简谐振动运动方程共31页
简谐振动的运动方程

简谐振动的运动方程
简谐振动是我们生活中非常常见的一种物理现象,它是一种周期
性的振动,比如钟摆的摆动、弹簧的伸缩、机械波的传播等都可以理
解为简谐振动。
简谐振动的运动方程可以表示为:x = A*sin(ωt + φ)。
其中,x 表示位移,A 表示振幅,ω 表示角频率,t 表示时间,
φ 表示初始相位。
这个方程告诉我们,简谐振动的运动轨迹是正弦曲线,振幅为 A,周期为T = 2π/ω,频率为f = ω/(2π)。
我们如果要想更加深入地理解简谐振动,可以从以下几个方面来
探讨。
首先,我们需要知道简谐振动的特点是什么。
简谐振动的最基本
特点就是周期性,相邻两个极值点之间的时间间隔是稳定的。
此外,
简谐振动对外力的响应也非常敏感,当外力频率接近振动系统的特征
频率时,振幅会急剧增加,这种现象被称为共振。
其次,我们需要掌握简谐振动的运动规律。
通过运动方程,我们
可以知道简谐振动的位移和时间之间存在一个正弦函数关系,这个关
系告诉我们简谐振动的位移随着时间而变化,当 t = 0 时位移最大,
当 t = T/4 时位移为零,当 t = T/2 时位移最小,当 t = 3T/4 时
位移为零。
最后,我们需要了解简谐振动在实际应用中的意义。
简谐振动在很多领域都有着广泛的应用,比如钟表的计时、天平的称重、电子电路的稳定等等。
在工程领域中,利用简谐振动原理可以设计出各种振动器和传感器,这些设备对于航空、航天、汽车、电子等行业都有着非常重要的意义。
总之,掌握简谐振动的运动规律和特点,对于我们了解各种物理现象和工程应用有着非常重要的指导意义。
简谐运动的表达式

简谐运动的表达式
创新微课
【解析】据x=Asin(ωt+ φ )得到:A1=4a,A2=2a。 A1 / A2=4a/2a=2 又ω=4πb及ω=2πf得:f1=f2=2b
1
它们的相位差是: △φ = (4πbt+ 3π/4) - (4πbt+ π/2) =π
创新微课 现在开始
简谐运动的表达式
简谐运动的表达式
一、简谐运动弦函数y=Asin(ωx+φ),简谐运动的位移随时间变化的规律 (振动方程)应为: x=Asin(ωt+φ)
简谐运动的表达式
创新微课
二、各物理量的意义
简谐运动的振动方程 x=Asin(ωt+φ):
1、振幅:A是物体振动的振幅。
别为多少?
1
(2)求振子在5 s内通过的路程。
(3)根据振动图象写出该简谐运
动的表达式。
简谐运动的表达式
创新微课
【解析】(1)由图象可知: 振幅:A=2 cm 周期:T=0.8 s 频率:f==1.25 Hz。 (2)在5 s内通过的路程:
s=×4A= ×4×2 c1m=50 cm。
(3)由图象可知:振子的初相为
0,ω=2πf=2.5π rad/s 表达式为:x=2sin 2.5πt cm。
【答案】(1)2 cm 0.8 s 1.25 Hz
cm
(2)50 cm
(3) x=2sin 2.5πt
简谐运动的表达式
创新微课
【练习】两个简谐振动分别为:
x1=4asin(4πbt+ π/2) 和 x2=2asin(4πbt+ 3π/4)
1
简谐振动运动方程

简谐振动运动方程简谐振动是物理学中一种重要的振动形式,它在自然界和工程领域中都有广泛应用。
简谐振动的运动方程描述了振动物体在平衡位置附近的周期性运动规律,可以用于解释弹簧振子、摆钟、电路中的振荡电流等现象。
简谐振动的运动方程可以表示为x = A*cos(ωt+φ),其中x表示振动物体距离平衡位置的位移,A表示振幅,ω表示角频率,t表示时间,φ表示初相位差。
这个方程描述了振动物体随时间变化的位置情况。
简谐振动的周期是指振动物体完成一次完整振动所需要的时间。
周期T与角频率ω之间有关系T = 2π/ω。
振动的频率则是指单位时间内完成的振动次数,可以表示为 f = 1/T = ω/2π。
振动的频率与角频率是相互关联的,它们描述了振动物体的快慢程度。
简谐振动的振幅是指振动物体离开平衡位置的最大位移量。
振幅越大,振动物体的运动范围就越大。
振动物体的能量也与振幅有关,振幅越大,能量越高。
振幅与振动物体的势能和动能之间也存在着一定的关系。
简谐振动的初相位差是指振动物体在某一时刻与参考点的位移差。
初相位差决定了振动物体的起始位置,它与振动物体的初始条件有关。
初相位差的不同会导致振动物体的运动规律发生变化。
简谐振动的运动方程可以通过牛顿定律和胡克定律推导得到。
牛顿定律指出,物体的加速度与作用在物体上的合外力成正比,胡克定律则描述了弹簧的弹性特性。
将这两个定律结合起来,可以得到简谐振动的运动方程。
简谐振动在自然界和工程中都有广泛的应用。
在自然界中,摆钟的摆动、弹簧振子的弹动、声波的传播等都是简谐振动。
在工程领域中,简谐振动的原理被应用于建筑物的抗震设计、机械振动的控制、电路中的振荡电流等。
简谐振动还有一些特殊的性质。
例如,简谐振动的位移、速度和加速度之间存在着一定的相位关系。
位移和速度的相位差是π/2,位移和加速度的相位差是π。
这些相位关系可以通过简谐振动的运动方程进行推导得到。
简谐振动是物理学中一种重要的振动形式,它可以用运动方程来描述振动物体的运动规律。
简谐振动的方程

m
O
x X
k mg / l
令向下有位移x, 则 f mg k (l x) kx
作谐振动
设振动方程为
x A cos(t 0 )
k m g l 9.8 10rad / s 0.098
由初条件得
A x0 (
2
v0
) 2 0.098m
0 是t =0时刻的位相—初位相
(4)简谐振动的旋转矢量表示法
A
t
t t
t0
o
x
x
x A cos(t )
请看动画……
用旋转矢量图画简谐运动的 x t 图
三 简谐运动的特征
1)
2) 3)
F kx
d2 x 2 x 2 dt
(平衡位置
x0 )
v0 0 arctg ( ) 0, x0
由x0=Acos0=-0.098<0 cos0<0, 取0= 振动方程为:x=9.810-2cos(10t+)m
(2)按题意 t=0 时
m
O
x X
x0=0,v0>0
x0=Acos0=0 , cos0=0 0=/2 ,3/2 v0=-Asin>0 , sin 0 <0, 取0=3/2 x=9.810-2cos(10t+3/2) m
x t 图
x A cos t
x
A
t
v t 图
v A sin t
A cos(t
A
2 )
2
v
t
a t 图
a A 2 cos t
简谐振动方程

一、简谐振动的动力学方程
1.弹簧振子
l0 k
m
d2x m dt2
F
kx
A o
x
A
k 2
m
d2x k
dt 2
m
x0
d2 dt
x
2
2
x
0
(1)
2 单摆
sin
(ml
2
)
d2
dt 2
M mgl
d2
dt 2
g l
0
(2)
记 2 g x
l
d2x dt 2
2x
0
(1)
O
l
T
mg
mg k
1
1
(m
2kh M
)g
一、简谐振动的动力学方程
小
d2 dt
x
2
2
x
0
结
二、简谐振动的运动学方程
x Acos(t )
t t A
t
t 0 x
o
x
x Acos(t )
旋转矢量法
初始条件确定A 初位相
例:如图m=2×10-2kg,弹簧的静止形变为l=9.8 cm. t=0 时,x0=-9.8cm,v0=0
2 描述简谐振动的特征量
(1)振幅 A
x Acos(t )
(2)周期、频率、圆频率
弹簧振子 k
m
单 摆 g
l
T 2 m
k
T 2 l
g
1 k 2 m
1 g 2 l
复 摆 mgh T 2 I 1 mgh
I
mgh
2 I
(3) 位相和初位相
x A cos(t 0 )
简谐振动特征方程

简谐振动特征方程简谐振动是物理学中一个重要的概念,它描述了许多自然界中的现象,例如弹簧振子、摆钟等等。
简谐振动的特征方程是用来描述振动系统的运动规律的,下面我们来详细介绍一下。
简谐振动是指一个物体在一个平衡位置附近做往复运动的现象。
这个物体可以是一个质点、一个弹簧振子、一个摆钟等等。
这些物体在平衡位置附近的运动可以用一个数学模型来描述,即简谐振动的特征方程。
简谐振动的特征方程可以写成如下的形式:m * a + k * x = 0其中,m是物体的质量,a是物体的加速度,k是振动系统的劲度系数,x是物体的位移。
这个方程描述了物体在振动过程中的运动规律。
我们可以从这个方程中得到一些重要的结论。
首先,当物体的位移为0时,即物体处于平衡位置时,方程变为0 = 0,这意味着物体处于静止状态。
其次,当物体受到外力作用时,例如一个弹簧的拉力或一个摆钟的重力,方程变为m * a + k * x = F,其中F是外力。
这意味着物体在外力作用下会发生加速度,从而产生振动。
根据简谐振动的特征方程,我们可以推导出振动系统的运动方程。
假设物体在t时刻的位移为x(t),速度为v(t),加速度为a(t),则有以下关系:x(t) = A * cos(ωt + φ)v(t) = -A * ω * sin(ωt + φ)a(t) = -A * ω^2 * cos(ωt + φ)其中,A是振幅,表示物体的最大位移;ω是角频率,表示物体在单位时间内完成的振动周期数;φ是初相位,表示物体在t=0时刻的相位。
从上面的方程可以看出,简谐振动的运动是周期性的,物体在单位时间内完成的振动周期数是固定的。
振幅决定了物体振动的幅度大小,角频率决定了物体振动的快慢,初相位决定了物体振动的起始位置。
简谐振动的特征方程不仅仅在物理学中有重要的应用,还在其他领域中有广泛的应用。
例如在工程学中,简谐振动的特征方程可以用来描述机械振动系统的运动规律,从而帮助工程师设计和优化振动系统。
大学物理六振动

x
m
dx dt
0
式中
2 0
k m
系统固有频率
令
2m
称阻尼因子
阻尼振动方程为
d2 dt
x
2
2
dx dt
02
x
0
解 x A0et cos(t )
其中
2 0
2
第40页/共62页
2 0
2
三种阻尼振动
x
欠阻尼: 0
1.解析表达式 x Acos( t )
2.曲线描述
x
可知t 时刻质点
位置及速度方向
A
t
o
t
T
第5页/共62页
3.旋转矢量描述
用匀速圆周运动 几何地描述 简谐振动
t
逆时针转
t
A t0
-A
ox A x
矢量端点在x轴上的投影式 x Acos(t )
第6页/共62页
A
t
t=0
A
t+
o
x
x = A cos( t + )
物体做简谐振动
x0
mg kx0
o
x Acos( t ) Acos( k t )
x
m
x
思考:光滑斜面上的弹簧振子(k+m)平衡位置在何处?
是否简谐振动?若是,其w=?
第19页/共62页
3.单摆:无阻尼小角度摆动,摆长为l
平衡位置:摆球受合外力矩为零处(θ=0处)
任q角处:M合 J J m l2
第27页/共62页
3.一质点做简谐振动,其振动方程为
x
6.0
102
cos(
1 3
t
简谐振动的动力学方程

1 T
t T
Ek dt
t
1 kA2 4
E P
1 T
t T
E dt P
t
1 kA2 4
(3) 机械能
E
Ek
Ep
1 kA2 2
简谐振动系统 机械能守恒
(3) 机械能
E
Ek
Ep
1 kA2 2
弹簧振子总的机械能和振幅的平方成正比, 这一结论对其它的简谐振动系统也是正确的, 从能量的角度看振幅不仅反映振动的幅度, 还反映振动的强度
k max
2
k min
P max
2
P min
1 KA2 2
o
EE
P
K
x
E
E E
K
P
t
E 1 kA2 sin 2 ( t )
K
2
E 1 kA2 cos2 ( t )
P
2
E
1 kA2 , E
0
k max
2
k min
E
1 kA2 , E
0
P max
2
P min
Ek
O
l
m o
t 时刻细绳与竖直方向
夹角为θ
忽略空气阻力,
小球受力如图.
小球所受合外力矩为
M M M
T
G
选择逆时针方向为正
●
l
T
o mg
M mgl sin
M 0 T
M mgl sin G
M mgl sin
由转动定律 d 2
M J dt 2