多元微积分 基本概念

合集下载

多元微积分学

多元微积分学

多元微积分学摘要:1.多元微积分学的基本概念2.多元函数的极限与连续3.偏导数4.全微分5.多元函数的泰勒公式6.隐函数定理与微分中值定理7.多元函数的极值与最值问题8.多元函数的曲线拟合与参数估计9.多元微积分学的应用正文:一、多元微积分学的基本概念多元微积分学是微积分学的一个重要分支,主要研究多元函数的极限、连续、微分、积分等性质。

在多元微积分学中,我们通常考虑两个或两个以上的变量,例如x, y, z 等。

多元微积分学的基本概念包括多元函数、多元函数的极限与连续、偏导数、全微分等。

二、多元函数的极限与连续在多元函数中,我们需要研究函数在某一点的极限与连续性。

多元函数的极限定义为函数在某一点的邻域内的函数值趋于某一值的趋势。

而连续性则表示函数在某一点的左右极限存在且相等。

三、偏导数偏导数是多元函数微分学的基础概念,用于研究多元函数在某一点的变化率。

偏导数可分为一阶偏导数和二阶偏导数。

一阶偏导数表示函数在某一点的沿某一方向的变化率,而二阶偏导数表示函数在某一点的沿某一方向的曲率。

四、全微分全微分是多元函数微分学的另一个重要概念,用于研究多元函数在某一点的整体变化率。

全微分可以用于求解多元函数的泰勒公式,以及多元函数在某一点的隐函数定理与微分中值定理。

五、多元函数的泰勒公式多元函数的泰勒公式是多元微积分学中的一种重要公式,用于表示多元函数在某一点的近似值。

泰勒公式可以将多元函数展开为一个无穷级数,从而便于研究函数的性质。

六、隐函数定理与微分中值定理隐函数定理是多元微积分学中的一个重要定理,用于研究多元函数的隐函数。

微分中值定理则表示多元函数在某一点的平均变化率等于函数在该区间内某一点处的瞬时变化率。

七、多元函数的极值与最值问题多元函数的极值与最值问题是多元微积分学中的一个重要问题,研究如何求解多元函数在某一区域内的最大值与最小值。

这个问题可以通过求解多元函数的偏导数方程组来解决。

八、多元函数的曲线拟合与参数估计多元函数的曲线拟合与参数估计是多元微积分学中的一个重要应用,用于研究如何用多元函数来表示一组数据。

多元函数微积分知识点

多元函数微积分知识点

多元函数微积分知识点多元函数微积分是微积分学中的一个重要分支,主要研究有多个自变量的函数的导数、偏导数、微分、积分等问题。

它是单变量函数微积分的拓展与推广,涉及涉及多元函数的极限、连续性、可微性、可导性、偏导数与全微分、多元复合函数的求导、隐函数的求导、多重积分等内容。

本文将从多元函数的定义与性质、偏导数与全微分、多元复合函数的求导、隐函数的求导、多重积分等几个方面介绍多元函数微积分的知识点。

1.多元函数的定义与性质多元函数是指有多个自变量的函数,一般形式为f(x1, x2, ..., xn),其中x1, x2, ..., xn是自变量,f是因变量。

多元函数的定义域是自变量可能取值的集合。

在多元函数中,可以分别将每个自变量视为其他自变量的常数,对应单变量函数的概念。

多元函数的性质包括定义域、值域、可视化、极值等。

2.偏导数与全微分偏导数是多元函数在其中一变量上的导数,其他变量视为常数。

偏导数的计算与单变量函数的导数计算类似,可以通过极限或者求偏导数的定义计算。

全微分是多元函数在特定点的一个线性逼近,可以用于计算函数值的近似值。

全微分的表示为df = (∂f/∂x1)dx1 + (∂f/∂x2)dx2 + ... + (∂f/∂xn)dxn,其中∂f/∂xi表示对变量xi的偏导数。

3.多元复合函数的求导多元复合函数是指多个函数通过复合而成的函数,其中一个函数的导数是另一个函数的自变量。

类似于链式法则,多元复合函数的求导需要使用偏导数和全导数的概念。

对于函数z = f(g(x, y)),链式法则可以表示为dz = (∂z/∂x)dx + (∂z/∂y)dy = (∂f/∂g)(dg/dx)dx +(∂f/∂g)(dg/dy)dy。

4.隐函数的求导5.多重积分多重积分是多元函数的积分形式,与单变量函数的定积分类似。

多重积分有二重积分、三重积分等,分别对应二元函数、三元函数等的积分。

多重积分可以用于计算函数在区域内的面积、体积等。

高等数学多元函数微积分

高等数学多元函数微积分

高等数学多元函数微积分多元函数微积分是高等数学中的一个重要分支。

它研究在多变量空间中的单变元函数的微分和积分问题。

这对学习曲面、平面的渐变、凹凸和分界、曲面的体积、局部极值等问题具有重要意义。

一、基本概念1. 超曲面:一般讲,超曲面就是在n维空间中的一类曲面,它们由至少n+1个函数组成。

它是由n维变量组成的,因而可以容纳n维量空间中所有的事物,从而形成一个多维结构。

2. 多元函数微分:多元函数微分就是对在多元空间内变量中的一个函数进行微分的一类函数,它可以应用于求解曲面的斜率,曲面的凹凸和分界,比如计算椭圆曲线、抛物曲线等的曲率和斜率等问题。

3. 多元函数积分:多元函数积分是指在多元空间中的一个函数的积分运算,它可以用于计算曲面的体积,曲面的拉伸与缩小等问题,它也可以用于计算曲面的累积,例如计算三维抛物面、回旋曲线等曲率积分的体积等。

二、求解方法1. 黎曼微积分法:黎曼微积分法是指在进行多元函数微积分时,识别出包含所求函数的一组导函数,然后根据黎曼公式将这些导函数求和,不断缩小未知函数的范围,最终确定出未知函数的表达式的一类方法。

2. 光滑函数的变换法:光滑函数的变换法指的是在进行多变量函数积分时,先将所给函数进行光滑变换,然后根据变换法则和对称性,极限性和旋转对称性等等属性,运用变换法,不断将多变量函数转化为单变量函数,最后将单变量函数进行积分。

三、应用1. 力学中的应用:多元函数微积分在力学中有着重要的作用,通过多元函数微积分,可以研究分析物体的运动轨迹,甚至可以预测未来的物体的状态。

2. 热物理学的应用:多元函数微积分可以用来研究热物理学中各种复杂多变量的函数,如热力学量在温度和压力变化时的变化情况,揭示物质性质在热状态时的性质变化,以及热流、热量变化的关系等。

3. 数学建模的应用:多元函数微积分也可以用来进行数学建模,如多元微积分可以用来描述一个普通一般问题的结构特性,如一个多边形的周长、三角形的体积、四棱锥的表面积等。

高三数学知识点:多元函数和多元微积分

高三数学知识点:多元函数和多元微积分

高三数学知识点:多元函数和多元微积分1. 多元函数1.1 定义多元函数是指含有两个或两个上面所述变量的函数。

通常表示为f(x1,x2, ..., xn),其中x1, x2, ..., xn是变量,称为自变量。

1.2 多元函数的图形多元函数的图形是多元函数的图像。

在平面上,我们可以画出二元函数的图像。

对于二元函数f(x, y),我们可以固定一个变量的值,然后画出另一个变量的值随该变量变化的曲线。

这些曲线称为等值线。

1.3 多元函数的偏导数多元函数的偏导数是指对一个变量的导数,而将其他变量视为常数。

对于函数f(x1, x2, ..., xn),其偏导数可以表示为:•∂f/∂x1:表示对x1的偏导数。

•∂f/∂x2:表示对x2的偏导数。

•∂f/∂xn:表示对xn的偏导数。

1.4 多元函数的极值多元函数的极值是指在某个区域内,函数取得最大值或最小值的情况。

通过求偏导数并解方程组,可以找到多元函数的极值。

2. 多元微积分2.1 多元积分多元积分是指对多元函数进行积分。

根据积分变量的不同,可以分为二重积分、三重积分和四重积分等。

2.1.1 二重积分二重积分是指对二元函数在某个区域上进行积分。

其一般形式为:∫∫_D f(x, y) dA其中,D表示积分区域,f(x, y)是被积函数,dA是面积元素。

2.1.2 三重积分三重积分是指对三元函数在某个区域上进行积分。

其一般形式为:∫∫∫_D f(x, y, z) dV其中,D表示积分区域,f(x, y, z)是被积函数,dV是体积元素。

2.1.3 四重积分四重积分是指对四元函数在某个区域上进行积分。

其一般形式为:∫∫∫∫_D f(x, y, z, w) dV其中,D表示积分区域,f(x, y, z, w)是被积函数,dV是体积元素。

2.2 向量微积分向量微积分包括向量的导数和向量的积分。

2.2.1 向量的导数向量的导数是指对向量场的导数。

对于向量场F(x, y, z),其导数可以表示为:∂F/∂x, ∂F/∂y, ∂F/∂z2.2.2 向量的积分向量的积分是指对向量场进行积分。

多元函数微积分第二节

多元函数微积分第二节
量,记为 z ,
即 z = f ( x x , y y ) f ( x , y )
2、偏增量
如果 y 0,即只给自变量
引起的函数增量
以增量
x
x z f ( x x, y ) f ( x, y )
由此 x
叫做函数
在点 对应的自变量 的增
z f ( x, y )
+ )
(依偏导数的连续性)
= (, ) + 1
且当 x 0, y 0 时, 1 0 .
同理
1 + 2

≤ 1 + 2

当 y 0 时, 2 0 ,
→ 00,
z
f y ( x , y )y 2 y
(0 < 1 < 1)
P ( x x , y y ) P 的某个邻域
z A x B y o( )
总成立,
当 y 0 时,上式仍成立,此时 | x |,
= + + ()
A x o(| x |),
f ( x x , y ) f ( x , y )

2×1+3×2=8,

| = 1=2 =

3×1+2×2=7.
RT
p
RT
证 p

2;
V
V
V
RT

RT
RT
=

=− 2;

V



p

= ;


=

pV



多元微积分

多元微积分

多元微积分多元微积分是数学的一个分支,旨在研究多元空间内的微积分。

在多元微积分中,我们将会学习多元函数的概念及其性质、偏导数和导数矩阵的定义、多元微分学中的极值问题及拉格朗日乘数法、多元积分学及其应用等。

首先,我们来了解一下多元函数的概念。

在单变量微积分中,我们研究的是只有一个自变量的函数,而在多元微积分中,函数可能有多个自变量。

例如,$z=f(x,y)$ 就是一个双变量函数,$f(x,y,z)$ 就是一个三元函数。

在多元函数中,我们可以用等高线图来表示函数在平面上的变化情况。

等高线上的任意一点表示函数在该点的取值相同,等高线间的高度差就代表着函数值的变化。

接下来,我们可以学习偏导数和导数矩阵的概念。

在单变量函数中,导数表示函数在某个点上的瞬时变化率。

在多元函数中,每个自变量都可以影响函数的取值,所以我们需要从每个自变量方向上来研究函数的变化,而这就是偏导数的概念。

偏导数描述了函数在某个点沿某一方向的变化速率。

导数矩阵是由多个偏导数组成的矩阵,表示函数在所有方向上的变化情况。

导数矩阵在多元函数的极值问题中起着重要的作用。

接下来,我们将学习多元微分学中的极值问题以及拉格朗日乘数法。

在单变量函数中,我们用导数来判断函数的极值,而在多元函数中,我们将使用导数矩阵和二次型矩阵来判断函数的极值。

二次型矩阵描述了函数取得极值的形状。

如果二次型矩阵为正定或负定,那么函数的极值就是极小值或极大值;如果二次型矩阵是一个不定矩阵,那么我们无法得出该函数的极值。

当我们需要研究函数的极值时,常常需要引入拉格朗日乘数法。

拉格朗日乘数法通过引入一个限制条件来确定函数的极值,这个限制条件可以是在某个区域内的限制性条件,例如体积、表面积等。

最后,我们将学习多元积分学和它的应用。

多元积分学是研究多元空间内面积、体积、质心等问题的数学学科。

在多元积分学中,我们将学习三种类型的积分:二重积分、三重积分和曲线积分。

二重积分用于计算一个平面区域内的面积;三重积分用于计算三维空间内的体积;曲线积分则用于计算空间内曲线的长度、质心等。

多元函数微积分复习概要

多元函数微积分复习概要

第六章多元函数微积分复习要点一、基本概念及相关定理1.多元函数的极限定义:函数(,)z f x y =在区域D 有定义,当点P(x ,y )D ∈沿任意路径无限趋于点000(,)P x y (0P P ≠)时, (,)f x y 无限趋于一个确定的常数A,则称常数A 是函数(,)z f x y =当P(x ,y )趋于000(,)P x y 时的极限.记作0lim (,)x xy y f x y A →→=,或00(,)(,)lim(,)x y x y f x y A →=,或(,)f x y A →,00(,)(,)x y x y →,或lim (,)f x y A ρ→=,或(,)f x y A →,0ρ→.其中,ρ= 2.二元函数连续的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义,如果对任意0(,)()P x y U P ∈,都有0000(,)(,)lim(,)(,)x y x y f x y f x y →=(或0lim ()()P P f P f P →=),则称函数(,)z f x y =在点000(,)P x y 处连续.3.偏导数的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义.(1)函数(,)z f x y =在点000(,)P x y 处对x 的偏导数定义为00000(,)(,)lim x f x x y f x y x∆→+∆-∆,记作00x x y y zx ==∂∂,或00x x y y f x==∂∂,或00(,)x z x y ',或00(,)x f x y ',即x x y y zx==∂∂=00000(,)(,)lim x f x x y f x y x∆→+∆-∆.(2)函数(,)z f x y =在点000(,)P x y 处对y 的偏导数定义为00000(,)(,)lim y f x y y f x y y∆→+∆-∆,记作00x x y y zy ==∂∂,或00x x y y f y==∂∂,或00(,)y z x y ',或00(,)y f x y ',即x x y y zy==∂∂=00000(,)(,)lim y f x y y f x y y∆→+∆-∆.而称z x∂∂,或f x ∂∂,或(,)x z x y ',或(,)x f x y '及[z y ∂∂,或f y∂∂,或(,)y z x y ',或(,)y f x y ']为(关于x 或关于y )偏导函数.高阶偏导数:22(,)xx z zf x y x x x∂∂∂⎛⎫''== ⎪∂∂∂⎝⎭或(,)xx z x y '', 2(,)xy z zf x y y x x y∂∂∂⎛⎫''== ⎪∂∂∂∂⎝⎭或(,)xy z x y '', 2(,)yx z zf x y x y y x⎛⎫∂∂∂''== ⎪∂∂∂∂⎝⎭或(,)yx z x y '', 22(,)yyz zf x y y y y⎛⎫∂∂∂''== ⎪∂∂∂⎝⎭或(,)yy z x y ''. 同理可得,三阶、四阶、…,以及n 阶偏导数.4.全微分定义:设函数(,)z f x y =在点(,)P x y 的某一邻域()U P 有定义,若函数在点(,)x y 的全增量(,)(,)z f x x y y f x y ∆=+∆+∆-可表示为()z A x B y ρ∆=∆+∆+,其中A 、B 不依赖于x ∆、y ∆,仅于x、y有关,ρ=,则称函数(,)z f x y =在点(,)x y 处可微分,称A x B y ∆+∆为函数(,)z f x y =在点(,)x y 的全微分,记为dz ,即dz A x B y =∆+∆.可微的必要条件:若函数(,)z f x y =在点(,)x y 处可微分,则(1)函数(,)z f x y =在点(,)x y 的偏导数z x ∂∂、zy∂∂必存在;(2)全微分为z z dz x y z x y z dx dy x y∂∂+∂∂∂=∆+∆=∂∂∂. 推广:函数(,,)u f x y z =在点(,,)x y z 的全微分为u u udu dx dy dz x y z∂∂∂=++∂∂∂.可微的充分条件:若函数(,)z f x y =的偏导数z x∂∂、z y∂∂在点(,)x y 处连续⇒(,)z f x y =在点(,)x y 处可微分.5.复合函数微分法(5种情况,由简单到复杂排列): (1)含有多个中间变量的一元函数(,,)z f u v w =,()u u x =,()v v x =,()w w x =,则dz z du z dv z dwdx u dx v dx w dx∂∂∂=++∂∂∂, 称此导数dzdx为全导数;(2)只有一个中间变量的二元复合函数 情形1:()z f u =,(,)u u x y =,则z dz ux du x∂∂=∂∂ ,z dz u y du y∂∂=∂∂. 情形2:(,,)z f x y u =,(,)u u x y =,则z f z u x x u x∂∂∂∂=+∂∂∂∂ ,z f z u y y u y∂∂∂∂=+∂∂∂∂. zx wv u xx zuyxzy yuxx其中,f x∂∂与z x∂∂是不同的,z x∂∂是把复合函数[,,(,)]z f x y u x y =中的y 看作不变量而对x 的偏导数;f x∂∂是把函数(,,)f x y u 中的y 及u 看作不变量而对x 的偏导数。

多元函数微积分的基本概念与运算

多元函数微积分的基本概念与运算

多元函数微积分的基本概念与运算多元函数微积分,亦称为多元微积分,是微积分学的一个分支,它涉及到多个变量的函数的微积分。

多元函数微积分在物理、工程、金融等领域中具有重要应用价值。

本篇文章将介绍多元函数微积分的基本概念与运算。

一、多元函数的概念在多元函数微积分中,我们首先需要了解的是多元函数的概念。

在数学上,多元函数可以定义为具有多个自变量的函数。

例如,二元函数f(x,y)可以表示为:f(x,y) = x^2 + y^2其中x和y为自变量,f(x,y)是因变量。

在这个函数中,我们可以通过给定x和y的值来计算出f(x,y)的值。

二、偏导数在多元函数微积分中,我们可以通过偏微分来计算多元函数的变化情况。

偏导数可以理解为多元函数在某一自变量上的变化率。

例如,对于二元函数f(x,y) = x^2 + y^2 ,我们可以计算出它在x处的偏导数:∂f/∂x = 2x这个结果的意义是,在x这个自变量上,当y不变时,f(x,y)在x处的变化率是2x。

同样地,我们可以计算出f在y处的偏导数:∂f/∂y = 2y三、梯度梯度是多元函数微积分中的另一个重要概念,它是一个向量,由多个偏导数组成。

例如,对于二元函数f(x,y) = x^2 + y^2 ,我们可以计算出它的梯度:∇f = <2x, 2y>这个梯度的意义是,在(x,y)处,f(x,y)在x方向上的变化率是2x,在y方向上的变化率是2y。

梯度的模表示函数变化率的大小,方向表示函数变化率的方向。

四、方向导数方向导数是多元函数在某一方向上的变化率。

我们通常使用单位向量来描述方向。

例如,对于二元函数f(x,y) = x^2 + y^2 ,在点(1,1)处,我们可以计算出它在(1,1)处沿着向量<1,1>的方向导数:Df(1,1)<1,1> = ∇f(1,1)·<1,1> = 2(1)+2(1) = 4这个结果的意义是,在(1,1)处,f(x,y)沿着向量<1,1>的方向变化率是4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 xn
当 n 1, 2, 3 时, x 通常记作 x .
R n 中的变元 x 与定元 a 满足 x a 0 记作 x a.
R n 中点 a 的 邻域为
机动
目录
上页
下页
返回
结束
二、多元函数的概念
引例:
圆柱体的体积
定量理想气体的压强
r
h
三角形面积的海伦公式
b
a c
机动
则称 P 为 E 的外点 ; 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E 的外点 , 则称 P 为 E 的边界点 . 显然, E 的内点必属于 E , E 的外点必不属于 E , E 的 边界点可能属于 E, 也可能不属于 E .
机动 目录 上页 下页 返回 结束
(2) 聚点
若对任意给定的 , 点P 的去心 邻域
机动 目录 上页 下页 返回 结束
若当点 P( x, y ) 以不同方式趋于 P0 ( x0 , y0 ) 时, 函数 趋于不同值或有的极限不存在, 则可以断定函数极限 不存在 .
xy 例3. 讨论函数 f ( x, y ) 2 2 在点 (0, 0) 的极限. x y 解: 设 P(x , y) 沿直线 y = k x 趋于点 (0, 0) , 则有
第八章 多元函数微分法 及其应用
一元函数微分学 推广 多元函数微分学
注意: 善于类比, 区别异同
第一节 多元函数的基本概念
一、区域
第八章
二、多元函数的概念
三、多元函数的极限
四、多元函数的连续性
机动
目录
上页
下页
返回
结束
一、 区域
1. 邻域 点集
PP0 δ 称为点 P0 的邻域.
例如,在平面上,
返回
结束
1 , xy 0 y sin x sin 1 y x 例2. 设 f ( x, y ) 0 , xy 0 lim f ( x, y ) 0 . 求证:
x 0 y 0
f ( x, y ) 0 证: x y

x 0 y 0
lim f ( x, y ) 0
机动 目录 上页 下页 返回 结束
1 例1. 设 f ( x, y ) ( x y ) sin 2 x y2 lim f ( x, y ) 0 . 求证:x 0
2 2
( x y 0)
2
2
y 0
证:
ε

x 0 y 0
lim f ( x, y ) 0
机动
目录
上页
下页
机动
目录
上页
下页
返回
结束
xy , 2 2 x y 0 2 2 f ( x, y ) x y 2 2 , x y 0 0 在点(0 , 0) 极限不存在, 故 ( 0, 0 )为其间断点.
又如, 函数
例如, 函数
在圆周 x 2 y 2 1 上间断.
结论: 一切多元初等函数在定义区域内连续.
y
1o 1 x
对区域 D , 若存在正数 K , 使一切点 PD 与某定点
A 的距离 AP K , 则称 D 为有界域 , 否则称为无 界域 .
机动
目录
上页
下页
返回
结束
3. n 维空间
n 元有序数组 记作 R n , 即 的全体称为 n 维空间,
R n R R R
n 维空间中的每一个元素 一个点, 当所有坐标 O. 称为该点的第 k 个坐标 . 称为空间中的
称该元素为 R n 中的零元, 记作
机动
目录
上页
下页
返回
结束
R n 中的点 x ( x1 , x2 ,, xn ) 与点 y ( y1 , y2 ,, yn )
的距离记作 规定为
R 中的点 x ( x1 , x2 ,, xn ) 与零元 O 的距离为
x
2 x1
n

2 x2

k x2 k lim f ( x, y ) lim 2 2 2 x 0 x 0 x k x 1 k 2
y kx
k 值不同极限不同 !
故 f ( x, y )在 (0,0) 点极限不存在 .
机动 目录 上页 下页 返回 结束
二重极限 lim f ( x, y ) 与累次极限 lim lim f ( x, y )
x
y
图形为
空间中的超曲面.
机动 目录 上页 下页 返回 结束
三、多元函数的极限
定义2. 设 n 元函数 f ( P ), P D R n , P0 是 D 的聚 点 , 若存在常数 A , 对任意正数 , 总存在正数 , 对一 切 P D U ( P0 ,δ ) , 都有

则称 A 为函数
目录
上页
下页
返回
结束
定义1. 设非空点集
在 D 上的 n 元函数 , 记作
映射
称为定义
点集 D 称为函数的定义域 ; 数集 u u f ( P ) , P D 称为函数的值域 . 特别地 , 当 n = 2 时, 有二元函数
当 n = 3 时, 有三元函数
机动
目录
上页
下页
返回
结束
例如, 二元函数 z
1.


解法2 令
v2 f ( , u v) u v2 f ( , u v) u

y2 2 y x2
机动 目录 上页 下页 返回 结束
ln(1 xy ) 2. lim x 是否存在? x 0 x y
y 0
解: 利用 ln(1 x y ) ~ x y , 取 y x x
P P0
lim f ( P) f ( P0 )
2) 闭域上的多元连续函数的性质:
介值定理
3) 一切多元初等函数在定义区域内连续
机动
目录
上页
下页Leabharlann 返回结束备用题 1. 设

解法1 令
y2 u , v xy x 2 2 y y 2 y f ( , x y) x2 x
机动 目录 上页 下页 返回 结束
1 x y
2
2
z
定义域为 圆域 ( x, y ) x 2 y 2 1
o
x
z
图形为中心在原点的上半球面.
1 y
又如, z sin( x y ) , ( x, y ) R 2
说明: 二元函数 z = f (x, y), (x, y) D 的图形一般为空间曲面 . 三元函数 u arcsin( x 2 y 2 z 2 ) 定义域为 单位闭球
x x0 y y0
x x0 y y 0
不同. 如果它们都存在, 则三者相等.
仅知其中一个存在, 推不出其它二者存在.
例如,
x 0 y 0
显然
lim lim f ( x, y ) 0 ,
但由例3 知它在(0,0)点二重极限不存在 .
例3 目录 上页 下页 返回 结束
四、 多元函数的连续性
x2 y ln(1 xy ) lim lim x x 0 x y x 0 x y
y 0
x 0
所以极限不存在.
1 , 0, 2 3 lim ( x x ) x 0 ,
3
机动
目录
上页
下页
返回
结束
3. 证明
在全平面连续. 证: 又 为初等函数 , 故连续.
0
xy x y
2 2
由夹逼准则得
f (0,0)
故函数在全平面连续 .
机动 目录 上页 下页 返回 结束
E
内总有E 中的点 , 则
称 P 是 E 的聚点. 聚点可以属于 E , 也可以不属于 E (因为聚点可以为 E 的边界点 ) 所有聚点所成的点集成为 E 的导集 .
机动
目录
上页
下页
返回
结束
(3) 开区域及闭区域
若点集 E 的点都是内点,则称 E 为开集;
E 的边界点的全体称为 E 的边界, 记作E ;
(一致连续性定理)
机动
目录
上页
下页
返回
结束
内容小结
1. 区域 • 邻域 : U ( P0 ,δ ) , U ( P0 ,δ ) • 区域 • R n 空间 2. 多元函数概念 n 元函数 u f ( P) f ( x1 , x2 ,, xn ) 连通的开集
P D Rn
常用
二元函数 (图形一般为空间曲面)
机动
目录
上页
下页
返回
结束
闭域上多元连续函数有与一元函数类似的如下性质:
定理:若 f (P) 在有界闭域 D 上连续, 则
(有界性定理)
(2) f ( P) 在 D 上可取得最大值 M 及最小值 m ;
(最值定理)
(3) 对任意
Q D,
(介值定理)
* (4) f (P) 必在D 上一致连续 . (证明略)
定义3 . 设 n 元函数 f ( P) 定义在 D 上, 聚点 P0 D ,
如果存在
P P0
lim f ( P ) f ( P0 )
则称 n 元函数 f ( P ) 在点 P0 连续, 否则称为不连续, 此时 称为间断点 . 如果函数在 D 上各点处都连续, 则称此函数在 D 上
连续.
记作
P P0
lim f ( P) A (也称为 n 重极限)
当 n =2 时, 记 PP0 ( x x0 ) 2 ( y y0 ) 2 二元函数的极限可写作:
相关文档
最新文档