2020年7月浙江自考数字信号处理试题及答案解析

合集下载

数字信号处理习题集(附答案解析)

数字信号处理习题集(附答案解析)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理 计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。

(b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

数字信号处理考试试题及答案

数字信号处理考试试题及答案

数字信号处理试题及答案一、 填空题(30分,每空1分)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散时间 信号,再进行幅度量化后就是 数字 信号。

2、已知线性时不变系统的单位脉冲响应为)(n h ,则系统具有因果性要求)0(0)(<=n n h ,系统稳定要求∞<∑∞-∞=n n h )(。

3、若有限长序列x(n)的长度为N ,h(n)的长度为M ,则其卷积和的长度L 为 N+M-1。

4、傅里叶变换的几种形式:连续时间、连续频率—傅里叶变换;连续时间离散频率—傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、离散频率—离散傅里叶变换5、 序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样。

6、若序列的Fourier 变换存在且连续,且是其z 变换在单位圆上的值,则序列x(n)一定绝对可和。

7、 用来计算N =16点DFT ,直接计算需要__256___次复乘法,采用基2FFT 算法,需要__32__ 次复乘法 。

8、线性相位FIR 数字滤波器的单位脉冲响应()h n 应满足条件()()1--±=n N h n h 。

9. IIR 数字滤波器的基本结构中, 直接 型运算累积误差较大; 级联型 运算累积误差较小; 并联型 运算误差最小且运算速度最高。

10. 数字滤波器按功能分包括 低通 、 高通 、 带通 、 带阻 滤波器。

11. 若滤波器通带内 群延迟响应 = 常数,则为线性相位滤波器。

12. ()⎪⎭⎫ ⎝⎛=n A n x 73cos π错误!未找到引用源。

的周期为 14 13. 求z 反变换通常有 围线积分法(留数法)、部分分式法、长除法等。

14. 用模拟滤波器设计IIR 数字滤波器的方法包括:冲激响应不变法、阶跃响应不变法、双线性变换法。

15. 任一因果稳定系统都可以表示成全通系统和 最小相位系统 的级联。

7月浙江自考数字信号处理试题及答案解析

7月浙江自考数字信号处理试题及答案解析

1浙江省2018年7月自学考试数字信号处理试题课程代码:02356一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.若信号频带宽度有限,要想对该信号抽样后能够不失真地还原出原信号,则抽样频率Ωs和信号谱的最高频率Ωc 必须满足( ) A.Ωs <Ωc B.Ωs >ΩcC.Ωs <2ΩcD.Ωs >2Ωc2.下列系统(其中y (n )为输出序列,x (n )为输入序列)中哪个属于线性系统?( ) A.y (n )=y (n -1)x (n ) B.y (n )=nx (n ) C.y (n )=x (2n ) D.y (n )=x (n )-y (n -1)3.序列x (n )=cos ⎪⎭⎫⎝⎛n 5π3的周期为( ) A.3 B.5 C.10D.∞4.序列x (n )=0.5n u (n )的能量为( ) A.0.5 B.2 C.5D.∞5.已知某序列Z 变换的收敛域为∞>|z |>0,则该序列为( ) A.有限长序列 B.右边序列 C.左边序列D.双边序列6.序列共轭对称分量的傅里叶变换等于序列傅里叶变换的( ) A.共轭对称分量 B.共轭反对称分量 C.实部D.虚部7.线性移不变系统的系统函数的收敛域为|z |<2,则可以判断系统为( ) A.因果稳定系统 B.因果非稳定系统 C.非因果稳定系统D.非因果非稳定系统2 8.下面说法中正确的是( )A.连续非周期信号的频谱为非周期连续函数B.连续周期信号的频谱为非周期连续函数C.离散非周期信号的频谱为非周期连续函数D.离散周期信号的频谱为非周期连续函数9.已知序列x (n )=R N (n ),其N 点的DFT 记为X (k ),则X (0)=( ) A.N -1 B.1 C.0D.N10.已知符号W N =Nj eπ2-,则∑-=1N n nN NW=( )A.0B.1C.N -1D.N11.已知DFT [x (n )]=X (k ),0≤n ,k <N ,下面说法中正确的是( ) A.若x (n )为虚数圆周偶对称序列,则X (k )为实数圆周奇对称序列 B.若x (n )为虚数圆周偶对称序列,则X (k )为实数圆周偶对称序列 C.若x (n )为虚数圆周偶对称序列,则X (k )为虚数圆周奇对称序列 D.若x (n )为虚数圆周偶对称序列,则X (k )为虚数圆周偶对称序列12.已知N 点有限长序列X (k )=DFT [x (n )],0≤n ,k <N ,则N 点DFT [nlN W -x (n )]=( )A.X ((k +l ))N R N (k )B.X ((k -l ))N R N (k )C.km N W -D.kmN W13.如题图所示的滤波器幅频特性曲线,可以确定该滤波器类型为( )A.低通滤波器B.高通滤波器C.带通滤波器D.带阻滤波器14.对5点有限长序列[1 3 0 5 2]进行向右1点圆周移位后得到序列( )A.[1 3 0 5 2]B.[2 1 3 0 5]C.[3 0 5 2 1]D.[3 0 5 2 0]15.下列各种滤波器的结构中哪种不是IIR滤波器的基本结构?( )A.直接型B.级联型C.频率抽样型D.并联型二、判断题(本大题共5小题,每小题2分,共10分)判断下列各题,正确的在题后括号内打“√”,错的打“×”。

(完整word版)数字信号处理试卷及答案两份.docx

(完整word版)数字信号处理试卷及答案两份.docx

数字信号处理试卷及答案1一、填空题(每空1分, 共 10分)1.序列x(n)sin(3n / 5) 的周期为。

2.线性时不变系统的性质有律、律、律。

3.对x(n)R4(n)的Z 变换为,其收敛域为。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为。

5.序列 x(n)=(1 ,-2,0,3;n=0,1,2,3), 圆周左移 2 位得到的序列为。

6 .设LTI系统输入为x(n),系统单位序列响应为h(n) ,则系统零状态输出y(n)=。

7.因果序列x(n) ,在Z→∞时,X(Z)=。

二、单项选择题(每题 2 分 ,共 20分)1(.)A.1δ(n)B.δ ( ω)的ZC.2πδ (ω )变换D.2 π是2.序列x(1n)的长度为4,序列x(2n)的长度为3,则它们线性卷积的长度是()A. 3 B. 4 C. 6 D. 73.LTI系统,输入x(n)时,输出y( n);输入为3x( n-2),输出为()A. y (n-2)B.3y ( n-2)C.3y( n)D.y (n)4 .下面描述中最适合离散傅立叶变换DFT()的是A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号() A. 理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D. 理想带阻滤波器6.下列哪一个系统是因果系统() A.y(n)=x(n+2) B.y(n)=cos(n+1)x (n) C.y(n)=x(2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列 Z变换的收敛域为| z | >2 ,则该序列为() A. 有限长序列 B.无限长序列 C.反因果序列 D. 因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k) 恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是()A.N≥ MB.N ≤MC.N≤ 2MD.N≥ 2M10.设因果稳定的LTI系统的单位抽样响应h(n) ,在 n<0时, h(n)=()A.0 B . ∞ C.-∞ D.1三、判断题(每题 1 分 ,共 10分)1 .序列的傅立叶变换是频率ω 的周期函数,周期是2 π。

数字信号处理的技术考试试卷(附答案)

数字信号处理的技术考试试卷(附答案)

数字信号处理的技术考试试卷(附答案)数字信号处理的技术考试试卷(附答案)选择题(10分)1. 数字信号处理是指将连续时间信号转换为离散时间信号,并利用数字计算机进行处理。

这种描述表明数字信号处理主要涉及哪两个领域?- [ ] A. 数学和物理- [ ] B. 物理和电子工程- [x] C. 信号处理和计算机科学- [ ] D. 电子工程和计算机科学2. 数字滤波是数字信号处理的重要内容,其主要作用是:- [ ] A. 改变信号的频率- [x] B. 改变信号的幅度响应- [ ] C. 改变信号的采样率- [ ] D. 改变信号的量化级别3. 在离散时间信号处理中,离散傅里叶变换(Discrete Fourier Transform, DFT)和快速傅里叶变换(Fast Fourier Transform, FFT)有何区别?- [ ] A. DFT和FFT是完全相同的概念- [x] B. DFT是FFT的一种特殊实现- [ ] C. FFT是DFT的一种特殊实现- [ ] D. DFT和FFT无法比较4. 信号的采样率决定了信号的带宽,下面哪个说法是正确的?- [ ] A. 采样率越高,信号带宽越小- [ ] B. 采样率越低,信号带宽越小- [x] C. 采样率越高,信号带宽越大- [ ] D. 采样率与信号带宽无关5. 数字信号处理常用的滤波器包括:- [x] A. 低通滤波器- [x] B. 高通滤波器- [x] C. 带通滤波器- [x] D. 带阻滤波器简答题(20分)1. 简述离散傅里叶变换(DFT)的定义和计算公式。

2. 什么是信号的量化?请说明量化的过程。

3. 简述数字信号处理的应用领域。

4. 请解释什么是数字滤波器的频率响应。

5. 快速傅里叶变换(FFT)和傅里叶级数的关系是什么?编程题(70分)请使用Python语言完成以下程序编写题。

1. 编写一个函数`calculate_average`,输入一个由整数组成的列表作为参数,函数应返回列表中所有整数的平均值。

数字信号处理习题及答案解析

数字信号处理习题及答案解析

==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤= }23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4.如果输入信号为,求下述系统的输出信号。

数字信号处理及答案

数字信号处理及答案

《数字信号处理》考试试卷(附答案)一、填空(每空 2 分 共20分)1.连续时间信号与数字信号的区别是:连续时间信号时间上是连续的,除了在若干个不连续点外,在任何时刻都有定义,数字信号的自变量不能连续取值,仅在一些离散时刻有定义,并且幅值也离散化㈠。

2.因果系统的单位冲激响应h (n )应满足的条件是:h(n)=0,当n<0时㈡。

3.线性移不变系统的输出与该系统的单位冲激响应以及该系统的输入之间存在关系式为:()()*()()()m y n x n h n x m h n m ∞=-∞==-∑,其中x(n)为系统的输入,y(n)为系统的输出,h(n)w 为系统的单位冲激响应。

㈢。

4.若离散信号x (n )和h (n )的长度分别为L 、M ,那么用圆周卷积)()()(n h n x n y N O=代替线性卷积)()(n x n y l =*h (n)的条件是:1N L M ≥+-㈣。

5.如果用采样频率f s = 1000 Hz 对模拟信号x a (t ) 进行采样,那么相应的折叠频率应为 500 Hz ㈤,奈奎斯特率(Nyquist )为1000Hz ㈥。

6.N 点FFT 所需乘法(复数乘法)次数为2N ㈦。

7.最小相位延迟系统的逆系统一定是最小相位延迟系统㈧。

8.一般来说,傅立叶变换具有4形式㈨。

9.FIR 线性相位滤波器有4 种类型㈩。

二、叙述题(每小题 10 分 共30分) 1.简述FIR 滤波器的窗函数设计步骤。

答:(1)根据实际问题所提出的要求来确定频率响应函数()j d H e ω;(2.5分)(2)利用公式1()()2j j d d h n H e e d πωωπωπ-=⎰来求取()d h n ; (2.5分)(3)根据过渡带宽及阻带最小衰减的要求,查表选定窗的形状及N 的大小;(2.5分)(4)计算()()(),0,1,...1d h n h n w n n N ==-,便得到所要设计的FRI 滤波器。

(完整)数字信号处理试卷及答案,推荐文档

(完整)数字信号处理试卷及答案,推荐文档

数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A.有限长序列B.无限长序列C.反因果序列D.因果序列 9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省自考2018年7月数字信号处理试题
课程代码:02356
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率ΩS与信号最高截止频率ΩC应满足关系( )
A.ΩS>2ΩC
B.ΩS>ΩC
C.ΩS<ΩC
D.ΩS<2ΩC
2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )
A.y(n)=x2(n)
B.y(n)=x(n)x(n+1)
C.y(n)=x(n)+1
D.y(n)=x(n)+x(n-1)
3.已知某序列Z变换的收敛域为|Z|>3,则该序列为( )
A.有限长序列
B.右边序列
C.左边序列
D.双边序列
4.实序列傅里叶变换的实部和虚部分别为( )
A.偶函数和奇函数
B.奇函数和偶函数
C.奇函数和奇函数
D.偶函数和偶函数
5.已知x(n)=1,其N点的DFT[x(n)]=X(k),则X(0)=( )
A.N
B.1
C.0
D.-N
6.设两有限长序列的长度分别是M与N,欲用DFT计算两者的线性卷积,则DFT的长度至少应取( )
1
A.M+N
B.M+N-1
C.M+N+1
D.2(M+N)
7.如图所示的运算流图符号是_______基
2FFT算法的蝶形运算流图符号。

( )
A.按频率抽取
B.按时间抽取
C.A、B项都是
D.A、B项都不是
8.下列各种滤波器的结构中哪种不是IIR滤波器的基本结构?( )
A.直接型
B.级联型
C.并联型
D.频率抽样型
9.下列关于用冲激响应不变法设计IIR滤波器的说法中错误的是( )
A.数字频率与模拟频率之间呈线性关系
B.能将线性相位的模拟滤波器映射为一个线性相位的数字滤波器
C.容易产生频率混叠效应
D.可以用于设计高通和带阻滤波器
10.下列关于窗函数设计法的说法中错误的是( )
A.窗函数的长度增加,则主瓣宽度减小,旁瓣宽度减小
B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的长度无关
C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加
D.对于长度固定的窗,只要选择合适的窗函数就可以使主瓣宽度足够窄,旁瓣幅度足够小
二、判断题(本大题共5小题,每小题2分,共10分)
判断下列各题,正确的在题后括号内打“√”,错的打“×”。

1.线性系统同时满足可加性和比例性两个性质。

( )
2.序列信号的傅里叶变换等于序列在单位圆上的Z变换。

( )
3.按时间抽取的FFT算法的运算量小于按频率抽取的FFT算法的运算量。

( )
2
3 4.通常IIR 滤波器具有递归型结构。

( )
5.双线性变换法是非线性变换,所以用它设计IIR 滤波器不能克服频率混叠效应。

( )
三、填空题(本大题共5小题,每空2分,共20分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

1.两序列间的卷积运算满足_______,_______与分配率。

2.利用W nk N 的_______、_______和可约性等性质,可以减小DFT 的运算量。

3.有限长单位冲激响应(FIR )滤波器的主要设计方法有_______和_______两种。

4.一个短序列与一个长序列卷积时,有_______和_______两种分段卷积法。

5.对于N 点(N=2L )的按时间抽取的基2FFT 算法,共需要作_______次复数乘和_______次复数加。

四、计算与证明题(本大题共5小题,共50分)
1.(8分)若X (k )=DFT [x(n)],DFT 的长度为N ,证明DFT 形式下的帕塞瓦尔定理 ∑-=1N 0n 2|
)n (x |=N 1∑-=1N 0n 2|)k (X |
2.(10分)画出8点按频率抽取的基2FFT 算法的运算流图。

3.(10分)某线性移不变系统的h(n)=0.5nu(n-1),求其系统函数,并画出该系统的直接Ⅱ型结构。

4.(10分)h(n)是长度为N 的有限长序列,当n<0或n ≥N 时h(n)=0。

对h(n)的序列傅
里叶变换等间隔采样3N 点:ωk=N 3k 2π k=,0,1,Λ,3N-1。

求对3N 点采样值H(k)=H(k ej ω)
作长度为3N 点的DFT 反变换所对应的序列g(n)。

5.(12分)一个二阶连续时间滤波器的系统函数为 Ha(s)=a s 1-+b s 1
-
其中,a<0,b<0都是实数。

用脉冲响应不变法将模拟滤波器Ha(s)变换为数字滤波器H(z),抽样周期Ts=2,并确定
H(z)的极点和零点位置。

4。

相关文档
最新文档