1 3
x 1 , x 2 0 且取整数
5
x2
zBz1 m1/a0 3x zCz24/1 9
相关文档
最新文档