马尔可夫过程在信源编码中的应用
信息论与编码马尔可夫信源

(1) 马尔可夫信源的定义 (2) m阶马尔可夫信源 (3) 举例
(1) 马尔可夫信源的定义
① 信源的状态和符号集 ② 马尔可夫信源定义 ③ 举例
① 信源的状态和符号集
有一类信源,输出的符号序列中符号之间的依赖关系 是有限的,即任何时刻信源符号发生的概率只与前面 已经发出的若干个符号有关,而与更前面发出的符号 无关。
时齐/齐次马尔可夫链:一般情况下,状态转移概率和 已知状态下符号发生的概率均与时刻l 有关。若这些 概率与时刻l 无关,即
pl(xk /ei)= p(xk /ei) pl(ej /ei)= p(ej /ei) 则称为时齐的或齐次的。此时的信源状态服从时齐马 尔可夫链。
② 马尔可夫信源定义
马尔可夫信源:信源输出的符号和所处的状态满足
3 4
0
1 4
0
0 0
0 0
e5 0 0 0
3 4
1 4
结论:一般有记忆信源发出的是有 Nhomakorabea联性的各符号构成的整 体消息,即发出的是符号序列,并用符号间的联合概 率描述这种关联性;
马尔可夫信源的不同之处在于它用符号之间的转移概 率/条件概率来描述这种关联关系。即马尔可夫信源是 以转移概率发出每个信源符号;
④ 有关问题的说明
m阶马尔可夫信源在起始的有限时间内,信源不 是平稳和遍历/各态历经性的,状态的概率分布有 一段起始渐变过程。经过足够长时间之后,信源 处于什么状态已与初始状态无关,这时每种状态 出现的概率已达到一种稳定分布。
一般马尔可夫信源并非是平稳信源。但当时齐、 遍历的马尔可夫信源达到稳定后,这时就可以看 成是平稳信源。
/ ei )
p(ej )
( j 1,2, , nm )
通信系统的马尔可夫过程模型

通信系统的马尔可夫过程模型现代通信系统的设计和性能分析越来越依赖于马尔可夫过程模型。
马尔可夫过程是一种数学模型,可以描述系统状态随时间的变化,特别适用于具有随机特性的系统,例如通信系统中的信道状态和数据流量等。
本文将介绍通信系统中常用的马尔可夫过程模型及其应用,旨在帮助读者理解通信系统的性能分析方法和技术。
1. 引言通信系统是信息传输和交换的关键组成部分,其性能直接影响到用户体验和系统效率。
为了有效地分析和优化通信系统的性能,需要建立准确的数学模型。
马尔可夫过程作为一种常用的建模工具,能够描述系统状态的演化规律,是通信系统性能分析的重要手段。
2. 马尔可夫链马尔可夫链是马尔可夫过程的基本模型,用于描述具有马尔可夫性质的随机系统。
马尔可夫链的核心思想是“未来仅取决于当前状态,与过去状态无关”。
在通信系统中,常用的马尔可夫链模型有信道状态和用户行为等。
2.1 信道状态马尔可夫链通信系统中的信道状态常常是不确定的,例如无线通信中的信道衰落和干扰等。
为了描述这种不确定性,可以使用信道状态马尔可夫链模型。
该模型将信道状态定义为一系列离散的状态,通过状态间的转移概率描述信道状态的演化过程。
基于该模型,可以进一步分析通信系统的传输性能和容量等。
2.2 用户行为马尔可夫链在移动通信系统中,用户的行为常常具有随机特性,例如用户的移动模式和通信需求等。
为了更好地理解和满足用户的需求,可以使用用户行为马尔可夫链模型。
该模型将用户的行为抽象为一系列离散的状态,通过状态间的转移概率描述用户行为的演化过程。
基于该模型,可以优化通信资源分配和调度策略,提高用户的通信质量和系统效率。
3. 马尔可夫过程的性能分析通过建立马尔可夫过程模型,可以对通信系统的性能进行量化和分析。
常用的性能指标包括系统吞吐量、平均延迟和丢包率等。
3.1 稳态性能分析马尔可夫过程的稳态分析用于计算系统在长期运行中的平均性能。
通过求解状态转移方程或离散时间平稳分布,可以获得系统的稳态性能指标。
马尔可夫网络的信息传递模型(Ⅰ)

马尔可夫网络的信息传递模型马尔可夫网络是一种用于建模随机过程的数学工具,它由状态空间、状态转移概率和初始状态分布组成。
在信息传递模型中,马尔可夫网络可以用来描述信息的动态传递和演化过程。
本文将分别从马尔可夫链、马尔可夫决策过程和隐马尔可夫模型三个方面讨论马尔可夫网络在信息传递模型中的应用。
一、马尔可夫链马尔可夫链是最简单的马尔可夫网络模型,它描述了状态空间中状态之间的转移概率。
在信息传递模型中,马尔可夫链可以用来描述信息在不同状态之间的传递和演化。
例如,在社交网络中,可以将不同用户的状态定义为“活跃”和“不活跃”,然后通过观察用户的行为来建立马尔可夫链模型,从而预测用户的活跃状态。
二、马尔可夫决策过程马尔可夫决策过程是马尔可夫链的推广,它将马尔可夫链与决策过程相结合,用来描述具有随机性的决策问题。
在信息传递模型中,马尔可夫决策过程可以用来描述信息传递过程中的决策问题。
例如,在电商平台中,可以将用户的购物行为定义为状态空间,然后通过马尔可夫决策过程模型来优化推荐系统,从而提高用户的购物体验。
三、隐马尔可夫模型隐马尔可夫模型是一种用于建模观测序列的统计模型,它由隐藏状态、观测状态和状态转移概率组成。
在信息传递模型中,隐马尔可夫模型可以用来描述信息传递过程中隐藏状态与观测状态之间的关系。
例如,在自然语言处理中,可以将词语的词性定义为隐藏状态,然后通过隐马尔可夫模型来解决词性标注问题,从而提高文本处理的效率。
总结马尔可夫网络是一种强大的数学工具,它在信息传递模型中有着广泛的应用。
无论是马尔可夫链、马尔可夫决策过程还是隐马尔可夫模型,都可以用来描述不同类型的信息传递过程。
通过合理的建模和参数估计,马尔可夫网络可以帮助我们更好地理解信息传递的规律,从而提高信息传递的效率和准确性。
希望本文的介绍能够对读者理解马尔可夫网络在信息传递模型中的应用有所帮助。
马尔可夫链的基本概念与应用

马尔可夫链的基本概念与应用随机过程是用来描述随机事件演变的数学模型。
在现实生活中,很多情况下的随机事件都有时间上的相关性,也就是说当前的随机事件决定于之前的一些随机事件,这就涉及到了马尔可夫链。
马尔可夫链是序列上的随机过程,具有马尔可夫性质,即未来状态只由当前状态决定,而与之前的状态无关。
马尔可夫链的概念和应用在各个领域都有广泛的应用。
本文将从基本概念和应用两个方面介绍马尔可夫链。
一、基本概念马尔可夫链是一个由若干个状态及其转移概率组成的随机过程。
若状态空间为S={s1,s2,...,sn},则一个马尔可夫链可以表示为一个n×n的矩阵P={pij},其中pij表示转移从状态si到状态sj的概率。
一般来说,一个马尔可夫链从某一个状态开始,每一次转移是根据概率分布进行的,而且每次的转移只依赖于当前状态,而不依赖于之前的状态。
这也就是说,如果我们知道当前状态,就可以确定下一步的状态。
马尔可夫链的一个重要概念是状态转移矩阵。
状态转移矩阵是指某一时刻处于一个状态,下一时刻转移到另一个状态的所有可能性的概率矩阵。
在状态转移矩阵中,每一个元素pij表示从状态i 转移到状态 j 的概率。
状态转移矩阵是唯一的,因为每个状态只有一种可能的下一个状态。
马尔可夫链是一种随机过程,因此它的演化具有随机性。
由于其状态转移矩阵具有随机性,所以我们可以通过模拟来预测其未来的状态。
在模拟马尔可夫链时,我们需要一个状态转移矩阵和一个初始状态。
然后,根据初始状态和状态转移矩阵,我们可以生成整个马尔可夫链的状态序列。
二、应用马尔可夫链在各个领域都有广泛的应用。
以下是一些典型的应用。
1.自然语言处理在自然语言处理中,马尔可夫链被广泛用于以下场景:文本生成、词性标注、语音识别、机器翻译等等。
其中,最常见的应用是文本生成。
文本生成是指通过某种方式生成一段看似自然的、有意义的文本,而马尔可夫链是一种被广泛应用于文本生成的方法。
马尔可夫链生成文本的基本思路是:通过一个有限的语料库训练出一个马尔可夫模型,然后随机生成一些文本,最后通过概率分布进行筛选,从而得到一些看似自然的、有意义的文本。
信源编码基本理论及其应用

摘要本文首先先简单介绍了信源编码和数字通信系统XX源编码的相关作用及实际应用。
然后引入信源编码理论的信源研究和其编码方式部分并进行整理分析,基中涉及非均匀量化和哈夫曼编码的相关应用;应用部分主要是对以GMS 系统为首的CELP、AMR、SMV等实例应用系统进行了概述。
总体完成对信源编码及其实际运用的主要性质特点的论述与分析总结。
所用内容主要引自信源编码理论章节内容,具体主要涉及脉冲编码调制(PCM)和线性预测编码(LPC)以及图像压缩编码等。
关键词:信源编码;基本理论;实例应用目录摘要I一.前言1二.信源研究2三.信源编码方式及其相关应用33.1脉冲编码调制(PCM)33.2离散无记忆信源编码(DMS)73.3线性预测编码(LPC)11四.信源编码的实例应用124.1GSM系统124.2变速率码激励线性预测编码(CELP)124.3自适应多速率编码(AMR)134.4可选择模式语音编码(SMV)144.5视频信源编码H.26414参考文献15信源编码基本理论及其应用一.前言信息论的理论定义是由当代伟大的数学家美国贝尔实验室杰出的科学家香农在他1948 年的著名论文《通信的数学理论》所定义的,它为信息论奠定了理论基础。
后来其他科学家,如哈特莱、维纳、朗格等人又对信息理论作出了更加深入的探讨,使得信息论到现在形成了一套比较完整的理论体系。
信息通过信道传输到信宿的过程即为通信,通信中的基本问题是如何快速、准确地传送信息。
要做到既不失真又快速地通信,需要解决两个问题:一是不失真或允许一定的失真条件下,如何提高信息传输速度;二是在信道受到干扰的情况下,如何增加信号的抗干扰能力,同时又使得信息传输率最大。
通常对于一个数字通信系统而言,信源编码位于从信源到信宿的整个传输链路中的第一个环节,其基本目地就是压缩信源产生的冗余信息,提高整个传输链路的有效性。
在这个过程中,对冗余信息的界定和处理是信源编码的核心问题,根据这些冗余信息的不同特点设计和采取相应的压缩处理技术进行高效的信源编码。
马尔可夫过程在信源编码中的应用(推荐文档)

河南城建学院马尔科夫过程在信源编码中的应用信息论基础姓名:王坤专业名称:电子信息工程专业班级:0934121指导老师:贺伟所在院系:电气与信息工程学院2014年12月20日摘要首先主要讲述了马尔科夫过程,对马尔科夫过程进行了简介,介绍了马尔科夫过程的数学描述方法并对马尔科夫过程的发展历史进行了简述。
在第二章节对马尔科夫过程在信源编码中的应用进行了简单的论述及讲解。
信息论中的编码主要包括信源编码和信道编码。
信源编码的主要目的是提高有效性,通过压缩每个信源符号的平均比特数或降低信源的码率来提高编码效率;信道编码的主要目标是提高信息传输的可靠性,在信息传输率不超过信道容量的前提下,尽可能增加信源冗余度以减小错误译码概率。
研究编码问题是为了设计出使通信系统优化的编译码设备随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。
随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。
目录1引言 (1)2马尔科夫过程 (2)3马尔科夫过程在信源编码中的应用 (4)4参考文献 (13)1 引言随着现代科学技术的发展,特别是移动通信技术的发展,信息的传输在社会科学进步的地位越来越重要。
因此如何更加高效的传输信息成了现代科技研究的重要目标。
马尔可夫过程是一类非常重要的随机过程。
很多在应用中出现的马氏过程模型的研究受到越来越多的重视。
在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。
我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。
由于研究马尔科夫过程在信源编码中的作用,可以利用马尔科夫模型减少信息传输的冗余,提高信息传输的效率。
马尔可夫信源是一类有限长度记忆的非平稳离散信源,信源输出的消息是非平稳的随机序列,它们的各维概率分布可能会随时间的平移而改变。
由于马尔可夫信源的相关性及可压缩性,它已成为信息领域的热点问题。
信息论汇总马尔科夫信源

• Wj :马尔可夫链一个平稳分布,
• Wj [或p(sj)]就是系统此时处于状态sj概率。
信息论汇总马尔科夫信源
18
18/32
例4
Wi pij W j
i
0.6W0 0.4W0
0.3W1 0.7W1
0.2W2 0.8W2
W0 W1
W2
W0 W1 W2 1
W0 0.3571, W1 0.1429, W2 0.5
信息论汇总马尔科夫信源
0/0.4
1/0.6
so
1/0.2
s1
0/0.3 1/0.7
s2
0/0.8
0.6 0.4 0 p(s j | si ) 0.3 0 0.7
0.2 0 0.8
19
19/32
• 例5:有一个二元二阶马尔可夫信源,其信源符
号集为{0,1},已知符号条件概率:
p(0|00) = 1/2 p(1|00)=1/2 p(0|01) = 1/3 p(1|01)=2/3 p(0|10) = 1/4 p(1|10)=3/4 p(0|11) = 1/5 p(1|11)=4/5
(0)0.3
s1
•
抵达状态s1和s2 : 若处于s1 ,以0.3和0.7概率发
(0)0.5
s0
出0和1抵达s3和s4
(1)0.5
(1)0.7 (0)0.4
• 若处于s2,以0.4和0.6概率发 出0和1抵达s5和s6
s2 (1)0.6
00 s3
01 s4 10 s5 11 s6
25
信息论汇总马尔科夫信源
p(s1 | s1) p(s4 | s4) 0.8,
p(s3 | s2) p(s1 | s3) p(s4 | s2) p(s4 | s2) p(s2 | s3) 0.5;
马尔可夫过程及其应用

马尔可夫过程及其应用随机事件、随机行为在我们的日常生活中无处不在,如天气的变化、股票市场的波动、人口的增长等。
数学上,这些随机事件可用随机变量表示,我们关心的是这些随机变量的发展和演化,进而了解问题的本质和规律。
这就是概率论和随机过程所要研究的内容。
马尔可夫过程是一种重要的随机过程,具有广泛的应用。
马尔可夫过程是指具有“无记忆性”的随机过程,它的未来状态只与当前状态相关,而与过去的状态无关。
具有马尔可夫性质的随机过程常常被称为“马尔可夫链”。
马尔可夫过程包含以下三个要素:状态空间、转移概率矩阵和初值分布。
其中状态空间是指系统可能处于的状态集合,转移概率矩阵是指从一个状态到另一个状态的概率,初值分布是指系统在初始状态的概率分布。
马尔可夫过程中的状态可以是离散的,也可以是连续的。
马尔可夫过程有以下几个重要的性质:无后效性、可达性、可约性、不可二分性、周期性和吸收性。
其中,无后效性是指过去的状态信息对于未来的状态预测没有影响;可达性是指从一个状态出发,存在一条路径能够到达另一个状态;可约性是指所有状态可以通过状态的合并来降低状态的个数;不可二分性是指任何一个状态要么是不可达状态,要么是不可分状态;周期性是指存在一些状态,从这些状态出发,经过若干次转移后又会回到该状态,形成一个循环;吸收性是指存在一些状态,从这些状态出发,不会回到其他状态,这些状态称为吸收态。
马尔可夫过程在实际应用中有广泛的应用,如金融工程、生物信息学、信号处理、通信系统等领域。
以下就几个领域举例说明。
一、金融工程金融市场的波动是随机的,因此建立一个能够描述金融市场运动的随机过程非常必要。
马尔可夫过程可以很好地描述金融市场的波动行为。
例如,利用高斯-马尔可夫过程可以描述股票价格的变化,通过将市场建模成一个马尔可夫链,可以对股票价格、波动率等重要金融指标进行预测。
二、生物信息学生物序列比对是生物信息学中一个非常重要的问题。
基于概率模型的生物序列比对方法包括基础的重叠模型和马尔科夫模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南城建学院马尔科夫过程在信源编码中的应用信息论基础*名:**专业名称:电子信息工程专业班级:0934121指导老师:**所在院系:电气与信息工程学院2014年12月20日摘要首先主要讲述了马尔科夫过程,对马尔科夫过程进行了简介,介绍了马尔科夫过程的数学描述方法并对马尔科夫过程的发展历史进行了简述。
在第二章节对马尔科夫过程在信源编码中的应用进行了简单的论述及讲解。
信息论中的编码主要包括信源编码和信道编码。
信源编码的主要目的是提高有效性,通过压缩每个信源符号的平均比特数或降低信源的码率来提高编码效率;信道编码的主要目标是提高信息传输的可靠性,在信息传输率不超过信道容量的前提下,尽可能增加信源冗余度以减小错误译码概率。
研究编码问题是为了设计出使通信系统优化的编译码设备随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。
随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。
目录1引言 (1)2马尔科夫过程 (2)3马尔科夫过程在信源编码中的应用 (4)4参考文献 (13)1 引言随着现代科学技术的发展,特别是移动通信技术的发展,信息的传输在社会科学进步的地位越来越重要。
因此如何更加高效的传输信息成了现代科技研究的重要目标。
马尔可夫过程是一类非常重要的随机过程。
很多在应用中出现的马氏过程模型的研究受到越来越多的重视。
在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。
我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。
由于研究马尔科夫过程在信源编码中的作用,可以利用马尔科夫模型减少信息传输的冗余,提高信息传输的效率。
马尔可夫信源是一类有限长度记忆的非平稳离散信源,信源输出的消息是非平稳的随机序列,它们的各维概率分布可能会随时间的平移而改变。
由于马尔可夫信源的相关性及可压缩性,它已成为信息领域的热点问题。
2马尔科夫过程2.1尔可夫过程简介马尔科夫过程(MARKOV Process)是一个典型的随机过程。
设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。
无后效的随机过程称为马尔科夫过程。
马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。
2.2马尔可夫过程的数学描述 2.2.1马尔科夫过程马尔可夫过程是下述这样的一种过程:在已经时刻t0系统所处状态的条件下,在时刻t0以后系统到达的情况与时刻t0以前系统所处的状态无关,完全取决于时刻t0系统所处的状态。
这个特性称为无后效性,也称为“马尔可夫性”。
马尔可夫过程数学定义如下:设{X (t),t ∈T }为随机过程,如果对于任意正整数n 及12...n t t t <<<,112211{(),(),...,()}0n n P X X X t x t x t x --===>,并且其条件分布为11221111{()|(),(),...,()}{()|()}n n n n n n n n P X X X X P X X t x t x t x t x t x t x ----≤====≤=则称{X(t),t ∈T}为马尔可夫过程,或称该过程具有马尔可夫性。
按照时间和状态的离散、连续情况马尔可夫过程可分为三类: (1) 时间与状态(空间)都离散的过程,称为马尔可夫链;(2) 时间连续与状态(空间)离散的过程,称为连续时间的马尔可夫过链; (3) 时间与状态(空间)都连续的马尔可夫过程。
2.2.2马尔可夫链马尔可夫链的数学定义:设有随机过程{Xn ,n ∈T},若对于任意的整数n ∈T 和任意的i 0,i 1,…i n+1∈I ,条件概率满足10111011{|,,...,}{|}n n n n n n n n P P i i i i i i X X X X X X ++++======= 则称{,}n n T X ∈为马尔科夫链,简称马氏链。
2.3马尔可夫过程的发展20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论;1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。
1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。
出于扩大极限定理应用范围的目的,马尔科夫在20世纪初开始考虑相依随机变量序列的规律,并从中选出了最重要的一类加以研究。
1906年他在《大数定律关于相依变量的扩展》一文中,第一次提到这种如同锁链般环环相扣的随机变量序列,其中某个变量各以多大的概率取什么值,完全由它前面的一个变量来决定,而与它更前面的那些变量无关。
这就是被后人称作马尔科夫链的著名概率模型。
也是在这篇论文里,马尔科夫建立了这种链的大数定律。
马尔科夫链的引入,在物理、化学、天文、生物、经济、军事等科学领域都产生了连锁性的反应,很快地涌现出一系列新的课题、新的理论和新的学科,并揭开了概率论中一个重要分支--随机过程理论蓬勃发展的序幕。
3马尔可夫过程在信源编码中的应用3.1通信中研究随机过程的重要性在通信、雷达探测、地震探测等领域中,都有传递信号与接收信号的问题。
传递信号时会受到噪声的干扰,为了准确地传递和接收信号,就要把干扰的性质分析清楚,然后采取办法消除干扰。
这是信息论的主要目的。
噪声本身是随机的,所以概率论是信息论研究中必不可少的工具。
信息论中的滤波问题就是研究在接收信号时如何最大限度地消除噪声的干扰,而编码问题则是研究采取什么样的手段发射信号,能最大限度地抵抗干扰。
在空间科学和工业生产的自动化技术中需要用到信息论和控制理论,而研究带随机干扰的控制问题,也要用到马尔可夫随机过程。
图3.1是通信系统模型。
从信息论的角度来说,通信的过程就是不确定度减小的过程。
而不确定性就是过程的随机性,所以从这个角度来说通信过程的研究可以归结到对于随机过程特性的研究过程。
图3. 1通信系统模型从图中可以看到,通信系统中用于表示信息的信号不可能是单一的确定的,而是具有不确定性和随机性的。
这种具有不确定性,随机性的信号即称为随机信号。
同时通信系统中存在各种干扰和噪声,这些干扰和噪声的波形更具有随机性,是不可预测的,我们称其为随机噪声。
尽管随机信号和随机噪声都是不可预测的,但是它们具有一定的统计规律性。
在通信系统中,编码过程分为信源编码和信道编码两种,信源编码是为了压缩信息之间的相关性,最大限度提高传信率,目的在于提高通信效率;而信道编码则相反,通过引入相关性,使信息具有一定的纠错和检错的能力从而提高传输信息的可靠性。
对于信源编码,实现降低相关性有两种途径,一种是信源概率分布均匀化,另一种是信源独立化。
从概率论和随机过程的角度来说,概率分布均匀化就是每个事件发生的概率大致相同,这样就会使每个信源携带的信息量基本相同,那么不确定性就达到最大,即传输过程中产生的信息量就最大;类似的信源独立化是通过对信源进行扩展达到的,通过信源的高次扩展,是扩展信源中每个符号出现的概率大致相同,这样也实现信息量最大化。
对于信道编码,由于信道中存在随机噪声,或者随机干扰,使得经过信道传输后所接收到的码元与发送码元之间存在差异,这种差异就是传输产生的差错。
一般信道噪声干扰越大,码元产生差错的概率也就越大。
所以信道编码的任务就是构造出以最小冗余度代价换取最大抗干扰性能的码字组合。
从信道编码的构造方法看,其基本思路是根据一定的规律在待发送的信息码中加入一些人为多余的码字。
这些码字的引入时信息之间具有相关性,虽然降低了信息所能携带的信息量,但是通过相关性可以克服由于随机噪声引入的误码情况。
3.2马尔可夫信源3.2.1马尔可夫信源概述马尔可夫信源是一类相对简单的有记忆信源,信源在某一时刻发出某一符号的概率除与该符号有关外,只与此前发出的有限个符号有关。
图3.2马尔可夫信源模型我们把前面若干个符号看作一个状态,可以认为信源在某一时刻发出某一符号的概率除了与该符号有关外,只与该时刻信源所处的状态有关,而与过去的状态无关。
信源发出一个符号后,信源所处的状态即发生改变,这些状态的变化组成了马氏链。
马尔可夫信源有记忆的特点:有限记忆长度;信源输出不仅与符号集有关,而且与状态有关;每发一个符号状态要发生转移。
所谓状态,是指有限的相关符号组构成的序列。
信源的状态集:12,...}{,j s e e e ∈信源基本符号集:12{,...},n x X X X ∈在每一状态下可能输出的符号: 输出随机符号序列:121......l l X X X X - 输出随机状态序列:121......l lS S S S -设l 时刻信源处于i e ,输出k x 的概率为(/),(/)kijillp p x e e e在l 时刻,其前一时刻的状态i e 之下而转移到j e 的状态转移概率为1p(/,)1l i l m l i o S e x x S e -=⎛⎫=== ⎪⎝⎭称为一步状态转移概率信源输出的随机状态序列:121......l l S S S S -构成一个马尔可夫链(/),(/)kijillp p x e e e 一般与时刻l 相关如果上述条件概率与时刻l 无关,称随机过程为时齐的。
即有:.(/)0j iL p e e >此时,信源输出的随机状态序列:121......l l S S S S -构成时齐马尔科夫链 马尔可夫信源:以信源输出符号序列内各符号间条件概率来反映记忆特性的一类信源,其满足下列条件:(1) 某时刻输出符号仅与此刻信源所处的状态有关;1p(/,)1l i l m l i o S e x x S e -=⎛⎫=== ⎪⎝⎭当具有时齐性时,满足(/)(/)kikilp p x e x e =(2) 某时刻所处状态由当前输出符号与前一时刻信源状态唯一确定1p(/,)1l i l m l i o S e x x S e -=⎛⎫=== ⎪⎝⎭马尔可夫信源输出的状态序列呈时齐马尔科夫链。
下面是一个马尔可夫信源的分析实例,马尔可夫信源的信源符号123{,,}X x x x ∈,其可能的状态12345{,,,,}S e e e e e ∈,状态转移图及31(/)1k i k p x e ==∑矩阵如下所示:a )矩阵表示b )一步转移矩阵图3.3马尔可夫信源的状态转移图及相关矩阵1112,11,.....(/.......)(/.......)m m mm m l l k k k x x x x p p x x x x x x ++⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,(/)(/)jikilp p e e x e =,311(/,)k l i k lp l j x S e x S e -===∑3.2.2m 阶马尔可夫信源信源输出当前符号仅与前面m 个符号有关的马尔可夫信源,这m 个符号为信源在当前时刻的状态。