分枝定界法的步骤
分枝定界法

4
x1
x2 x1
16.5 4
x1 0, x2 0
结论1 :(IP)的最优解一定在某个子问题中
2 :子问题的可行域 父问题的可行域 子问题的最优解 ≤ 父问题的最优值
3 :子问题中的整数解都是(IP)的可行解
二: 定界,以每个后继问题为一分枝标明求解结 果,在解的结果中,找出最优目标函数值最大者作 为新的上界.从已符合整数条件的各分支中,找出 目标函数值为最大者作为新的下界,若无,则下界 为0.
x1 x2 x3 x4 x5 解
检 0 0 -20/3 0 -50/3 Z-440/3
x2 0
x1 1 x4 0
1 1/3 0
00
0
0 -1/3 1
-2/3 17/6 13 -10/3 5/3
L1最优解:x1 3,x2 17 6 , x3 0
x4
5 3
,
x5
0,
最优值:z1
440 3
求解子问题L3 :
x1 x2 x3
检 0 0 -20/3
x2 0 1 1/3 x1 1 0 0 x4 0 0 -1/3
x6 0 1 0
x4 x5
x6
0 -50/3 0
00 1
解 Z-440/3 17/6 3 5/3
2
最优解:
xx14
35,/ 2x,2 x52, x03,
11 4,x2 0,x4
3, 52,
z3 130 得下界
x5 14 , x6 0
z4
285 2
z3
L5
:x1 x3
2,x2 0,x4
分支定界

所谓“分支”就是在处理整数规划问题时,逐步加入 对各变量的整数要求限制。先求解整数规划相应的松弛问 题(记为 P0),若(P0)的最优解不符合整数条件,假设 xi b i 不符合整数条件,于是增加新的约束条件: xi bi 和
xi bi 1, 分别将其加入到松弛问题(P0)中, 从而形成两
5 x1 7 x2 35 s.t . 4 x1 9 x2 36 x , x 0, 全部为整数 1 2
解 :step1
确定与整数规划问题(记为问题 A)对应的松
弛线性规划问题 (记为问题 B):
max z 2 x1 3 x2
5 x1 7 x2 35 s.t . 4 x1 9 x2 36 x , x 0 1 2
个分支,称为两个后继子问题。后继子问题的可行域包含 整数规划所有的可行解。根据需要,后继子问题可以产生 类似的分支,从而把原整数规划问题通过分支迭代求出最 优解。
所谓“定界”就是在分支过程中,若某个后继子问题最优 解恰好是整数规划的可行解,则该后继子问题最优目标函 数值成为整数规划的目标函数值的一个“界限” ,从而对 那些最优目标函数值比上述“界限”还差的后继子问题可 以剔除不加考虑。 同时在分支过程中出现更好的 “界限” , 则用它来取代原来的界限,以提高定界的效率。
则总生产成本的目标函数为:
min z C ( x j ) c j x j k j y j
j 1 j 1
n
n
这里 M 是一个充分大的正数。 所以该产品计划问题可以表 述成如下规划问题:
min z c j x j k j y j
j 1
n
0 x j My j , j 1,2,, n s.t. y j 0 or 1, j 1,2,, n
分支定界算法

分支定界 (branch and bound) 算法是一种在问题的解空间树上搜索问题的解的方法。
但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是:1 .产生当前扩展结点的所有孩子结点;2 .在产生的孩子结点中,抛弃那些不可能产生可行解(或最优解)的结点;3 .将其余的孩子结点加入活结点表;4 .从活结点表中选择下一个活结点作为新的扩展结点。
如此循环,直到找到问题的可行解(最优解)或活结点表为空。
从活结点表中选择下一个活结点作为新的扩展结点,根据选择方式的不同,分支定界算法通常可以分为两种形式:1 . FIFO(First In First Out) 分支定界算法:按照先进先出原则选择下一个活结点作为扩展结点,即从活结点表中取出结点的顺序与加入结点的顺序相同。
2 .最小耗费或最大收益分支定界算法:在这种情况下,每个结点都有一个耗费或收益。
如果要查找一个具有最小耗费的解,那么要选择的下一个扩展结点就是活结点表中具有最小耗费的活结点;如果要查找一个具有最大收益的解,那么要选择的下一个扩展结点就是活结点表中具有最大收益的活结点。
又称分支定界搜索法。
过程系统综合的一类方法。
该法是将原始问题分解,产生一组子问题。
分支是将一组解分为几组子解,定界是建立这些子组解的目标函数的边界。
如果某一子组的解在这些边界之外,就将这一子组舍弃(剪枝)。
分支定界法原为运筹学中求解整数规划(或混合整数规划)问题的一种方法。
用该法寻求整数最优解的效率很高。
将该法原理用于过程系统综合可大大减少需要计算的方案数日。
分支定界法的思想是:首先确定目标值的上下界,边搜索边减掉搜索树的某些支,提高搜索效率。
在竞赛中,我们有时会碰到一些题目,它们既不能通过建立数学模型解决,又没有现成算法可以套用,或者非遍历所有状况才可以得出正确结果。
运筹学_分支定界法

⑵
5 x1 6 x 2 3 0
x2
A 3 B
⑴x
1
x2 2
⑶
x1 4
1
1
3
x1 5 x 2 Z
x1
求(LP2) ,如图所示。
m a x Z x1 5 x 2 x1 x 2 2 5 x 6 x2 30 1 ( IP 2 ) x 1 4 x 2 1 x1 , x 2 0 且 为 整 数
x1 x 2 2 x1 x 2 2 5 x 6 x2 30 5 x 6 x2 30 1 1 x1 x1 4 4 ( IP 2 2 ) ( IP 2 1) 2 2 x1 x1 x x 4 3 2 2 x1 , x 2 0 且 为 整 数 x1 , x 2 0 且 为 整 数
第三节 分枝定界法
(一)、基本思路 考虑纯整数问题:
m ax Z
n
c
j 1
n
j
xj
a ij x j b i ( i 1 .2 m ) ( IP ) j 1 x 0 ,( j 1 .2 n ) 且 为 整 数 j
m ax Z
c
j 1
n
记为(IP)
解:首先去掉整数约束,变成一般线性规划问题
m a x Z x1 5 x 2 x1 x 2 2 5 x1 6 x 2 3 0 4 x1 x ,x 0 1 2
记为(LP)
用图解法求(LP)的最 优解,如图所示。
m a x Z x1 5 x 2 x1 x 2 2 5 x1 6 x 2 3 0 4 x1 x ,x 0 1 2
第三节分支定界

(P3) )
1
3
x1
在(P3)的基础上继续分枝。加入条件x1 ≤ 2 ,x1 ≥3 的基础上继续分枝。加入条件 有下式: 有下式:
m in Z = − x1 − 5 x 2 x1 − x 2 ≥ − 2 5 x1 + 6 x 2 ≤ 30 x1 ≤4 ( P5 ) x1 ≥2 x ≤3 2 x1 ≤2 x1 , x 2 ≥ 0 且为整数
例1:用分枝定界法求解整数规划问题(用图解法计算) :用分枝定界法求解整数规划问题(用图解法计算) min Z = − x 1 − 5 x 2
x1 − x 2 ≥ −2 5 x 1 + 6 x 2 ≤ 30 ≤4 x1 x 1 , x 2 ≥ 0 且全为整数
记为( 记为(P)
是整数 解,且 z*<z6,
增大下界z0 ≤ z2 ≤ z3 ≤ z*, 减少上界+ ∞ ≥ z的目标函数值 分支后计算松弛的线性规划的最优解: 2. 分支后计算松弛的线性规划的最优解:
整数解且目标值小于原有最好整数解的值则替代 原有最好整数解 整数解且目标值大于原有最好整数解的值, 整数解且目标值大于原有最好整数解的值,则删 除该分支 非整数解且目标值小于原有最好整数 整数解的值则继 非整数解且目标值小于原有最好整数解的值则继 续分支 非整数解且目标值大于等于原有最好整数 整数解的值 非整数解且目标值大于等于原有最好整数解的值 则删除该分支其中无最优整数 整数解 则删除该分支其中无最优整数解
⑵
B
⑴ (18/11,40/11) A C ⑶
(P1)
1 1
(P2)
3
x1
不是整数,故继续分支。 (-16)更小的最优解,但 x2 不是整数,故继续分支。 )更小的最优解,
运筹学课件第三节分支定界法

约束条件组
n aij xj b i My i j1 st. p (i 1 ,2,...,p) yi pq i1
在约束条件中保证了在P个0-1 变量中有p-q个1,q个0;凡取值 =0的yi对应的约束条件为原约束 条件,凡取值=1的yi对应的约束 条件将自然满足,因而为多余.
,先加工某种产品 0 yj ( j 1 ,2 ,3 ,4 ) 1 ,先加工另外产品 机床1:x11+a11≤x21+My1 ; x21+a21≤x11+M(1-y1) 机床2:x22+a22≤x32+My2 ; x32+a32≤x22+M(1-y2) 机床3:x13+a13≤x33 +My3 ; x33+a33≤x13+M(1-y3) 机床4:x14+a14≤x24 +My4 ; x24+a24≤x14+M(1-y4) 当y1=0,表示机床1先加工产品1,后加工产品2;当y1=1,表示机床1先 加工产品2,后加工产品1.
不同的搜索策略会导致不同的搜索树,一般 情况下,同一层的两个子问题,先搜索目标 函数比较大的较有利(如果是极小问题,则 应先搜索目标函数值小的较为有利)。这样 可能得到数值比较大的下界,下界越大被剪 去的分支越多。 分支定界算法对于混合整数规划特别有效, 对没有整数要求的变量就不必分支,这将大 大减少分支的数量。
Max Z = X1 + X2 14X1 + 9X2 ≤ 51 - 6X1 + 3X2 ≤ 1 X1 ≥2 X2 ≤ 2 X1 , X2 ≥ 0 Max Z = X1 + X2 14X1 + 9X2 ≤ 51 - 6X1 + 3X2 ≤ 1 X1 ≥3 X2 ≤ 2 X1 , X2 ≥ 0 Max Z = X1 + X2 14X1 + 9X2 ≤ 51 - 6X1 + 3X2 ≤ 1 2≤ X1 ≤2 X2 ≤ 2 X1 , X2 ≥ 0
运筹学课件第三节分支定界法

针对不同问题的特点,分支定界法在算法实现上 不断进行优化和改进,以提高求解效率。
3
理论分析
分支定界法的理论分析涉及算法的收敛性、复杂 度等方面,为算法的改进提供了理论支持。
分支定界法的发展趋势
混合整数规划问题求解
随着混合整数规划问题的广泛应用,分支定界法在求解这类问题 上的研究逐渐成为热点。
理论深化与完善
进一步深化分支定界法的理论分析,完善算法的理论体系。
应用拓展
拓展分支定界法的应用领域,解决更多实际问题。
THANKS
感谢观看
运筹学课件第三节分支定界法
contents
目录
• 分支定界法的概述 • 分支定界法的算法原理 • 分支定界法的实现过程 • 分支定界法的案例分析 • 分支定界法的优缺点分析 • 分支定界法的前沿研究与展望
01
分支定界法的概述
分支定界法的定义
分支定界法是一种求解整数规划问题 的算法个子问题的解的 界,来逐步逼近最优解。
03
分支定界法的实现过程
问题建模与参数设定
确定决策变量
根据问题的具体情况,确定决策 变量,并为其设定合适的取值范
围。
定义目标函数
明确问题的目标,将其表示为一个 数学表达式,以便进行优化。
约束条件
根据问题的限制条件,建立相应的 约束条件。
建立搜索树与初始化
建立搜索树
根据问题建模的结果,建立一个 搜索树,用于表示问题的解空间 。
的获取概率。
优化分支策略
02
通过改进分支策略,减少算法产生的分支数量,降低算法的复
杂度和计算量。
引入智能搜索策略
03
将智能搜索策略(如遗传算法、模拟退火等)与分支定界法结
5.2 分支定界法

LP
用图解法求松弛问题的最优解,如图所示。
x1=18/11, x2 =40/11 Z=-218/11≈(-19.8) 即Z 也是IP最小值的下限。 对于x1=18/11≈1.64,
分枝定界法注意事项:
(1)、分枝变量选择原则: ① 按目标函数系数:选系数绝对值最大者变 量 先分。
对目标值升降影响最大。
② 选与整数值相差最大的非整数变量先分枝。
③ 按使用者经验,对各整数变量排定重要性
的优先顺序。
(2)、分枝节点选择:
① 深探法(后进先出法):
最后打开的节点最先选,尽快找到整数解。 整数解质量可能不高。 ② 广探法: 选目标函数当前最大值节点,找到的整数 解质量高。慢。
max Z 4 x1 3 x 2
10
B
LP2:X=(4,6.5), Z2=35.5
LP1 LP2 o 3 4 C ①
1.2 x1 0.8 x 2 10 2 x1 2.5 x 2 25 LP 2 : x1 4 x1 , x 2 0
②
x2
选 择 目 标 值 最 大 的 分 LP 枝 2进 行 分 枝 , 增 加 约 束 x 2 6及x 2 7, 显 然 x 2 7不 可 行 , 得 到 线 性 规 划
例5.6 用分枝定界法求解整数规划问题
min Z x1 5 x 2 x 1 x 2 2 IP 5 x1 6 x 2 30 4 x1 x1 , x 2 0且 全 为 整 数
解:首先去掉整数约束,变成一般线性规划问题(原整数规划 问题的松驰问题)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分枝定界法的步骤
分枝定界法是一种求解组合优化问题的方法,其步骤如下:
1. 确定问题的目标函数以及约束条件:首先需要明确问题的目标函数是什么,以及有哪些约束条件需要满足。
2. 构造初始问题:根据问题的要求,构造一个初始问题,并计算初始问题的目标函数值。
3. 分枝:在初始问题的基础上,对其中的某个变量(或几个变量)进行分枝操作。
将问题划分为多个子问题,每个子问题代表了某个变量取值的一个分支。
4. 计算下界:对于每个子问题,计算出一个下界值。
下界值是一个目标函数值的估计,它不会高于目标函数的最小值。
5. 判断分支:根据计算出的下界值,选择一个最有希望的子问题进行分支,即选择一个下界值最小的子问题。
6. 回溯:从步骤5选择的分支开始,回溯到父问题,跳过部分分支。
7. 重复:重复步骤3到步骤6,直到找到一个满足问题要求的解,或者找到一个可行解的上界值。
8. 定解:通过进一步确定上界值,并进行剪枝操作,选择最优解。
9. 输出:输出最优解及其对应的目标函数值。
需要注意的是,分枝定界法的关键在于如何计算下界值和进行剪枝操作,以减少问题的搜索空间。
常用的技巧有线性规划松弛、最小生成树、割集等。