分支定界法
分支定界法

分支定界法分支定界法是指以系统的结构为根据,划分以增强系统的面向特性来提出设计方案和获取满足特性的分析。
它旨在深入讨论系统的面向,思考如何穿越技术障碍,为建设一个系统或程序制定高效的解决方案。
它是一种能够带动系统行为的基础方法论,作为技术贴贴合系统的基础,是软件交互的核心技术。
从理论上讲,分支定界法是一种基于面向对象思想的技术,旨在优化软件开发流程、架构和设计,使得程序的流程更加完善,功能更加完善,可以改善系统的性能和可用性。
通常,分支定界法将系统分成若干个模块,并根据实际需求考虑设计模块之间的联系和交互。
比如,用户按照特定需求进行功能结构划分时,就会把一个软件系统分解成多个模块,每个模块负责实现一些特定功能,不同模块间的联系由定义的接口完成。
分支定界法的实施要求:首先,确认客观事实和设计需求,把客观事实提炼成抽象的需求,对需求进行定义和分解,得到一组架构和结构要素;其次,把要素组合起来划分模块,厘清模块之间的联系,定义模块之间的交互关系;再次,分析模块之间的联系,作出架构和结构选择;最后,根据分析结果制定设计方案,提出满足特性的分析,以便用于实施和交付的项目。
从现代软件开发的角度看,分支定界法是软件开发中最基本的一种方法,也是最高效的方法之一,它有助于提高系统的可维护性,减少设计漏洞,解决软件可扩展性和可重复性方面的问题。
此外,分支定界法有利于改善系统的性能,给系统或软件制定更加合理有效的解决方案,增强系统的安全性、稳定性和可用性,减少单位成本,提高开发效率,从而节约成本,达到预期的服务水平。
因此,分支定界法在系统设计开发中发挥着重要作用,成为现代软件开发流程的核心技术,是企业获取竞争优势的重要手段之一。
但是,分支定界法的有效落实需要充分考虑系统的实际需求和市场行情,充分发挥技术优势,全面提升软件开发效率,才能有效实现长期可持续发展。
分支定界法

分支定界法第一篇:分支定界法整数线性规划之分支定界法摘要最优化理论和方法是在上世纪 40 年代末发展成为一门独立的学科。
1947年,Dantaig 首先提出求解一般线性规划问题的方法,即单纯形算法,随后随着工业革命、计算机技术的巨大发展,以及信息革命的不断深化,到现在的几十年时间里,它有了很快的发展。
目前,求解各种最优化问题的理论研究发展迅速,例如线性规划、非线性规划以及随机规划、非光滑规划、多目标规划、几何规划、整数规划等,各种新的方法也不断涌现,并且在军事、经济、科学技术等方面应用广泛,成为一门十分活跃的学科。
整数规划(integer programming)是一类要求要求部分或全部决策变量取整数值的数学规划,实际问题中有很多决策变量是必须取整数的。
本文主要介绍求解整数线性规划问题的分支定界法及其算法的matlb实现。
关键词:整数线性规划;分支定界法;matlb程序;1.引言1.1优化问题发展现状最优化理论与算法是一个重要的数学分支,它所讨论的问题是怎样在众多的方案中找到一个最优的方案.例如,在工程设计中,选择怎样的设计参数,才能使设计方案既满足要求又能降低成本;在资源分配中,资源有限时怎样分配,才能使分配方案既可以满足各方面的要求,又可以获得最多的收益;在生产计划安排中,怎样设计生产方案才能提高产值和利润;在军事指挥中,确定怎样的最佳作战方案,才能使自己的损失最小,伤敌最多,取得战争的胜利;在我们的生活中,诸如此类问题,到处可见.最优化作为数学的一个分支,为这些问题的解决提供了一些理论基础和求解方法.最优化是个古老的课题.长期以来,人们一直对最优化问题进行着探讨和研究.在二十世纪四十年代末,Dantzig 提出了单纯形法,有效地解决了线性规划问题,从而最优化成为了一门独立的学科。
目前,有关线性规划方面的理论和算法发展得相当完善,但是关于非线性规划问题的理论和算法还有待进一步的研究,实际应用中还有待进一步的完善。
运筹学_分支定界法

⑵
5 x1 6 x 2 3 0
x2
A 3 B
⑴x
1
x2 2
⑶
x1 4
1
1
3
x1 5 x 2 Z
x1
求(LP2) ,如图所示。
m a x Z x1 5 x 2 x1 x 2 2 5 x 6 x2 30 1 ( IP 2 ) x 1 4 x 2 1 x1 , x 2 0 且 为 整 数
x1 x 2 2 x1 x 2 2 5 x 6 x2 30 5 x 6 x2 30 1 1 x1 x1 4 4 ( IP 2 2 ) ( IP 2 1) 2 2 x1 x1 x x 4 3 2 2 x1 , x 2 0 且 为 整 数 x1 , x 2 0 且 为 整 数
第三节 分枝定界法
(一)、基本思路 考虑纯整数问题:
m ax Z
n
c
j 1
n
j
xj
a ij x j b i ( i 1 .2 m ) ( IP ) j 1 x 0 ,( j 1 .2 n ) 且 为 整 数 j
m ax Z
c
j 1
n
记为(IP)
解:首先去掉整数约束,变成一般线性规划问题
m a x Z x1 5 x 2 x1 x 2 2 5 x1 6 x 2 3 0 4 x1 x ,x 0 1 2
记为(LP)
用图解法求(LP)的最 优解,如图所示。
m a x Z x1 5 x 2 x1 x 2 2 5 x1 6 x 2 3 0 4 x1 x ,x 0 1 2
分支定界法概述(1)

分支定界法概述(1)分枝定界-简介分枝定界(branch and bound)是另一种系统地搜索解空间的方法,它与回溯法的主要区别在于对E-节点的扩充方式。
每个活节点有且仅有一次机会变成E-节点。
当一个节点变为E-节点时,则生成从该节点移动一步即可到达的所有新节点。
在生成的节点中,抛弃那些不可能导出(最优)可行解的节点,其余节点加入活节点表,然后从表中选择一个节点作为下一个E-节点。
从活节点表中取出所选择的节点并进行扩充,直到找到解或活动表为空,扩充过程才结束。
分枝定界-方法有两种常用的方法可用来选择下一个E-节点(虽然也可能存在其他的方法):1) 先进先出(F I F O)即从活节点表中取出节点的顺序与加入节点的顺序相同,因此活节点表的性质与队列相同。
2) 最小耗费或最大收益法在这种模式中,每个节点都有一个对应的耗费或收益。
如果查找一个具有最小耗费的解,则活节点表可用最小堆来建立,下一个E-节点就是具有最小耗费的活节点;如果希望搜索一个具有最大收益的解,则可用最大堆来构造活节点表,下一个E-节点是具有最大收益的活节点。
分枝定界-例子例5-1 【迷宫老鼠】考察图16-3a 给出的迷宫老鼠例子和图1 6 - 1的解空间结构。
使用F I F O分枝定界,初始时取(1,1)作为E-节点且活动队列为空。
迷宫的位置(1 , 1)被置为1,以免再次返回到这个位置。
(1,1)被扩充,它的相邻节点(1,2)和(2,1)加入到队列中(即活节点表)。
为避免再次回到这两个位置,将位置(1,2)和(2,1)置为1。
此时迷宫如图1 7 - 1 a所示,E-节点(1,1)被删除。
节点(1,2)从队列中移出并被扩充。
检查它的三个相邻节点(见图1 6 - 1的解空间),只有(1,3)是可行的移动(剩余的两个节点是障碍节点),将其加入队列,并把相应的迷宫位置置为1,所得到的迷宫状态如图17-1b 所示。
节点(1,2)被删除,而下一个E-节点(2,1)将会被取出,当此节点被展开时,节点(3,1)被加入队列中,节点(3,1)被置为1,节点(2,1)被删除,所得到的迷宫如图17-1c 所示。
运筹学课件第三节分支定界法

针对不同问题的特点,分支定界法在算法实现上 不断进行优化和改进,以提高求解效率。
3
理论分析
分支定界法的理论分析涉及算法的收敛性、复杂 度等方面,为算法的改进提供了理论支持。
分支定界法的发展趋势
混合整数规划问题求解
随着混合整数规划问题的广泛应用,分支定界法在求解这类问题 上的研究逐渐成为热点。
理论深化与完善
进一步深化分支定界法的理论分析,完善算法的理论体系。
应用拓展
拓展分支定界法的应用领域,解决更多实际问题。
THANKS
感谢观看
运筹学课件第三节分支定界法
contents
目录
• 分支定界法的概述 • 分支定界法的算法原理 • 分支定界法的实现过程 • 分支定界法的案例分析 • 分支定界法的优缺点分析 • 分支定界法的前沿研究与展望
01
分支定界法的概述
分支定界法的定义
分支定界法是一种求解整数规划问题 的算法个子问题的解的 界,来逐步逼近最优解。
03
分支定界法的实现过程
问题建模与参数设定
确定决策变量
根据问题的具体情况,确定决策 变量,并为其设定合适的取值范
围。
定义目标函数
明确问题的目标,将其表示为一个 数学表达式,以便进行优化。
约束条件
根据问题的限制条件,建立相应的 约束条件。
建立搜索树与初始化
建立搜索树
根据问题建模的结果,建立一个 搜索树,用于表示问题的解空间 。
的获取概率。
优化分支策略
02
通过改进分支策略,减少算法产生的分支数量,降低算法的复
杂度和计算量。
引入智能搜索策略
03
将智能搜索策略(如遗传算法、模拟退火等)与分支定界法结
分支定界法详解

1、概念:分支定界算法(Branch and bound,简称为BB、B&B, or BnB)始终围绕着一颗搜索树进行的,我们将原问题看作搜索树的根节点,从这里出发,分支的含义就是将大的问题分割成小的问题。
大问题可以看成是搜索树的父节点,那么从大问题分割出来的小问题就是父节点的子节点了。
分支的过程就是不断给树增加子节点的过程。
而定界就是在分支的过程中检查子问题的上下界,如果子问题不能产生一比当前最优解还要优的解,那么砍掉这一支。
直到所有子问题都不能产生一个更优的解时,算法结束。
2、例子:用BB算法求解下面的整数规划模型因为求解的是最大化问题,我们不妨设当前的最优解BestV为-INF,表示负无穷。
1.首先从主问题分出两支子问题:通过线性松弛求得两个子问题的upper bound为Z_LP1 = 12.75,Z_LP2 = 12.2。
由于Z_LP1 和Z_LP2都大于BestV=-INF,说明这两支有搞头,继续往下。
2.3.从节点1和节点2两个子问题再次分支,得到如下结果:子问题3已经不可行,无需再理。
子问题4通过线性松弛得到最优解为10,刚好也符合原问题0的所有约束,在该支找到一个可行解,更新BestV = 10。
子问题5通过线性松弛得到upper bound为11.87>当前的BestV = 10,因此子问题5还有戏,待下一次分支。
而子问题6得到upper bound为9<当前的BestV = 10,那么从该支下去找到的解也不会变得更好,所以剪掉!4.对节点5进行分支,得到:子问题7不可行,无需再理。
子问题8得到一个满足原问题0所有约束的解,但是目标值为4<当前的BestV=10,所以不更新BestV,同时该支下去也不能得到更好的解了。
6.此时,所有的分支遍历都完成,我们最终找到了最优解。
3、算法过程(以最小化问题minimize f(x)为例)1、使用启发式,找到优化问题的解决方案xh。
分支定界法知识

分支定界(branch and bound) 算法是一种在问题的解空间树上搜索问题的解的方法。
但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是:1 .产生当前扩展结点的所有子结点;2 .在产生的子结点中,抛弃那些不可能产生可行解(或最优解)的结点;3 .将其余的子结点加入活结点表;4 .从活结点表中选择下一个活结点作为新的扩展结点。
如此循环,直到找到问题的可行解(最优解)或活结点表为空。
分支定界法本质还是一种枚举法,但是是隐枚举法。
它是整数规划领域中非常重要的一类算法思想。
是很多重要算法的源头。
它能解决的实际问题很多,最著名的一个应该就是求解背包问题。
定义分支定界法(branch and bound)是一种求解整数规划问题的最常用算法。
这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。
算法步骤第1步:放宽或取消原问题的某些约束条件,如求整数解的条件。
如果这时求出的最优解是原问题的可行解,那么这个解就是原问题的最优解,计算结束。
否则这个解的目标函数值是原问题的最优解的上界。
第2步:将放宽了某些约束条件的替代问题分成若干子问题,要求各子问题的解集合的并集要包含原问题的所有可行解,然后对每个子问题求最优解。
这些子问题的最优解中的最优者若是原问题的可行解,则它就是原问题的最优解,计算结束。
否则它的目标函数值就是原问题的一个新的上界。
另外,各子问题的最优解中,若有原问题的可行解的,选这些可行解的最大目标函数值,它就是原问题的最优解的一个下界。
第3步:对最优解的目标函数值已小于这个下界的问题,其可行解中必无原问题的最优解,可以放弃。
对最优解的目标函数值大于这个下界的子问题,都先保留下来,进入第4步。
第4步:在保留下的所有子问题中,选出最优解的目标函数值最大的一个,重复第1步和第2步。
分支定界法——精选推荐

分⽀定界法分⽀定界法(branch and bound)是⼀种求解离散数据组合的最优化问题。
该算法执⾏的效率取决于你所找的问题解空间的上下界,如果找到⼀个很紧凑的上下界进⾏剪枝操作,该算法的执⾏效率会⾮常⾼,因此它是最有可能在多项式时间内求解NP问题的算法。
使⽤分⽀定界算法的⼀般步骤为:构造⼀棵搜索树,该搜索树指的是所有解空间,因此通过遍历该搜索树可以遍历到所有的解;构造问题解的上下界,上界⼀般为之前求出的最优解,下界为⽆约束条件下当前搜索路径的最优解,上下界的主要作⽤是对搜索树进⾏剪枝;通过回溯法遍历搜索树,并且不断更新上下界,如果当前解的下界已经超过上界,则进⾏剪枝;遍历结束时,所求的解为最优解。
接下来通过⼀个实例来讲解分⽀定界算法:某公司于⼄城市的销售点急需⼀批成品,该公司成品⽣产基地在甲城市。
甲城市与⼄城市之间共有 n 座城市,互相以公路连通。
甲城市、⼄城市以及其它各城市之间的公路连通情况及每段公路的长度由矩阵M1 给出。
每段公路均由地⽅政府收取不同额度的养路费等费⽤,具体数额由矩阵 M2 给出。
请给出在需付养路费总额不超过 1500 的情况下,该公司货车运送其产品从甲城市到⼄城市的最短运送路线。
(题⽬来源:北航研究⽣算法课)⾸先构造⼀棵搜索树,该搜索树并不需要显⽰的构建,⽽是在搜索过程中所遵循的⼀种搜索规则。
对于上述问题,以甲城市为根节点构建⼆叉树,其它节点由剩余城市表⽰,树的左⼦树表⽰当前路径包含该⽗节点,树的右⼦树表⽰当前路径不包含该⽗节点。
如图所⽰该搜索路径所表⽰的实际路径为1-3-4,即路径中不包含城市2。
然后分析该问题解的上下界:搜索路径的上界为当前已经求出的满⾜条件的最短路径长度。
搜索路径的下界为当前路径长度与⽆约束条件下路径终点到城市⼄的最短路径长度之和。
若上界⼤于下界,则可以继续搜索;若上界⼩于下界,则表⽰⽆更优解,此时可进⾏剪枝操作。
其中⽆约束条件下的任意点到城市⼄的最短路径长度可以使⽤Dijkstra或Floyd算法预先求出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分支定界法
分支定界法,也称为分界定义法,是为了确定并将客观事物归类的一种逻辑基础规范。
它是一组文本规范,用于描述和分类客观事物,以及它们之间的关系。
它分析客观事物的共性,从这些共性,弄清楚客观事物以及它们之间的关系,形成分支定义法。
分支定界法最初创造于18世纪的德国,由卡尔文贝因茨(Karl von Bennizs)提出,他的著作 Theorie der classifikation(分类理论)发表于1790年。
他的主要思想是:通过对客观事物的共性的
分析,将客观事物归类,并形成一系列的分类方法。
分支定界法一般包括三个层次:主类,亚类,次类。
主要是将客观事物按照一定的共性划分到不同的类别中,然后在每个主类中进行更详细的分析,形成子类,从而将客观事物更细致地分类。
分支定界法有很多优点。
首先,它可以更好地适应新出现的客观事物,以及客观事物可能出现的新情况。
这是因为,分支定界法有着一系列的分类方法,不仅具有某种共性,而且有着不同的子类,这些子类可以更好地形成客观事物之间的关系,并且有利于新类别的形成。
此外,分支定界法还可以帮助人们进行判断。
分界定义法是一种可以把客观事物细致分类的方法,从而可以更好地去判断两个客观事物之间是否有关系,或者相似度如何,从而帮助我们做出判断。
然而,分支定界法也有一定的局限性。
有时,分支定界法所指定的客观事物重叠,或者具有相同的共性,这会降低分类的准确性。
此外,它也会忽略一些客观事物的细微差别,这可能会影响分类的结果。
总之,分支定界法是一种有效的客观事物归类方法。
它可以更好地划分客观事物的共性,也可以更直观地反映客观事物之间的关系,从而有效地把客观事物归类。
此外,它还可以帮助我们做出判断,但它也有一定的局限性,必须在不同的客观事物之间上尽量保持准确性和细微差别。