2020成都市高三零诊考试数学理科试题及详细解析

合集下载

四川省成都市2020届高三数学第一次诊断性检测试题理含解析

四川省成都市2020届高三数学第一次诊断性检测试题理含解析

四川省成都市2020届高三数学第一次诊断性检测试题 理(含解析)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.若复数1z 与23z i =--(i 为虚数单位)在复平面内对应的点关于实轴对称,则1z =( ) A. 3i -- B. 3i -+ C. 3i + D. 3i -【答案】B 【解析】 【分析】由题意得复数z 1与23z i =--的实部相等,虚部互为相反数,则z 1可求.【详解】∵复数z 1与23z i =--(i 为虚数单位)在复平面内对应的点关于实轴对称, ∴复数z 1与23z i =--(i 为虚数单位)的实部相等,虚部互为相反数,则z 1=3i -+. 故选:B .【点睛】本题考查复数的代数表示法及其几何意义,属于基础题.2.已知集合{}1,0,A m =-,{}1,2B =,若{}1,0,1,2A B ⋃=-,则实数m 的值为( ) A. 1-或0 B. 0或1 C. 1-或2 D. 1或2【答案】D 【解析】 【分析】根据集合并集的定义即可得到答案. 【详解】集合{}1,0,A m =-,{}1,2B =,且{}1,0,1,2A B ⋃=-,所以1m =或2m =.故选:D【点睛】本题主要考查集合并集的基本运算,属于基础题.3.若sin )θπθ=-,则tan 2θ=( )A. C.【答案】C 【解析】 【分析】由题意利用同角三角函数的基本关系、诱导公式,求得tan θ,再利用倍角公式求得tan 2θ的值. 【详解】sin 5cos(2)θπθ=-,∴sin 5cos θθ=,得tan 5θ=,222tan 255tan 21tan 15θθθ∴===---. 故选:C【点睛】本题主要考查同角三角函数的基本关系、诱导公式,倍角公式的应用,属于基础题. 4.某校随机抽取100名同学进行“垃圾分类"的问卷测试,测试结果发现这100名同学的得分都在[50,100]内,按得分分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图,则这100名同学的得分的中位数为( )A. 72.5B. 75C. 77.5D. 80【答案】A 【解析】 【分析】根据频率分布直方图求得中位数即可.【详解】在频率分步直方图中,小正方形的面积表示这组数据的频率,∴中位数为:0.50.01100.0310701072.50.0410-⨯-⨯+⨯=⨯.故选:A【点评】本题考查频率分布直方图的相关知识,直方图中的各个矩形的面积代表了频率,所有各个矩形面积之和为1,也考查了中位数,属于基础题.5.设等差数列{}n a 的前n 项和为n S ,且533a a =,则95S S =( ) A. 95 B.59 C. 53D. 275【答案】D 【解析】 【分析】将S 9,S 5转化为用a 5,a 3表达的算式即可得到结论.【详解】由等差数列{}n a 的前n 项和为n S ,∴95S S =19159252a a a a +⨯+⨯=5395a a ,且533a a =,∴95S S =95×3=275.故选:D .【点睛】本题考查了等差数列的前n 项和,等差中项的性质,考查计算能力,属于基础题. 6.已知,αβ是空间中两个不同的平面,,m n 是空间中两条不同的直线,则下列说法正确的是( )A. 若//m α,//n β,且//αβ,则//m nB. 若//m α,//n β,且αβ⊥,则//m nC. 若m α⊥,//n β,且//αβ,则m n ⊥D. 若m α⊥,//n β,且αβ⊥,则m n ⊥ 【答案】C 【解析】 【分析】由空间中直线与直线、直线与平面及平面与平面位置关系逐一核对四个选项得答案. 【详解】由m ∥α,n ∥β,且α∥β,得m ∥n 或m 与n 异面,故A 错误; 由m ∥α,n ∥β,且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故B 错误; 由m ⊥α,α∥β,得m ⊥β,又n ∥β,则m ⊥n ,故C 正确;由m ⊥α,n ∥β且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故D 错误. 故选:C .【点睛】本题考查命题的真假判断与应用,考查空间中直线与直线、直线与平面及平面与平面位置关系的判定与应用,考查空间想象能力与思维能力,属于中档题. 7.261(2)()x x x+-的展开式的常数项为( ) A. 25 B. 25-C. 5D. 5-【答案】B 【解析】 【分析】利用二项式定理的通项公式计算即可得出.【详解】61()x x -的展开式的通项公式为:T r +1=r 6C (x )6﹣r r1x ⎛⎫- ⎪⎝⎭=r 6C (x )6﹣r()-r x -=r 6C ()1r - ()6-2rx .令6﹣2r =﹣2,或6﹣2r =0,分别解得r =4,或r =3.所以261(2)()x x x+-的展开式的常数项为()44611C ⨯-+2×()33611C ⨯-=154025.-=-故选:B【点睛】本题考查了二项式定理的应用、方程思想方法,考查了推理能力与计算能力,属于基础题.8.将函数sin(4)6y x π=-图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移6π个单位长度,得到函数()f x 的图象,则函数()f x 的解析式为( ) A. ()sin(2)6f x x π=+ B. ()sin(2)3f x x π=-C. ()sin(8)6f x x π=+D. ()sin(8)3f x x π=-【答案】A 【解析】 【分析】利用函数的图象平移变换和伸缩变换的应用求出结果即可.【详解】函数sin(4)6y x π=-图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到sin(2)6y x π=-的图象,再把所得图象向左平移6π个单位长度,得到函数f (x )=sin 2()sin(2)666y x x πππ⎡⎤=+-=+⎢⎥⎣⎦的图象.故选:A .【点睛】本题考查了函数图象的平移和伸缩变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.9.已知抛物线24y x =的焦点为F ,,M N 是抛物线上两个不同的点若5MF NF +=,则线段MN 的中点到y 轴的距离为( ) A. 3B.32C. 5D.52【答案】B 【解析】 【分析】抛物线到焦点的距离转化为到准线的距离,可求出横坐标之和,进而求出中点的横坐标,求出结果即可.【详解】由抛物线方程24y x =,得其准线方程为:1x =-,设11(,)M x y ,22(,)N x y ,由抛物线的性质得,1211=5MF NF x x +=+++,MN ∴中点的横坐标为32, 线段MN 的中点到y 轴的距离为:32. 故选:B .【点睛】本题考查了抛物线定义的应用,属于基础题. 10.已知122a =,133b =,3ln 2c =,则( ) A. a b c >> B. a c b >> C. b a c >> D. b c a >>【答案】C【解析】 【分析】利用根式的运算性质、幂函数的单调性可得a ,b 的大小关系,利用对数函数的单调性即可得出c <1.【详解】∵122a ===,且133b ===,∴1a b <<,3lnln 12e <=.∴b a c >>. 故选:C .【点睛】本题考查了根式的运算性质、幂函数的单调性、对数函数的单调性,属于基础题.11.已知定义在R 上的数()f x 满足112n n n b b -+-=,当2x ≤时()(1)1xf x x e =--.若关于x的方程()210f x kx k e -+-+=有三个不相等的实数根,则实数k 的取值范围是( ) A. (2,0)(2,)-+∞ B. (2,0)(0,2)-C. (,0)(,)e e -⋃+∞D. (,0)(0,)e e -⋃【答案】D 【解析】 【分析】根据f (2﹣x )=f (2+x )可知函数f (x )关于x =2对称,利用当2x ≤时()(1)1xf x x e =--,画出函数y =f (x )的大致图象.由题意转化为y =k (x ﹣2)+e ﹣1与f (x )有三个交点,直线恒过定点(2,e ﹣1),再根据数形结合法可得k 的取值范围. 【详解】由题意,当x ≤2时,f (x )=(x ﹣1)e x ﹣1.f ′(x )=xe x .①令f ′(x )=0,解得x =0;②令f ′(x )<0,解得x <0;③令f ′(x )>0,解得0<x ≤2.∴f (x )在(﹣∞,0)上单调递减,在(0,2]上单调递增,在x =0处取得极小值f (0)=﹣2.且f (1)=﹣1;x →﹣∞,f (x )→0.又∵函数f (x )在R 上满足f (2﹣x )=f (2+x ),∴函数f (x )的图象关于x =2对称. ∴函数y =f (x )的大致图象如图所示:关于x 的方程f (x )﹣kx +2k ﹣e +1=0可转化为f (x )=k (x ﹣2)+e ﹣1.而一次函数y =k (x ﹣2)+e ﹣1很明显是恒过定点(2,e ﹣1).结合图象,当k =0时,有两个交点,不符合题意,当k =e 时,有两个交点,其中一个是(1,﹣1).此时y =f (x )与y =k (x ﹣2)+e ﹣1正好相切.∴当0<k <e 时,有三个交点.同理可得当﹣e <k <0时,也有三个交点. 实数k 的取值范围为:(﹣e ,0)∪(0,e ). 故选:D .【点睛】本题主要考查数形结合法的应用,利用导数分析函数的单调性并画出函数图象,再根据直线过定点而斜率变动分析出斜率的取值范围,属于中档题.12.如图,在边长为2的正方形123APP P 中,线段BC 的端点,B C 分别在边12PP 、23P P 上滑动,且22P B P C x ==,现将1APB ∆,3AP C ∆分别沿AB ,AC 折起使点13,P P 重合,重合后记为点P ,得到三被锥P ABC -.现有以下结论:①AP ⊥平面PBC ;②当,B C 分别为12PP 、23P P 的中点时,三棱锥P ABC -的外接球的表面积为6π; ③x 的取值范围为(0,42)-;④三棱锥P ABC -体积的最大值为13. 则正确的结论的个数为( ) A. 1 B. 2C. 3D. 4【答案】C 【解析】 【分析】根据题意得,折叠成的三棱锥P ﹣ABC 的三条侧棱满足PA ⊥PB 、PA ⊥PC ,由线面垂直的判断定理得①正确;三棱锥P ﹣ABC 的外接球的直径等于以PA 、PB 、PC 为长、宽、高的长方体的对角线长,由此结合AP =2、BP =CP =1,得外接球的半径R=2P ﹣ABC 的外接球的体积,故②正确;由题意得(0,2)x ∈,BC =,312PC PB PB PC x ====-,在CPB ∆中,由边长关系得(0,4-,故③正确;由等体积转化P ABC A PBC V V --=计算即可,故④错误.【详解】由题意得,折叠成的三棱锥P ﹣ABC 的三条侧棱满足PA ⊥PB 、PA ⊥PC , 在①中,由PA ⊥PB ,PA ⊥PC ,且PB PC P =,所以AP ⊥平面PBC 成立,故①正确; 在②中,当,B C 分别为12PP 、23P P 的中点时,三棱锥P ﹣ABC 的三条侧棱两两垂直,三棱锥P ﹣ABC 的外接球直径等于以PA 、PB 、PC 为长、宽、高的长方体的对角线长,结合AP =2、BP =CP =1x =,得外接球的半径R =22=,所以外接球的表面积为224462S R πππ⎛==⨯= ⎝⎭,故②正确;在③中,正方形123APP P 的边长为2,所以(0,2)x ∈,BC =,312PC PB PB PC x ====-,在CPB ∆中,由边长关系得2x -+2x ->,解得(0,4x ∈-,故③正确; 在④中,正方形123APP P 的边长为2,且22PB PC x ==,则2PB PC x ==-, 所以()()222111sin 223263P ABCA PBCx VV CP BP CPB AP x ---==⨯⨯⨯∠⨯≤⨯-⨯=在(0,422)-上递减,无最大值,故④错误.故选:C【点睛】本题将正方形折叠成三棱锥,求三棱锥的外接球的表面积.着重考查了长方体的对角线长公式、等体积转化求三棱锥的体积最值等知识,属于中档题. 二、填空题(本大题共4小题,每小题5分,共20分)13.已知实数,x y 满足约束条件402200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最大值为_______.【答案】6 【解析】 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【详解】作出实数x ,y 满足约束条件402200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩对应的平面区域如图:(阴影部分)由2z x y =+得y =﹣12x +12z ,平移直线y =﹣12x +12z , 由图象可知当直线y =﹣12x +12z 经过点A 时,直线y =﹣12x +12z 的截距最大,此时z 最大.由40220x y x y +-=⎧⎨-+=⎩,解得A (2,2),代入目标函数z =x +2y 得z =2×2+2=6.故答案为:6.【点睛】本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法,属于基础题.14.设正项等比数列{}n a 满足481a =,2336a a +=,则n a =_______. 【答案】3n 【解析】 【分析】将已知条件转化为基本量a 1,q 的方程组,解方程组得到a 1,q ,进而可以得到a n . 【详解】在正项等比数列{}n a 中,481a =,2336a a +=,得312118136a q a q a q ⎧=⎨+=⎩,解得133a q =⎧⎨=⎩,∴a n =11n a q -⋅=3•3n ﹣1=3n . 故答案为:3n【点睛】本题考查了等比数列的通项公式,主要考查计算能力,属于基础题.15.已知平面向量a ,b 满足||2a =,||3b =,且()b a b ⊥-,则向量a 与b 的夹角的大小为_______. 【答案】6π【解析】 【分析】利用两个向量垂直的性质,两个向量的数量积的定义,求出向量a 与b 的夹角即可. 【详解】∵平面向量a ,b 满足||2a =,||3b =,且()b a b ⊥-,∴2()0b a b b a b ⋅-=⋅-=,∴2b a b ⋅=.设向量a 与b 的夹角的大小为θ,则,求得cosθ=2,∵[]0,θπ∈ ,故θ=6π. 故答案为:6π. 【点睛】本题主要考查两个向量垂直的性质,两个向量的数量积的定义,属于基础题.16.已知直线y kx =与双曲线2222:1(0,0)x y C a b a b-=>>相交于不同的两点,A B ,F 为双曲线C 的左焦点,且满足||3||AF BF =,||OA b =(O 为坐标原点),则双曲线C 的离心率为_______.【答案】3 【解析】 【分析】取双曲线的右焦点'F ,连接A 'F ,B 'F ,可得四边形A 'F BF 为平行四边形,运用双曲线的定义和平行四边形的对角线的平方和等于四条边的平方和,以及离心率公式可得所求值. 【详解】设|BF |=m ,则|||3||3AF BF m ==,取双曲线的右焦点'F ,连接A 'F ,B 'F ,可得四边形A 'F BF 为平行四边形,可得|A 'F |=|BF |=m ,设A 在第一象限,可得3m ﹣m =2a ,即m =a ,由平行四边形的对角线的平方和等于四条边的平方和,可得(2b )2+(2c )2=2(a 2+9a 2),化为c 2=3a 2,则e =ca=3. 故答案为:3.【点睛】本题考查双曲线的定义、方程和性质,考查平行四边形的性质,以及化简运算能力,属于中档题.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤) 17.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22223b c a +-=. (1)求sin A 的值;(2)若ABC ∆223sin B C =,求ABC ∆的周长. 【答案】(1)13;(2)2632【解析】【分析】(1)由已知条件结合余弦定理可求cos A 的值,进而根据同角三角函数基本关系式可求sin A 的值.(2)利用三角形的面积公式可求bc b =3c ,解得b ,c 的值,根据余弦定理可求a 的值,即可求解三角形的周长.【详解】(1)∵222b c a +-=,∴由余弦定理可得2bc cos A =3bc ,∴cos A =3,∴在△ABC 中,sin A =13.(2)∵△ABC ,即12bc sin A =16bc ,∴bc =,sin B =3sin C ,b =3c ,∴b =,c =2,则a 2=b 2+c 2﹣2bc cos A =6,a ∴=,所以周长为2abc ++=+.【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,三角形的面积公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.某公司有1000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G 手机购买意向的调查,将计划在今年购买5G 手机的员工称为“追光族",计划在明年及明年以后才购买5G 手机的员工称为“观望者”,调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.(1)完成下列22⨯列联表,并判断是否有95%的把握认为该公司员工属于“追光族"与“性别"有关;(2)已知被抽取的这100名员工中有10名是人事部的员工,这10名中有3名属于“追光族”.现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求X 的分布列及数学期望.附22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++【答案】(1)表见解析,没有95%的把握认为该公司员工属于“追光族"与“性别"有关;(2)分布列见解析,()9 10E X=【解析】【分析】(1)根据题意,列出列联表,计算K2,查表判断即可;(2)随机变量X的所有可能取值为0,1,2,3,分布求出对应概率,列出分布列,求期望即可.【详解】(1)由题意得,2×2列联表如下:22100(20204020)25= 2.778406040609K⨯⨯-⨯=≈⨯⨯⨯ 3.841<,故没有95%的把握认为该公司员工属于“追光族"与“性别"有关;(2)由题意得,随机变量X 的所有可能的取值为0,1,2,3,373107(0)24C P X C ===;123731021(1)40C C P X C ⋅===; 21373107(2)40C C P X C ⋅===; 333101(3)120C P X C ===.所以X 的分布列为X 0 1 2 3P724 2140 740 112021719()123.404012010E X ∴=⨯+⨯+⨯= 【点睛】本题考查了独立性检验,考查了超几何分布,主要考查分析解决问题的能力和计算能力,属于中档题.19.如图,在四棱锥P ABCD - 中,AP ⊥平面PBC ,底面ABCD 为菱形,且60ABC ︒∠=,E 为BC 的中点.(1)证明:BC ⊥平面PAE ;(2)若2AB =,1PA =,求平面ABP 与平面CDP 所成锐二面角的余弦值.【答案】(1)见解析;(2)33【解析】【分析】(1)根据菱形基本性质得BC⊥AE,再由线面垂直得BC⊥AP,故BC⊥平面PAE;(2)以P为坐标原点,,,PE PQ PA的方向分别为x,y,z轴建立空间直角坐标系,分别求出平面BAP与平面CDP的法向量计算即可.【详解】(1)连接AC,因为底面ABCD为菱形,且∠ABC=60°,所以△ABC为正三角形,因为E为BC的中点,所以BC⊥AE,又因为AP⊥平面PBC,BC⊂平面PBC,所以BC⊥AP,因为AP∩AE=A,AP,AE⊂平面PAE,所以BC⊥平面PAE;(2)因为AP⊥平面PBC,PB⊂平面PBC,所以AP⊥PB,又因为AB=2,PA=1,所以PB=3,由(1)得BC⊥PE,又因为E为BC中点,所以PB=PC=3,EC=1,所以PE=2,如图,过点P作BC的平行线PQ,则PQ,PE,PA两两互相垂直,以P为坐标原点,,,PE PQ PA的方向分别为x,y,z轴建立如图所示的空间直角坐标系,则P(0,0,0),A(0,0,1),B(2,﹣1,0),C(2,1,0),D(0,2,1),设平面BAP的一个法向量m=(x,y,z),又PA=(0,0,1),PB=(2,﹣1,0),由m PAm PB⎧⋅=⎨⋅=⎩,得2x﹣y=0,z=0,令x=1,则m=(1,2,0),设平面CDP的一个法向量n=(a,b,c),又PC=(2,1,0),PD=(0,2,1),由n PCn PD⎧⋅=⎨⋅=⎩,得2a+b=0,2y+z=0,令a=1,则n=(1,﹣2,22),所以33cos,311m n==-⋅,即平面ABP与平面CDP所成锐二面角的余弦值为3333.【点睛】本题考查空间平面二面角问题,涉及证明线面垂直等知识点,建系是解决该类问题的常用方法,属于中档题. 20.已知函数()(1)ln af x a x x x=-++,.a R ∈ (1)讨论函数()f x 的单调性;(2)当1a <-时,证明:(1,)x ∀∈+∞,2().f x a a >-- 【答案】(1)答案不唯一,见解析;(2)见解析; 【解析】 【分析】(1)求出导数,讨论a 的取值范围,求出单调区间;(2)由(1)得函数函数()f x 在(1,)+∞内的最小值为()(1)ln()1f a a a a -=----,根据题意转化为2(1)ln()10a a a +--->在1a <-恒成立即可.【详解】(1)22221(1)(1)()()1a a x a x a x x a f x x x x x'-+---+=+-==,因为0,x a R >∈, 当0a ≥时,0x a +>,函数()f x 在(0,1)内单调递减,在(1,)+∞内单调递增; 当10a -<<时,即01a <-<,函数()f x 在(0,)a -内单调递增,在(,1)a -内单调递减,在(1,)+∞内单调递增;当1a =-时,22(1)()0x f x x'-=,函数()f x 在(0,)+∞内单调递增; 当1a <-时,即1a ->,函数()f x 在(0,1)内单调递增,在(1,)a -内单调递减,在(,)a -+∞内单调递增;综上:当0a ≥时,()f x 在(0,1)内单调递减,在(1,)+∞内单调递增;当10a -<<时,()f x 在(0,)a -内单调递增,在(,1)a -内单调递减,在(1,)+∞内单调递增; 当1a =-时,()f x 在(0,)+∞内单调递增;当1a <-时,()f x 在(0,1)内单调递增,在(1,)a -内单调递减,在(,)a -+∞内单调递增. (2)当1a <-时,由(1)可得函数()f x 在(1,)a -内单调递减,在(,)a -+∞内单调递增,∴函数()f x 在(1,)+∞内的最小值为()(1)ln()1f a a a a -=----,要证:不等式2().f x a a >--成立, 即证:2(1)ln()1a a a a a --<----,即证:()2(1)ln()(1)1l 01n a a a a a a ⎡⎤+--=-++->⎣⎦-,1a <-,即证:()1ln 0a a ++-<, 令1(1)()ln 1(1),()10x h x x x x h x x x'--=-+≥=-=≤, 则函数()h x 在[1,)+∞内单调递减,()(1)0h x h ≤=,因为1,1a a <-∴->, 则()ln()10h a a a -=-++<,即当1a <-时,ln()1a a -<--成立 则当1a <-时,2(1,),()x f x a a ∀∈+∞>--成立.【点睛】本题考查利用导数求函数单调性,运用分类讨论思想是关键,涉及构造新函数求区间等问题,属于中档题.21.已知椭圆C :2212x y +=的右焦点为F ,过点F 的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,直线l :2x =与x 轴相交于点H ,过点A作AD l ⊥,垂足为D.(1)求四边形OAHB (O 为坐标原点)面积的取值范围; (2)证明直线BD 过定点E ,并求出点E 的坐标. 【答案】(1);(2)证明见解析,3,02E ⎛⎫⎪⎝⎭【解析】 【分析】(1)由题意设直线AB 的方程,代入椭圆整理得纵坐标之和与之积,将四边形的面积分成2个三角形,根据底相同,列出关于面积的函数式,再结合均值不等式可得面积的取值范围; (2)由(1)得B ,D 的坐标,设直线BD 的方程,令纵坐标为零得横坐标是定值,即直线BD 过定点.【详解】(1)由题F (1,0),设直线AB :()()11221(),,,,x my m R A x y B x y =+∈,联立22112x my x y =+⎧⎪⎨+=⎪⎩,消去x ,得()222210m y my ++-=,因为()224420m m ∆=++>,12122221,22m y y y y m m +=-=-++, 则1z y y -=== 所以四边形OAHB的面积12121||2S OH y y y y =⋅-=-=,,1,t t S t t t=∴∴==+因为12t t+(当且仅当t =1即m =0时取等号),所以02S <,所以四边形OAHB 的面积取值范围为;(2)()()221,,2,B x y D y ,所以直线BD 的斜率1222y y k x -=-,所以直线BD 的方程为1212(2)2y y y y x x --=--,令y =0,可得212121212122,x y zy my y y y x y y y y -+-==--①由(1)可得121212122221,,222m y y y y y y my y m m +=-=-∴+=++ 化简①可得()()112121212123222z s y y y y y y x y y y y ++--===--则直线BD 过定点3,02E ⎛⎫⎪⎝⎭. 【点睛】本题考查了直线和椭圆的位置关系,四边形面积的取值范围,求直线的方程,证明直线过定点的等问题,考查运算能力,属于中档题.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分,作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.在平面直角坐标系xOy 中,已知P 是曲线1C :22(2)4x y +-=上的动点,将OP 绕点O 顺时针旋转90︒得到OQ ,设点Q 的轨迹为曲线2C .以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程; (2)在极坐标系中,点(3,)2M π,射线(0)6πθρ=≥与曲线1C ,2C 分别相交于异于极点O的,A B 两点,求MAB ∆的面积.【答案】(1)曲线1C :4sin ρθ=,曲线2C :4cos ρθ=;(2【解析】 【分析】(1)由题意,点Q 的轨迹是以(2,0)为圆心,以2为半径的圆,写出其普通方程,再结合ρ2=x 2+y 2,x =ρcosθ,y =ρsinθ,可得曲线C 1,C 2的极坐标方程;(2)在极坐标系中,设A ,B 的极径分别为ρ1,ρ2,求得|AB |=|ρ1﹣ρ2|,再求出M (3,2π)到射线()06πθρ=≥的距离h =3sin 3π=,即可求得△MAB 的面积.【详解】(1)由题意,点Q 的轨迹是以(2,0)为圆心,以2为半径的圆,则曲线C 2:22(2)4x y -+=,∵ρ2=x 2+y 2,x =ρcosθ,y =ρsinθ,∴曲线C 1的极坐标方程为ρ=4sinθ,曲线C 2的极坐标方程为ρ=4cosθ;(2)在极坐标系中,设A ,B 的极径分别为ρ1,ρ2,124sincos1).66AB ππρρ∴=-=-=又点(3,)2M π到射线(0)6πθρ=≥的距离为3sin32h π==MAB ∴∆的面积12S AB h =⋅= 【点睛】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查计算能力,属于中档题.23.已知函数() 3.f x x =-(1)解不等式()421f x x ≥-+;(2)若142(0,0)m n m n+=>>,求证:3().2m n x f x +≥+-【答案】(1)2(,][0,)3-∞-⋃+∞;(2)见解析. 【解析】 【分析】(1)原不等式可化为:|x ﹣3|≥4﹣|2x +1|,即|2x +1|+|x ﹣3|≥4,分段讨论求出即可; (2)由基本不等式得m n +的最小值92,转化为|x +32|﹣f (x )≤92恒成立即可.【详解】(1)原不等式化为3421x x -≥-+,即213 4.x x ++-≥ ①12x ≤-时,不等式化为2134x x ---+≥,解得23x ≤-; ②132x -<<时,不等式化为2134x x +-+≥,解得0x ≥,03x ∴≤<; ③3x ≥时,不等式化2134x x ++-≥,解得2x ≥,3x ∴≥.综上可得:原不等式解集为2(,][0,)3-∞-⋃+∞.(2)() 3.f x x =-3339()3(3)2222x f x x x x x ∴+-=+--≤+--=, 当且仅当3()(3)02x x +-≥且332x x +≥-时取等号.又142(0,0)m n m n+=>>,1141419()()(5)(52222n m m n m n m n m n ∴+=++=++≥+=, 当且仅当4n m m n=时取等号.∴3().2m n x f x +≥+-【点睛】考查绝对值不等式的解法和绝对值不等式的性质,利用分类讨论的思想结合绝对值的性质和基本不等式的应用,属于中档题.。

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合 $A=\{x|0<x<2\}$,$B=\{x|x\geq1\}$,则 $A\capB=$A) $\{x|0<x\leq1\}$ (B) $\{x|0<x<1\}$ (C) $\{x|1\leqx<2\}$ (D) $\{x|0<x<2\}$2.复数 $z=2i/(2-i)$($i$ 为虚数单位)在复平面内对应的点位于A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限3.已知函数 $f(x)=\begin{cases} |x-1|。

& x\leq 1 \\ e^{\ln x}。

& x>0 \end{cases}$,则 $f(f(2))=$A) 0 (B) 1 (C) $e^{-1}$ (D) 24.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部、教育部、XXX等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”。

某校高二(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日”宣传活动。

已知随机数表中第6行至第7行的各数如下:xxxxxxxx39 xxxxxxxx82 xxxxxxxx78 xxxxxxxx38xxxxxxxx48 xxxxxxxx15 xxxxxxxx77 xxxxxxxx17 xxxxxxxx92 若从随机数表第6行第9列的数开始向右数,则抽取的第5名学生的学号是A) 17 (B) 23 (C) 35 (D) 375.“$k=223$” 是“直线 $y=kx+2$ 与圆 $x^2+y^2=1$ 相切”的A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D)既不充分也不必要条件6.已知离心率为2的双曲线 $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ ($a>0,b>0$)与椭圆$\dfrac{y^2}{84}+\dfrac{x^2}{ab}=1$ 有公共焦点,则双曲线的方程为A) $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ (B)$\dfrac{x^2}{b^2}-\dfrac{y^2}{a^2}=1$ (C) $x^2-a^2y^2=b^2$ (D) $y^2-a^2x^2=b^2$7.执行如图所示的程序框图,则输出的结果 $S$ 为A) $-1$ (B) $\dfrac{2}{\sqrt{2}}$ (C) 0 (D) $-\dfrac{1}{\sqrt{2}}$8.设函数 $f(x)$ 的导函数是 $f'(x)$。

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)

数学【理科】一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{|02}A x x =<<,{|1}B x x =≥,则A B =(A){|0x x <≤1}(B){|01}x x << (C){|2x x <1≤} (D){|02}x x << 2.复数2i 2i z =-(i 为虚数单位)在复平面内对应的点位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限3.已知函数|1|,0()=ln ,0.x x f x x x -⎧⎨>⎩,≤则1(())e f f = (A)0 (B)1 (C)e 1- (D)24.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部、教育部、团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”.某校高二(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日”宣传活动.已知随机数表中第6行至第7行的各数如下:16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 若从随机数表第6行第9列的数开始向右数,则抽取的第5名学生的学号是(A)17 (B)23 (C)35 (D)375.“3k =”是“直线2y kx =+与圆221x y +=相切”的(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件6.已知离心率为2的双曲线22221(0,0)x y a b a b -=>>与椭圆14822=+y x 有公共焦点,则双曲线的方程为 (A)112422=-y x (B) 141222=-y x (C)1322=-y x (D) 1322=-y x 7.执行如图所示的程序框图,则输出的结果S 为(A)1-(B)22 (C)0(D)212--8.设函数()f x 的导函数是()f x '.若2()()cos f x f x x '=π-,则()=6f π' (A)12- (B)12(C)32 (D)32- 9.如图是某几何体的三视图.若三视图中的圆的半径均为2,则该几何体的表面积为(A)14π (B)16π(C)18π (D)20π10.在平面直角坐标系xOy 中,已知直线:(1)l y k x =+与曲线1sin 2,:sin cos x C y θθθ=+⎧⎨=+⎩(θ为参数)在第一象限恰有两个不同的交点,则实数k 的取值范围为(A)(0,1) (B)1(0,)2 (C)2[,1)3 (D)21[,)32 11.已知函数()||ln||x x f x =.若)e (),3ln (),2(ln f c f b f a =-==,则c b a ,,的大小关系为 (A)a c b >> ( B)c a b >> (C)c b a >> (D)b c a >>12.已知关于x 的不等式ln(1()),x x kx k b b -++∈R ≤当x ∈(1,+∞)时恒成立,则11b k --的最小值是 (A)2e - (B)1e 1-+ (C)21e - (D)e 1--二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知呈线性相关的变量x ,y 之间的关系如下表:x1 2 3 4 y 1 3 4 6由表中数据得到的回归直线方程为ˆˆ1.6yx a =+.由此预测当8x =时,ˆy 的值为________. 14.函数2()2e 3x f x -=-+的图象在0=x 处的切线方程为________.15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是_______.16.已知点P 在椭圆22221(0)x y a b a b+=>>上,1F 是椭圆的左焦点,线段1PF 的中点在圆2222x y a b +=-上.记直线1PF 的斜率为k ,若1k ≥,则椭圆离心率的最小值为_______.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)2019年12月,《生活垃圾分类标志》新标准发布并正式实施.为进一步普及生活垃圾分类知识,了解居民生活垃圾分类情况,某社区开展了一次关于垃圾分类的问卷调查活动,并对随机抽取的1000人的年龄进行了统计,得到如下的各年龄段频数分布表和各年龄段人数频率分布直方图:各年龄段频数分布表 各年龄段人数频率分布直方图(Ⅰ)请补全频率分布直方图,并求出各年龄段频数分布表中n m ,的值;(Ⅱ)已知从年龄在[)30,40段中采用分层抽样的方法选出了5名代表参加垃圾分类知识交流活动.现从这5名代表中任选2名作为领队,求这两名领队中恰有1名年龄在[)35,40段中的概率.18. (本小题满分12分)已知函数32()21f x x ax bx a =+++-在1-=x 处取得极值0,其中,a b ∈R .(Ⅰ)求b a ,的值;(Ⅱ)当[1,1]x ∈-时,求)(x f 的最大值.组数分组 频数 第一组[25,30) 200 第二组 [30,35) 300 第三组[35,40) m 第四组[40,45) 150 第五组[45,50) n 第六组 [50,55]50 合计 1000如图①,在菱形ABCD 中,60A ∠=°且2=AB ,E 为AD 的中点.将△ABE 沿BE 折起使2=AD ,得到如图②所示的四棱锥A -BCDE .(Ⅰ)求证:平面ABE ⊥平面ABC ;(Ⅱ)若P 为AC 的中点,求二面角C BD P --的余弦值.图① 图②20.(本小题满分12分)在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换⎪⎩⎪⎨⎧='='y y x x 21:ϕ后,得到曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)设直线l 与曲线C 相交于B A ,两点,连接BO 并延长与曲线C 相交于点D ,且2||=AD .求△ABD 面积的最大值.已知函数()e ,.xf x x ax a =+∈R(Ⅰ)设()f x 的导函数为(),f x '试讨论()f x '的零点个数;(Ⅱ)设()ln ln (1).a g x ax x a x a x =++-当(1,x ∈+∞)时,若()()f x g x ≥恒成立,求a 的取值范围.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为1x y ⎧=⎪⎪⎨⎪=⎪⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 6=.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)已知点)0,1(P .若直线l 与曲线C 相交于B A ,两点,求2211||||PA PB +的值.。

四川省成都市第七中学2020届高三数学零诊模拟试题 理(含解析)

四川省成都市第七中学2020届高三数学零诊模拟试题 理(含解析)
13。命题 : , ,写出命题 的否定:_______________
【答案】 ,
【解析】
【分析】
特称命题改为全称命题,把“ ”改为“ ”,“存在”改为“所有",再否定结论。
【详解】命题 是特称命题,它的否定是全称命题,
∴ 。 ∴ 为真.
∵ ,∴ 不是最长边,∴ 至少有一个超过 ,∴内角和超过 ,所以 错误。
方法2:如图
延长 交 的外接圆于点 ,则 ,
∴ ,∴ 。
又∵ ,∴ 。
∴ ,即 ,即 。
【点睛】本题考查了命题的判断,计算量较大,意在考查学生的计算能力。
第Ⅱ卷
二、 填空题:本大题共四小题,每小题5分,共20分
【解析】
【分析】
①根据原命题与逆否命题真假关系;②根据奇函数的定义与性质判断;③根据基本不等式判断.
【详解】当 且 时, 成立,
根据原命题与逆否命题真假一致,故①正确;
定义域为 的奇函数 必有 ,
定义域为 函数 且满足 不一定是奇函数,如 ,故②正确;
若 , 且 ,

当且仅当 即 时等号成立,故③正确;
A. B. C. D.
【答案】B
【解析】
【分析】
利用二倍角公式和辅助角公式将 化简为 的形式,再利用周期函数求出其最小正周期,可得答案.
【详解】解:
,可得其最小正周期为 ,
故选B。
【点睛】本题主要考查三角函数的恒等变换:二倍角公式和辅助角公式等,及三角函数的周期性的,属于中档题型
12.如图,已知 ,其内部有一点 满足 ,命题 最大值有可能超过36度;命题 若三边长对应分别为 ,则 ;则正确的选项为( )
A. 真 假B。 假 假C。 真 真D。 假 真

四川省成都市第七中学2020届高三零诊模拟数学(理)试题 Word版含解析

四川省成都市第七中学2020届高三零诊模拟数学(理)试题 Word版含解析

成都七中高2020届零诊热身试卷数学(理工类)第Ⅰ卷一、选择题:共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合{}11A x x =-<,{}210B x x =-<,则A B =U ( ) A. ()1,1- B. ()1,2-C. ()1,2D. ()0,1【答案】B 【解析】由2{|11},{|10}A x x B x x =-<=-<得:{}|02A x x =<<,{}|11B x x =-<<, 则()1,2A B ⋃=-,故选B. 2.若1122aii i+=++,则复数a =( ) A. 5i -- B. 5i -+C. 5i -D. 5i +【答案】D 【解析】解:由题意可知:()()()12125ai i i i +=++= , 则515i a i i-==+ . 本题选择D 选项.3.设()f x 是定义在R 上周期为2的奇函数,当01x <<时,()2f x x x =-,则52f ⎛⎫-= ⎪⎝⎭( ) A. 14-B. 12-C.14D.12【答案】C 【解析】 分析】根据()f x 的周期为2,则5122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再根据奇函数()()f x f x =--求解.【详解】因为()f x的周期为2,所以5512222f f f⎛⎫⎛⎫⎛⎫-=-+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;又()f x是奇函数,所以1122 f f⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭所以25111122224 f f⎡⎤⎛⎫⎛⎫⎛⎫-=-=--=⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦故选B.【点睛】本题考查根据函数奇偶性、周期性求值.方法:根据奇偶性、周期性把自变量化到有解析式的区间. 4.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.2 8.6 10.0 11.3 11.9 支出y(万元) 6.2 7.5 8.0 8.5 9.8 根据上表可得回归直线方程ˆˆˆy bx a=+,其中ˆˆˆ0.76,b a y bx==-,据此估计,该社区一户收入为15万元家庭年支出为()A. 11.4万元 B. 11.8万元 C. 12.0万元 D. 12.2万元【答案】B 【解析】试题分析:由题,,所以.试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.5.设D 为ABC ∆中BC 边上的中点,且O 为AD 边上靠近点A 的三等分点,则( )A. 5166BO AB AC =-+u u u r u u ur u u u rB. 1162BO AB AC =-u u u r u u u r u u u rC. 5166BO AB AC =-u u u r u u u r u u u rD. 1162BO AB AC =-+u u u r u u ur u u u r【答案】A 【解析】由平面向量基本定理可得:()11513666BO AO AB AD AB AB AC AB AB AC =-=-=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,故选A.6.执行如图的程序框图,则输出x 的值是( )A. 1B. 2C.12D. 1-【答案】D 【解析】 【分析】易知当1024y =时,循环结束;再寻找x 的规律求解. 【详解】计算过程如下:x2 -11221-…1-y0 1 2 3 4 … 1024 1024y <是是是是是是否当1024x =时,循环结束,所以输出1x =-. 故选D.【点睛】本题考查程序框图,选择表格计算更加简洁.当循环次数较多时,要注意寻找规律. 7.等差数列{}n a 中的2a 、4032a 是函数()3214613f x x x x =-+-的两个极值点,则()2220174032log a a a ⋅⋅=( )A. 24log 6+B. 5C. 23log 3+D.24log 3+【答案】C 【解析】 由()3214613f x x x x =-+-,得()286f x x x =-+',由()2860f x x x =-+=',且24032a a 、是()3214613f x x x x =-+-的极值点,得24032201728a a a +==,240326a a ⋅=,∴20174a =,则()222017403222log ?·log 243log 3a a a ==+,故选C. 8.以下三个命题正确的个数有( )个.①若225a b +≠,则1a ≠或2b ≠;②定义域为R 的函数()f x ,函数()f x 为奇函数是()00f =的充分不必要条件;③若0x >,0y >且21x y +=,则11x y+的最小值为3+A. 0个 B. 1个 C. 2个 D. 3个【答案】D 【解析】 【分析】①根据原命题与逆否命题真假关系;②根据奇函数的定义与性质判断;③根据基本不等式判断.【详解】当1a =且2b =时,225a b +=成立, 根据原命题与逆否命题真假一致,故①正确; 定义域为R 的奇函数()f x 必有()00f =,定义域为R 函数()f x 且满足()00f =不一定是奇函数,如()2f x x =,故②正确;若0x >,0y >且21x y +=,则2133112y x y y x x +=+++≥+=+当且仅当2y x x y =即1x y ==时等号成立,故③正确;【点睛】本题考查命题,充分必要条件,及基本不等式.原命题的真假比较难判断时,可借助逆否命题来判断;基本不等式注意成立的条件“一正二定三相等” .9.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。

精品解析:四川省成都市新都区2019-2020学年高三诊断测试理科数学试题(解析版)

精品解析:四川省成都市新都区2019-2020学年高三诊断测试理科数学试题(解析版)

新都区2020届高三毕业班摸底测试数学试题(理)注意事项:1.答题前,务必将姓名、考场号、座位号填写在答题卡规定的位置上,并将考生条形码粘贴在规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题(本大题共12小题,每小题5分,共60分.每小题有且只有一个正确选项.)1.已知全集U =R ,集合{}202,{0}A x x B x x x =≤≤=->,则图中的阴影部分表示的集合为( )A. (1](2,)-∞⋃+∞,B. (0)(12)-∞⋃,,C. [1)2,D. (12], 【答案】A 【解析】B={x|x 2﹣x >0}={x|x >1或x <0},由题意可知阴影部分对应的集合为∁U (A∩B)∩(A ∪B), ∴A∩B={x|1<x≤2},A∪B=R, 即∁U (A∩B)={x|x≤1或x >2},∴∁U (A∩B)∩(A∪B)={x|x≤1或x >2}, 即(﹣∞,1]U (2,+∞) 故选:A2.设121iz i i-=++,则z z +=—( ) A. 1i --B. 1i +C. 1i -D. 1i -+【答案】B 【解析】 【分析】对复数z 进行运算得z i =,从而求得||1z z i +=+.【详解】因21(1)22221(1)(1)2i i i z i i i i i i i ---=+=+=+=++-,所以||1z =,所以||1z z i +=+. 故选:B.【点睛】本题考查复数的四则运算、共轭复数和模的概念,考查基本运算求解能力. 3.已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则72S =( ) A. 2 B. 7C. 14D. 28【答案】D 【解析】 【分析】根据等差数列通项公式,将等式5632a a a +=+化成42a =,再由等差数列的前n 项和公式得742S 2728a =⋅=.【详解】因为5632a a a +=+,所以111142452322a d a d a d a d a ++=+++⇒+=⇒=, 所以742S 2728a =⋅=. 故选:D.【点睛】本题考查等差数列通项公式、前n 项和公式,考查基本运算求解能力.4.已知sin cos 3αα+=,则sin 2α=( )A. 79-B. 29-C.29D.79【答案】A 【解析】 【分析】直接对等式两边平方,利用倍角公式得sin 2α的值.【详解】因为sin cos 3αα+=,所以2227(sin cos )(12sin cos 399sin 2ααααα+=⇒+=-=⇒. 故选:A.【点睛】本题考查同角三角函数的基本关系、倍角公式,考查基本运算求解能力. 5.已知函数()f x 满足:①对任意1x 、()20,x ∈+∞且12x x ≠,都有1212()()0f x f x x x -<-;②对定义域内的任意x ,都有()()0f x f x --=,则符合上述条件的函数是( ) A. ()21f x x x =++B. x1()2f x ⎛⎫= ⎪⎝⎭C. ()ln 1f x x =+D. ()cos f x x =【答案】B 【解析】 【分析】由题设条件判断增减性和奇偶性,再结合所给具体函数判断即可【详解】由题可知,()f x 为定义域在()0,+∞的减函数,且函数具有偶函数特征;对A ,当()0,x ∈+∞,()21f x x x =++,()f x 的对称轴为12x =-,在()0,+∞为增函数,与题不符,排除;对B ,x 1()2f x ⎛⎫= ⎪⎝⎭,当()0,x ∈+∞,1()2xf x ⎛⎫= ⎪⎝⎭,为减函数,又()-xx11()22f x f x ⎛⎫⎛⎫-=== ⎪ ⎪⎝⎭⎝⎭,故B 符合; 对C ,()ln 1f x x =+,函数显然不具备偶函数特征,排除; 对D ,函数为周期函数,在()0,x ∈+∞不是减函数,排除; 故选:B【点睛】本题考查函数解析式的辨析,函数增减性与奇偶性的应用,属于基础题6.已知定义在R 上的函数()f x 满足(3)(3)f x f x -=+,且函数()f x 在()0,3上为单调递减函数,若ln422log 3,a b c e ===,则下面结论正确的是( )A. ()()()f a f b f c <<B. ()()()f c f a f b <<C. ()()()f c f b f a <<D. ()()()f a f c f b <<【答案】C 【解析】 【分析】由题判断函数对称轴为3x =,结合()f x 在()0,3上为单调递减可知,判断函数值大小关系,即判断对应数值与3的绝对值的大小关系,可画出拟合图形加以求解【详解】由(3)(3)f x f x -=+得3x =,又()f x 在()0,3上为单调递减,画出拟合图形,如图:()()ln 4220,1,log 31,2,4a b c e =∈=∈==,在图上的对应关系如图所示:,显然()()()f c f b f a << 故选:C【点睛】本题考查根据函数的对称性比较函数值大小,解题关键在于确定对称轴和函数与对称轴的关系,属于基础题 7.已知0,0a b >>,若不等式313n a b a b+≥+恒成立,则n 的最大值为( ) A. 9 B. 12C. 16D. 20【答案】C 【解析】 【分析】可左右同乘3a b +,再结合基本不等式求解即可 【详解】0,0a b >>,()313133n a b n a b a b a b ⎛⎫+≥⇔++≥ ⎪+⎝⎭,()31333911016b a a b a b a b ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当1a b ==时,等号成立,故16n ≤ 故选:C【点睛】本题考查基本不等式求最值,属于基础题 8.函数3cos xy x e =-的图象可能是( )A. B. C. D.【答案】B 【解析】【分析】考查该函数的奇偶性,在0x =处的取值以及该函数在()0,∞+上的单调性可辨别出图象。

2020届四川省成都市高三第一次诊断考试 数学(理)

2020届四川省成都市高三第一次诊断考试  数学(理)

2020届四川省成都市高三第一次诊断考试数学(理科)本试卷分选择题和非选择题两部分。

第I 卷(选择题)1至2页,第II 卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟 注意事项1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z 1与z 2=-3-i(i 为虚数单位)在复平面内对应的点关于实轴对称,则z 1= (A)-3-i (B)-3+i (C)3+i (D)3-i2.已知集合A ={-l ,0,m},B ={l ,2}。

若A ∪B ={-l ,0,1,2},则实数m 的值为 (A)-l 或0 (B)0或1 (C)-l 或2 (D)l 或23.若sin )θπθ=-,则tan2θ=(A)3-(B)3 (C)2- (D)24.某校随机抽取100名同学进行“垃圾分类”的问卷测试,测试结果发现这l00名同学的得分都在[50,100]内,按得分分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图。

则这100名同学的得分的中位数为(A)72.5 (B)75 (C)77.5 (D)805.设等差数列{a n }的前n 项和为S n ,且a n ≠0,若a 5=3a 3,则95S S = (A)95 (B)59 (C)53 (D)2756.已知α,β是空间中两个不同的平面,m ,n 是空间中两条不同的直线,则下列说法正确的是 (A)若m ∥α,n ∥β,且α∥β,则m ∥n (B)若m ∥α,n ∥β,且α⊥β,则m ∥n (C)若m ⊥α,n ∥β,且α∥β,则m ⊥n (D)若m ⊥α,n ∥β且α⊥β,则m ⊥n7.261(2)()x x x+-的展开式的常数项为 (A)25 (B)-25 (C)5 (D)-5 8.将函数y =sin(4x -6π)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移6π个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为(A)f(x)=sin(2x +6π) (B)f(x)=sin(2x -3π) (C)f(x)=sin(8x +6π) (D)f(x)=sin(8x -3π)9.已知抛物线y 2=4x 的焦点为F ,M ,N 是抛物线上两个不同的点。

2020届四川省成都市高三第一次诊断考试 数学(理)(含答案)

2020届四川省成都市高三第一次诊断考试  数学(理)(含答案)

2020届四川省成都市高三第一次诊断考试数学(理科)本试卷分选择题和非选择题两部分。

第I 卷(选择题)1至2页,第II 卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。

注意事项1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z 1与z 2=-3-i(i 为虚数单位)在复平面内对应的点关于实轴对称,则z 1= (A)-3-i (B)-3+i (C)3+i (D)3-i2.已知集合A ={-l ,0,m},B ={l ,2}。

若A ∪B ={-l ,0,1,2},则实数m 的值为 (A)-l 或0 (B)0或1 (C)-l 或2 (D)l 或23.若sin )θπθ=-,则tan2θ=(A)3-3 (C)2- (D)24.某校随机抽取100名同学进行“垃圾分类”的问卷测试,测试结果发现这l00名同学的得分都在[50,100]内,按得分分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图。

则这100名同学的得分的中位数为(A)72.5 (B)75 (C)77.5 (D)805.设等差数列{a n }的前n 项和为S n ,且a n ≠0,若a 5=3a 3,则95S S = (A)95 (B)59 (C)53 (D)2756.已知α,β是空间中两个不同的平面,m ,n 是空间中两条不同的直线,则下列说法正确的是 (A)若m ∥α,n ∥β,且α∥β,则m ∥n (B)若m ∥α,n ∥β,且α⊥β,则m ∥n (C)若m ⊥α,n ∥β,且α∥β,则m ⊥n (D)若m ⊥α,n ∥β且α⊥β,则m ⊥n7.261(2)()x x x+-的展开式的常数项为 (A)25 (B)-25 (C)5 (D)-5 8.将函数y =sin(4x -6π)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移6π个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为 (A)f(x)=sin(2x +6π) (B)f(x)=sin(2x -3π)(C)f(x)=sin(8x +6π) (D)f(x)=sin(8x -3π)9.已知抛物线y 2=4x 的焦点为F ,M ,N 是抛物线上两个不同的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020成都市高三零诊考试数学试题(理科)第I卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数z=1ii+(i为虚数单位)的虚部是()A 12B -12C12i D -12i【解析】【考点】①复数的定义与代数表示法;②虚数单位的定义与性质;③复数运算的法则与基本方法;④复数虚部的定义与确定的基本方法。

【解题思路】运用复数运算的法则与基本方法,虚数单位的性质,结合问题条件通过运算得到复数z的代数表示式,利用复数虚部确定的基本方法求出复数z的虚部就可得出选项。

【详细解答】 z=1ii+=(1(1(1i ii i-+-)))=221i ii--=12i+=12+12i,∴复数z的虚部为12,⇒A正确,∴选A。

2、已知集合A={1,2,3,4},B={x|2x-x-6<0},则A B=()A {2}B {1,2}C {2,3}D {1,2,3} 【解析】【考点】①集合的表示法;②一元二次不等式的定义与解法;③集合交集的定义与运算方法。

【解题思路】运用一元二次不等式的解法,结合问题条件化简集合B,利用几何交集运算的基本方法通过运算求出A B就可得出选项。

【详细解答】B={x|2x-x-6<0}={x|-2<x<3},A={1,2,3,4},∴A B={1,2},⇒B正确,∴选B。

3、如图,是某赛季甲,乙两名篮球运动员9场比赛甲乙所得分数的茎叶图,则下列说法错误的是() 0 8A 甲所得分数的极差为22B 乙所得分数的 7 5 1 1 1 2 6 8 中位数为18C 两人所得分数的众数线段 4 2 2 0 2 0 2 2D 甲所得分数的平均数低于乙所得分数的平均数 3 2 3 1【解析】【考点】①茎叶图的定义与性质;②极差的定义与求法;③中位数的定义与求法;④众数的定义与求法;⑤平均数的定义与求法。

【解题思路】运用茎叶图的性质,结合问题条件分别求出甲所得分数的极差,乙所得分数的中位数,甲,乙所得分数的众数和平均数就可得出选项。

【详细解答】甲所得分数的极差为33-11=22,∴A正确;乙所得分数的中位数为18,∴B 正确;甲,乙所得分数的众数分别为22,22,∴C正确;甲,乙所得分数的平均数分别为x 甲=1115172022222432339++++++++ ≈ 21.8, x 乙=811121618202222319++++++++≈ 17.8,21.8>17.8,∴x 甲>x 乙,⇒D 错误,∴选D 。

x+2y-2≤0, 4、若实数x ,y 满足约束条件 x-1≥0,则z=x-2y 的最小值为( )A 0B 2 y ≥0,C 4D 6 【解析】【考点】①不等式表示的平面区域的定义与求法;②不等式组表示的平面区域(可行域)的定义与求法;③最优解的定义与求法。

【解题思路】运用求不等式表示的平面区域,不等式组表示的平面区域(可行域)的求法,结合问题条件求出约束条件的可行域,利用最优解的求法求出问题的最优解就可得出选项。

【详细解答】作出约束条件的可行域如图所示,由 x+2y-2=0,得 x=1, x+2y-2=0,得 x=2, , x-1=0, y=12, y=0, y=0, ∴A (1,12), B (1,0),C (2,0),当目标 函数经过点A 时,z=1-2⨯12=1-1=0;当目标函数经过点B 时,z=1-2⨯0=1-0=1;当目标函数经过点C 时,z=2-2⨯0=2-0=2,∴z=x-2y 的最小值为0,⇒A 正确,∴选A 。

5、已知等比数列{ n a }的各项均为正数,若3log 1a +3log 2a +------+3log 12a =12,则6a 7a =( )A 1B 3C 6D 9【解析】【考点】①等比数列通项公式的定义与性质;②等比数列的定义与性质;③求等比数列通项公式的基本方法;④对数的定义与性质。

【解答思路】设等比数列{n a }的公比为q ,根据等比数列{n a }通项公式的性质,结合问题条件得到关于首项1a ,公比q 的等式,求出首项1a 关于公比q 的式子,运用求等比数列通项公式的基本方法把1a 12a 表示成关于1a ,q 的式子,从而求出1a 12a 的值就可得出选项。

【详细解答】设等比数列{n a }的公比为q ,n a =1a 1n q -,3log 1a +3log 2a +------+3log 12a =3log 1212111a q ++----+=3log 12661a q =12,∴21161()a q =123,⇒2111a q =9,∴6a 7a=2111a q =9,⇒D 正确,∴选D 。

6、已知函数f(x)= sin(πx+6π),x ≤0,则f(-2)+ f(1)=( ) 2x +1, x >0,A 62+B 62C 72D 52【解析】【考点】①分段函数的定义与性质;②分段函数求值的基本方法;③正弦函数的定义与性质;④三角函数诱导公式及运用;⑤指数的定义与性质。

【解答思路】运用分段函数求值的基本方法,正弦函数的性质,三角函数诱导公式,指数的性质,结合问题条件分别求出f(-2),f(1)的函数值,把两个函数值相加就可得出选项。

【详细解答】 f(-2)= sin(-2π+6π)=sin 6π=12,f(1)= 12+1=3,∴ f(-2)+f(1)=12+3 =72,⇒C 正确,∴选C 。

7、∆ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若向量m =(a ,-cosA ),n =(cosC ,b-c ),且m .n =0,则角A 的大小为( )A 6πB 4πC 3πD 2π 【解析】【考点】①正弦定理及运用;②向量数量积的定义与性质;③求向量数量积的基本方法;④三角形内角和定理及运用;⑤三角函数一点公式及运用。

【解答思路】运用正弦定理,三角形内角和定理,三角函数诱导公式和求向量数量积的基本方法,结合问题条件求出cosA 的值,从而求出角A 的大小就可得出选项。

【详细解答】m =(a ,-cosA ),n =(cosC b-c ),sin a A =sin b B =sin c C=2R ,A+B+C=.180,∴m .n RsinBcosA+2RsinCcosA=2R (sinAsinBcosA )=2R (sinBcosA )=2RsinB (cosA )=0,2RsinB ≠0,∴cosA=0,⇒ cosA== 2,.0<A <.180,∴A=4π,⇒B 正确,∴选B 。

8、执行如图所示的程序框图,则输出的m 的值为( )A 5B 6C 7D 8【解析】【考点】①程序框图的定义与性质;②算法的定义与性质;③运用程序框图进行运算的基本方法。

【解题思路】运用程序框图的性质和运算的基本方法,结合问题条件通过运算就可得出选项。

【详细解答】如图,S=0<100,m=1,∴S=0+1⨯12=2,m=1+1=2,S=2<100,m=2,∴S=2+2⨯22=2+8=10,m=2+1=3,S=10<100,m=3,∴S=10+3⨯32=10+24=34,m=3+1=4,S=34<100,m=4,∴S=34+4⨯42=34+64=98,m=4+1=5,S=98<100,m=5,∴S=98+5⨯52=98+160=258, m=5+1=6, S=2588>100,∴ m=6,⇒B 正确,∴选B 。

9、若矩形ABCD 的对角线交点为O ',周长为10四个顶点都在球O 的表面上,且O O '= 3,则球O 的表面积的最小值为( )A 3223π B 6423π C 32π D 48π 【解析】【考点】①矩形的定义与性质;②几何体外接球的定义与性质;③求几何体外接球半径的基本方法;④求表面积的计算公式与计算方法。

【解题思路】运用矩形性质,几何体外接球的性质和求几何体外接球半径的基本方法,结合问题条件求出几何体外接球的半径,利用球表面积的计算公式通过运算就可得出选项。

【详细解答】如图,连接OC ,设AB=x ,矩形 OABCD 的周长为10∴10,⇒AC 2 D C=2(210)x +2x ,在Rt ∆O 'OC 中,O O '3, O 'O 'C=122x -AC ,∴2R =OC 2=O 'C 2+ O O '2=14AC 2 A B +O O '2=122x 1012(10)x +8≥8,⇒当且仅当102R =0+8=8为最小,∴O S 球表=4π2R 的最小值为4⨯8π=32π,⇒C 正确,∴选C 。

10已知函数f(x)=(2x +2a x+1)x e ,则“2”是“函数f(x)在x=-1处取得极小值”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分也不必要条件【解析】【考点】①函数导函数的定义与求法;②函数极值的定义与求法;③充分条件,必要条件,充分必要条件的定义与判定的基本方法。

【解题思路】运用求函数导函数的基本方法,结合问题条件求出函数f(x)的导函数f ' (x),当2,利用判定函数在某点存在极值的基本方法,判定函数f(x)是否在x=-1处取得极小值;当函数f(x)在x=-1处取得极小值时,看能否求出,根据判断充分条件,必要条件,充分必要条件的基本方法通过判定就可得出选项。

【详细解答】当时,f ' (x)=(2x+) x e +(2x +2x+1)x e =(2x +4x+3)x e ,令f ' (x)=0,得x=-1或x=-3,当x ∈(-3,-1)时,f ' (x)<0,当x ∈(-1,+ ∞)时,f ' (x)>0,∴函数f(x)在x=-1处取得极小值,;当数f(x)在x=-1处取得极小值时,f ' (x)=(2x+2a ) x e +(2x +2a x+1)x e =[2x +(2a +2)x+2a +1]x e ,∴1+2a +2+2a +2=22a +5,⇒a=±≠,∴综上所述“”是“函数f(x)在x=-1处取得极小值”的充分而不必要条件, ⇒A 正确,∴选A 。

11、已知双曲线C :22x a -22y b=1(a >0,b >0),的左右焦点分别为1F (-c ,0),2F (c ,0),又点N (-c ,232b a),若双曲线C 左支上的任意一点M 均满足|M 2F |+|MN|>4b ,则双曲线C 离心率的取值范围为( )A BC (1,3)+∞) D (1+∞) 【解析】【考点】①双曲线的定义与性质;②双曲线离心率的定义与求法;③不等式的定义与解法。

相关文档
最新文档