简谐振动运动方程
简谐振动动力学方程推导

简谐振动动力学方程推导
简谐运动可以看做圆周运动的投影,所以其周期也可以用圆周运动的公式来推导。
圆周运动的;很明显v无法测量到,所以根据得到。
其中向心力F便可以用三角函数转换回复力得到即(F=-kx中负号只表示方向,所以在这省略)。
所以得到;
因为x与r之间的关系是:x=rcosα,所以上式继续化简得
到:。
然后再将v带入之前的圆周运动T中,即可得到。
将R记为匀速圆周运动的半径,即:简谐运动的振幅;
将ω记为匀速圆周运动的角速度,即:简谐运动的圆频率,
则:;
将φ记为 t=0 时匀速圆周运动的物体偏离该直径的角度(逆时针为正方向),即:简谐运动的初相位。
则,在t时刻:
简谐运动的位移x=Rcos(ωt+φ);
简谐运动的速度v=-ωRsin(ωt+φ);
简谐运动的加速度a=-ω2Rcos(ωt+φ),上述三式即为简谐运动的方程。
简谐振动的运动方程

简谐振动的运动方程
简谐振动是我们生活中非常常见的一种物理现象,它是一种周期
性的振动,比如钟摆的摆动、弹簧的伸缩、机械波的传播等都可以理
解为简谐振动。
简谐振动的运动方程可以表示为:x = A*sin(ωt + φ)。
其中,x 表示位移,A 表示振幅,ω 表示角频率,t 表示时间,
φ 表示初始相位。
这个方程告诉我们,简谐振动的运动轨迹是正弦曲线,振幅为 A,周期为T = 2π/ω,频率为f = ω/(2π)。
我们如果要想更加深入地理解简谐振动,可以从以下几个方面来
探讨。
首先,我们需要知道简谐振动的特点是什么。
简谐振动的最基本
特点就是周期性,相邻两个极值点之间的时间间隔是稳定的。
此外,
简谐振动对外力的响应也非常敏感,当外力频率接近振动系统的特征
频率时,振幅会急剧增加,这种现象被称为共振。
其次,我们需要掌握简谐振动的运动规律。
通过运动方程,我们
可以知道简谐振动的位移和时间之间存在一个正弦函数关系,这个关
系告诉我们简谐振动的位移随着时间而变化,当 t = 0 时位移最大,
当 t = T/4 时位移为零,当 t = T/2 时位移最小,当 t = 3T/4 时
位移为零。
最后,我们需要了解简谐振动在实际应用中的意义。
简谐振动在很多领域都有着广泛的应用,比如钟表的计时、天平的称重、电子电路的稳定等等。
在工程领域中,利用简谐振动原理可以设计出各种振动器和传感器,这些设备对于航空、航天、汽车、电子等行业都有着非常重要的意义。
总之,掌握简谐振动的运动规律和特点,对于我们了解各种物理现象和工程应用有着非常重要的指导意义。
大学物理简谐振动

A2
A
A2 sin 2
2 -1
2
O
1 A1 x2
A1 sin 1
x2 x
x1x1
x2
x
A1 cos1 A2 cos2
合振动振幅:A A12 A22 2A1A2 cos(2 1)
1. 两个分振动的相位相同(同相)
5 (或 3 )
4
4
第六章
机械波
mechanical wave
6.1 机械波的产生、传播和描述 波动: 振动在空间中的传播过程.
机械波: 机械振动在弹性介质中的传播过程. 波动
电磁波: 交变电磁场在空间中的传播过程. 6.1.1 机械波的产生
当弹性介质中的一部分发生振动时,由于介质各个 部分之间的弹性力作用,振动就由近及远地传播出去. (1) 机械波实质上是介质中大量质点参与的集体振动;
20 0.47
(2) 30为何值时, x1+x3 的振幅为最大; 30为何值时, x2+x3的振幅为最小.
x1 0.05cos10t 3 4
x2 0.06cos10t 4
x3 0.07 cos10t 30
30
10
0 时,x1+x3 振幅最大:30
10
3
4
30 20 时,x2+x3 振幅最小:30 20
t 时刻点 P 的振动状态
P点在
t
时刻的位移
y P ,t
yO ,t x
u
A c os [ (t
x) u
0 ]
波函数 (波方程)
y( x, t )
A cos[ (t
简谐运动的表达式

简谐运动的表达式
创新微课
【解析】据x=Asin(ωt+ φ )得到:A1=4a,A2=2a。 A1 / A2=4a/2a=2 又ω=4πb及ω=2πf得:f1=f2=2b
1
它们的相位差是: △φ = (4πbt+ 3π/4) - (4πbt+ π/2) =π
创新微课 现在开始
简谐运动的表达式
简谐运动的表达式
一、简谐运动弦函数y=Asin(ωx+φ),简谐运动的位移随时间变化的规律 (振动方程)应为: x=Asin(ωt+φ)
简谐运动的表达式
创新微课
二、各物理量的意义
简谐运动的振动方程 x=Asin(ωt+φ):
1、振幅:A是物体振动的振幅。
别为多少?
1
(2)求振子在5 s内通过的路程。
(3)根据振动图象写出该简谐运
动的表达式。
简谐运动的表达式
创新微课
【解析】(1)由图象可知: 振幅:A=2 cm 周期:T=0.8 s 频率:f==1.25 Hz。 (2)在5 s内通过的路程:
s=×4A= ×4×2 c1m=50 cm。
(3)由图象可知:振子的初相为
0,ω=2πf=2.5π rad/s 表达式为:x=2sin 2.5πt cm。
【答案】(1)2 cm 0.8 s 1.25 Hz
cm
(2)50 cm
(3) x=2sin 2.5πt
简谐运动的表达式
创新微课
【练习】两个简谐振动分别为:
x1=4asin(4πbt+ π/2) 和 x2=2asin(4πbt+ 3π/4)
1
简谐运动方程知识点总结

简谐运动方程知识点总结1. 简谐运动的基本特征简谐运动是一种最基本的振动运动,它具有以下几个基本特征:(1)周期性:简谐运动是周期性的,即物体在受力作用下做往复振动,每个周期内物体都会经历相同的振动过程。
(2)恢复力的特性:简谐运动的振动是由一个恢复力(例如弹簧力或重力)驱动的,且恢复力的大小与物体的位移成正比。
(3)运动是否受到阻尼和驱动力的影响:简谐运动通常假设没有阻尼和驱动力的影响,即物体受到的唯一作用力是恢复力。
2. 简谐振动方程的一般形式简谐振动可以用一个二阶微分方程来描述,其一般形式如下:$$m\frac{d^2x}{dt^2}+kx=0$$其中,m为物体的质量,k为弹簧的弹性系数,x为物体的位移,t为时间。
上述方程也可以写成更常见的形式:$$\frac{d^2x}{dt^2}+\frac{k}{m}x=0$$这个二阶微分方程描述了简谐振动系统中物体的加速度与位移之间的关系。
该方程是一个线性齐次微分方程,它的解决方法通常是通过代数方法或微积分方法来求解。
3. 简谐振动方程的解法对于上述的简谐振动方程,可以通过代数或微积分方法来求解。
通常有以下几种解法:(1)代数方法:当简谐振动系统的质量m和弹簧的弹性系数k已知时,可以通过代数方法求解简谐振动方程的解析解。
这种方法通常涉及到代数运算和三角函数的应用,例如正弦函数和余弦函数。
(2)微积分方法:对于更一般的简谐振动问题,可以通过微积分方法来求解简谐振动方程。
这种方法通常涉及到微分方程的解法,例如特征方程法、特解法和叠加原理等。
(3)复数方法:简谐振动方程也可以通过复数方法进行求解。
这种方法通常利用复数的性质和欧拉公式来简化求解过程,从而得到方程的解析解。
4. 简谐振动方程的解析解当求解简谐振动方程时,通常可以得到一组解析解,它们可以用来描述简谐振动系统的振动特性。
一般而言,简谐振动方程的解析解可以分为如下几种情况:(1)无阻尼情况下的简谐振动:当简谐振动系统没有受到阻尼力的作用时,其解析解通常为正弦函数或余弦函数。
简谐振动运动方程

简谐振动运动方程简谐振动是物理学中一种重要的振动形式,它在自然界和工程领域中都有广泛应用。
简谐振动的运动方程描述了振动物体在平衡位置附近的周期性运动规律,可以用于解释弹簧振子、摆钟、电路中的振荡电流等现象。
简谐振动的运动方程可以表示为x = A*cos(ωt+φ),其中x表示振动物体距离平衡位置的位移,A表示振幅,ω表示角频率,t表示时间,φ表示初相位差。
这个方程描述了振动物体随时间变化的位置情况。
简谐振动的周期是指振动物体完成一次完整振动所需要的时间。
周期T与角频率ω之间有关系T = 2π/ω。
振动的频率则是指单位时间内完成的振动次数,可以表示为 f = 1/T = ω/2π。
振动的频率与角频率是相互关联的,它们描述了振动物体的快慢程度。
简谐振动的振幅是指振动物体离开平衡位置的最大位移量。
振幅越大,振动物体的运动范围就越大。
振动物体的能量也与振幅有关,振幅越大,能量越高。
振幅与振动物体的势能和动能之间也存在着一定的关系。
简谐振动的初相位差是指振动物体在某一时刻与参考点的位移差。
初相位差决定了振动物体的起始位置,它与振动物体的初始条件有关。
初相位差的不同会导致振动物体的运动规律发生变化。
简谐振动的运动方程可以通过牛顿定律和胡克定律推导得到。
牛顿定律指出,物体的加速度与作用在物体上的合外力成正比,胡克定律则描述了弹簧的弹性特性。
将这两个定律结合起来,可以得到简谐振动的运动方程。
简谐振动在自然界和工程中都有广泛的应用。
在自然界中,摆钟的摆动、弹簧振子的弹动、声波的传播等都是简谐振动。
在工程领域中,简谐振动的原理被应用于建筑物的抗震设计、机械振动的控制、电路中的振荡电流等。
简谐振动还有一些特殊的性质。
例如,简谐振动的位移、速度和加速度之间存在着一定的相位关系。
位移和速度的相位差是π/2,位移和加速度的相位差是π。
这些相位关系可以通过简谐振动的运动方程进行推导得到。
简谐振动是物理学中一种重要的振动形式,它可以用运动方程来描述振动物体的运动规律。
简谐振动的方程

m
O
x X
k mg / l
令向下有位移x, 则 f mg k (l x) kx
作谐振动
设振动方程为
x A cos(t 0 )
k m g l 9.8 10rad / s 0.098
由初条件得
A x0 (
2
v0
) 2 0.098m
0 是t =0时刻的位相—初位相
(4)简谐振动的旋转矢量表示法
A
t
t t
t0
o
x
x
x A cos(t )
请看动画……
用旋转矢量图画简谐运动的 x t 图
三 简谐运动的特征
1)
2) 3)
F kx
d2 x 2 x 2 dt
(平衡位置
x0 )
v0 0 arctg ( ) 0, x0
由x0=Acos0=-0.098<0 cos0<0, 取0= 振动方程为:x=9.810-2cos(10t+)m
(2)按题意 t=0 时
m
O
x X
x0=0,v0>0
x0=Acos0=0 , cos0=0 0=/2 ,3/2 v0=-Asin>0 , sin 0 <0, 取0=3/2 x=9.810-2cos(10t+3/2) m
x t 图
x A cos t
x
A
t
v t 图
v A sin t
A cos(t
A
2 )
2
v
t
a t 图
a A 2 cos t
简 谐 振 动

国际单位制中,周期的单位为秒(s);频率的单位为赫兹 (Hz);角频率的单位为弧度每秒(rad/s)。
对弹簧振子,由于
k
m
故有:
T 2π m k
1 k
2π m
由上式可以看出,弹簧振子的周期和频率都是由物体的质量 m和弹簧的劲度系数k所决定的,即只与振动系统本身的物理性 质有关。因此,我们将这种由振动系统本身的性质所决定的周期 和频率称为固有周期和固有频率。
v dx Asin(t )
dt
a
d2x dt 2
2 Acos(t
)
【例10-1】如下图所示,一质量为m、长度为l的均质细棒 悬挂在水平轴O点。开始时,棒在垂直位置OO′,处于平衡状态。 将棒拉开微小角度θ后放手,棒将在重力矩作用下,绕O点在竖 直平面内来回摆动。此装置是最简单的物理摆,又称为复摆。 若不计棒与轴的摩擦力和空气阻力,棒将摆动不止。试证明在 摆角很小的情况下,细棒的摆动为简谐振动。
由胡克定律可知,在弹性限度内,物体受到的弹力F的大小 与其相对平衡位置的位移x成正比,即F=-kx
上式中,负号表示弹力的方向与位移的方向相反,始终指向 平衡位置,因此,此力又称为回复力。
根据牛顿第二定律可知,物体的加速度为:
a F k x mm
因k和m都是正值,其比值可用一个常数ω的平方表示,即ω2 =k/m,故上式可写为:
物理学
简谐振动
物体运动时,如果离开平衡位置的位移(或角位移)按余 弦函数或正弦函数的规律随时间变化,则这种运动称为简谐振 动。在忽略阻力的情况下,弹簧振子的振动及单摆的小角度摆 动等都可视为简谐振动。
1.1 简谐振动的运动方程
如下图所示,一轻弹簧(质量可忽略不计)放置在光滑水平 面上,一端固定,另一端连一质量为m的物体。这样的系统称为 弹簧振子,它是物理学中的又一理想模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们将要学习的谐振子,在许多其他 领域中有类似的东西。虽然我们从力学的例子, 如挂在弹簧上的重物、小振幅的摆,或者某些 其他的力学装置出发,但实际上我们是在学习 某一种微分方程。这种在物理学和其他学科中 反复出现,而且事实上它是许多现象中的一部 分,是值得我们认真研究的。
—— 费曼
结构框图
第12章 振 动
摆动
混沌
阻尼振动 受迫振动 共振
简谐振 动
电磁振荡
振动的 合成
频谱 分析
• 核心内容: 简谐振动
运动方程 特征量 能量 振动的合成
自学内容:单摆的非简谐运动与混沌现象;频谱分析
§12.1
一. 简谐振动的运动方程
1. 理想模型:弹簧振子
简谐运动
轻弹簧 k + 刚体 m (平动~质点)
为四象限角
(2) 与初相为零的余弦函数比较
x Acost 1
振动函数:
x Acos(t )
2
0
2
1
0
从图上可以看出:
x落后 2
x 1
0
x A v0
x0 0 t0
x 1
x
2
t
t 0
2
t
T
0
t
0
0
练习
教材 P13 12.1.3
答案:
(a)
0
5
4
或
3
4
(b) 7 或
4
2
质点在x A 2处以速率v向 x方向运动
( t ) (3)
每变化
0
, 2 整数倍 x、v重复
原来的值(回到原状态),最能直观、方便地 反映出谐振动的周期性特征。
(4) 可用以方便地比较同频率谐振动的步调
x1 A1 cos(t 1) x2 A2 cos(t 2 )
相差
(t 2 ) (t 1) 2 1
v
dx dt
Asin(t
0
)
a
d2 x dt 2
A 2cos( t
0
)
av
T4
x
3T 4T2oFra bibliotek0 0, 1
t
T
由状态参量 曲线族称为相图。
x, v d x dt
为坐标变量作出的函数
思考: 简谐振动的相图并理解其意义。
d2 x dt 2
2
x
对t积 分 :
dx dt
2
2 x2
c1
4
(c)
3
(d)
3
(b)
T t0
4
51 7
t0
T 8
T 4
T 8
0
t0 T
2
7 2
8
7
4
或 :0
4
(d)
v0
x0
A 2
v0 0
cos 0
x0 A
1 2
0
v0 A sin0 0
sin0 0
0
3
例2、劲度系数为k的轻质弹簧,上端与质量为m的平板相连,下端与地面相连。 今有一质量也为m的物体由平板上方h高自由落下,并与平板发生完全非弹性碰 撞。以平板开始运动时刻为计时起点,向下为正,求振动周期、振幅和初相。
*
d2x dt 2
2
x
0
线性微分方程
求解*得运动方程:
x Acos(t 0 ) A, 0 为积分常数
判据三:任何一个物理量如果是时间的余弦(或正弦)函数,那么该物理量 的变化称为简谐振动
, A,0 : 简谐振动的特征量
3.
d x d2 x x, d t , d t2
均随时间周期性变化
x Acos( t 0 )
Acos[ (t T ) 0 ] Acos( t 0 ) (t T ) 0 t 0 2
---- 描述谐振运动的快慢
T 2
周期
1 频率 T 2
2. 振幅A :
A | xmax |
表示振动的范围(强弱),由初始条件决定。
由 在 t = 0 时刻
x Acos( t 0 ) v A sin( t 0 )
F kx 不仅适用于弹簧系统
离系统平衡位置的位移
准弹性力
F kx
系统本身决定的常数
2. 运动方程
F k x
F
m
d2 dt
x
2
d2 x k dt2 m x 0
令
k 2
m
得
*
d2x dt 2
2
x
0
线性微分方程
判据二:任何一个物理量对时间的二阶导数与其本身成正比且反号时,该物理量的 变化称为简谐振动。
x Acos
0
0
v0 A sin0
解得
A
x2
v2 0
0
2
3. 相位 t 0, 初相0
相位是描述振动状态的物理量
: (1)初相
0
描述t = 0时刻运动状态,由初始条件确定。
由 t = 0时
x0 Acos0 v0 A sin 0
0
arctg(
v0
x0
)
或
} cos0
x0 A
s in 0
v0
A
由cos 0大小和sin0的符号决定0
(2) ( t 0 )与状态参量 x,v 有一一对应的关系
x Acos(t 0 ); v A sin(t 0 )
例:
当
t 0
3
时:
x A, 2
v 3 A
2
质点在x A 2处以速率v向 x方向运动
当
t 0
5
3
时:
x A, 2
v 3 A
0(2的整数倍) (的奇数倍)
同相 反相
x x1 x2
2 1 0
x2 振动超前x1振动
t 2 1 0
x2 振动落后x1振动
[例] 由振动曲线决定初相 解:
x A v0
(1)
cos0
x0 A
0
x0 0 t0
t
v0 A sin0 0
sin0 0
arccos x0
0
A
集中弹性
集中惯性
回复力
F kx
(平衡位置为坐标原点)
回复力和物体惯性交互作用形成谐振动
判据一:物体所受回复力恒与位移成正比且反向时,物体的运动是简谐运动
扩展:
F kx 不仅适用于弹簧系统
自学下册 P 4 [例1]
立方体 F
回复力:重力与浮力的合力
l
o
F kx
mg
k l2水g
x
扩展:
➢ 物理概念、物理思想深化 ➢ 更加贴近物理前沿和高新科技 ➢ 对自学能力的要求提高
第四篇 振动与波动
摆动的秋千
鸟的翅膀
船的起伏
➢ 任何一个物理量( 如位移、角位移、电流、电压、电场强度、磁场强度等) 在某一定值附近随时间周期性变化的现象叫做振动。
➢ 波动: 振动在空间的传播 共同特征:运动在时间、空间上的周期性
(
dx dt
)2
c1
x2
C1
2
1
dx dt
o
x
与振动过程和振动曲线如何对应?
dx dt
o
x
x
T/2
o
Tt
相图为闭合曲线:显示出简谐振动的周期性,循环往复。
二. 简谐振动的特征量
1. 角频率 、周期T、频率
是由系统本身决定的常数,与初始条件无关
由谐振动周期性特征看
的物理意义:
固有角频率
x(t T ) x(t)
1、作业题册
时间:第一周星期五(9.10)下午1:00 — 4:00 地点:X6220 说明:以自然班为单位。5.00元/本
2、答疑
时间:星期二 下午1:00 —— 3:00
地点: X6220
本学期教学内容及特点
基
实物运动规律 振动
本
与
粒
波动
子
相互作用和场
量子现象 与
量子规律
多粒子体系 的 热运 动