2012年深圳大学912高等代数考研试题

合集下载

2012研究生考试数学二真题及答案

2012研究生考试数学二真题及答案

2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件.(B)充分非必要条件. (C )必要非充分条件.(D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0n a >,则1n n a ∞=∑为正项级数,S n =a 1+a 2+…a n 为正项级数1n n a ∞=∑的前n 项和。

正项级数前n 项和有界与正向级数1n n a ∞=∑收敛是充要条件。

故选A(4)设2k x k e I e =⎰ sin x d x (k=1,2,3),则有D(A )I 1< I 2 I 3.(B) I 2< I 2< I 3. (C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D)【解析】:2sin k x k e I e xdx =⎰看为以k 为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k e I e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f (x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2.(B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x ∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。

2012考研数学二真题详细答案解析

2012考研数学二真题详细答案解析
所以 f ' (0) = (−1)n−1n!
(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)即非充分地非必要条件.
【答案】:(A)


∑ ∑ 【解析】:由于 an > 0 ,则 an 为正项级数,Sn=a1+a2+…an 为正项级数 an 的前 n
D
∫∫ ∫ ∫ 【解析】:
xydσ = π dθ 1+cosθ r cosθ ⋅ r sin θ ⋅ rdr
0
0
D
∫ = 1 π sin θ ⋅ cosθ ⋅ (1 + cosθ )4 dθ 40
6
考研辅导
∫ = 16
πθ sin
cos θ
(2 cos2
【答案】:(D) 【解析】: 由二重积分的区域对称性,
∫∫ ( ) ∫ ∫ ( π
) x5 y − 1 dxdy =
2 −π
dx
1 sin x
x5 y − 1 dy = −π
2
⎛ 0 ⎞ ⎛ 0 ⎞ ⎛ 1 ⎞ ⎛ −1⎞
(7)设 α1
=
⎜ ⎜
0
⎟ ⎟

2
=
⎜ ⎜
1
⎟ ⎟

3
=
⎜ ⎜
−1⎟⎟
,
α
考研辅导
2012 年全国硕士研究生入学统一考试
数学二试题解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求 的,请将所选项前的字母填在答.题.纸.指定位置上.

2012年考研高数一真题及解析

2012年考研高数一真题及解析

4n 2 4n 3 2 n x 2n 2n . x ( 2 n 1 ) x 2 2n 1 n 0 n 0 n 0 2n 1
由于
1 x2 x 2n 2 n 1 (1 x 1) = ( 2 n 1 ) x ( x ) ( ) (1 x 2 ) 2 1 x2 n 0 n 0
向量组线性相关的为 (A) 1 , 2 , 3 (B) (C)
1,2 ,4
(C) 1 , 3 , 4
1
(D)
2 ,3 ,4
1 0 0 (6) 设 A 为 3 阶矩阵, P 为三阶可逆矩阵,且 P AP 0 1 0 , P (1,2 ,3 ) , 0 0 2
1 2
y( x 1)e , B f xy
2

x2 y2 2
x( y 1)e ,C f yy
2
1 2

x2 y 2 2
……6 分
2 1 在点(1,0)处,由于 B AC 2e 0 , A 2e
0,
……8 分
1 2
故 f (1,0) e
sin 2 tdt
0 2 0

……9 分 ……10 分
1 4
(19) (本题满分 10 分) 已知 L 是第一象限中从点 (0, 0) 沿圆周 x2 y2 2x 到点 (2, 0) ,再沿圆周 x2 y 2 4 到点 (0, 2) 的曲线段,计算曲线积分 I
3x
(A)
(B)
0 0 2
2 0 0 (D) 0 2 0 0 0 1
与参数为 4 的指数分布,则 (A) (D)

2012年考研数学真题(完整版)

2012年考研数学真题(完整版)

2012年全国硕士研究生入学统一考试数学一试题一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 (2) 设函数2()(1)(2)()xxnx y x e ee n =---L ,其中n 为正整数,则(0)y '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)limx y f x y x y→→+存在 (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15 (B) 13(C) 25 (D) 45 (8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为 ( )(A) 1 (B) 12 (C) 12- (D)1-二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)若函数()f x 满足方程'''()()2()0f x f x f x +-=及''()()2f x f x e +=,则()f x =(10)2x =⎰(11)(2,1,1)()|zgrad xy +y=(12)设(){},,1,0,0,0x y z x y z x y z ∑=++=≥≥≥,则2y ds ∑=⎰⎰(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵T E XX -的秩为 (14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p AB P C p AB C === 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)证明21ln cos 1(11)12x x x x x x ++≥+-<<-(16)求函数222(,)x y f x y xe +-=的极值(17)求幂级数22044321nn n n x n ∞=+++∑的收敛域及和函数 (18)已知曲线(),:(0),cos 2x f t L t y tπ=⎧≤<⎨=⎩其中函数()f t 具有连续导数,且'(0)0,()0(0).2f f t t π=><<若曲线L的切线与x 轴的交点到切点的距离恒为1,求函数()f t 的表达式,并求此曲线L 与x 轴与y 轴无边界的区域的面积。

2012年深圳大学教育学硕士考研真题及2015年考研复习规划

2012年深圳大学教育学硕士考研真题及2015年考研复习规划

深圳大学教育学硕士考研参考书-2012年真题2012年深圳大学教育学考研真题一、单项选择题:1.关注和探询“谁控制学校”、“谁制定学校管理的政策”、“谁决定教育的伦理、社会和经济目标”、“谁设置课程”的教育理论流派是()A. 制度教育学B. 改造主义教育理论C. 存在主义教育理论D. 批判教育学2.如下现象属于教育范畴的是()A. 爸爸针对小明懦弱的个性设法训练小明如何以牙还牙报复欺侮者B. 妈妈指导小明在与他人冲突中如何保护自己C. 老师严格管理以保护小明等弱小学生不再受欺负D. 小明在与同学的多次冲突中逐渐学会了如何与人和睦相处3. 下列现象中。

可以说明教育对社会发展起促进作用的是A. 班级授课制为普及义务教育提供了便利B. 普及义务教育在一定程度上满足了机器大生产对劳动力的要求C. 僵化的制度化教育导致社会拒绝学校毕业生D. 学生发展指导制度促进了学生学业、生涯、个性及社会性的发展二、辨析题:1、理想的师生关系以学生为中心。

2、马卡连柯倡导的集体教育即集体主义教育。

三、简答题:1、简要解释举例说明教育的负向功能。

2、17-18世纪德国的新大学运动。

2015年五阶段考研复习规划把考研作为一种娱乐,而不是被娱乐。

过程完美了,一切水到渠成,结果自然不错。

---------- 育明教育寄语第一阶段:预热(3月1日至7月1日)预热原因:育明教育老师认为考研复习比较理想的时间长度是6-9个月,因此从3月开始比较科学。

如果复习的时间太长,容易导致后劲不足。

正所谓“强弩之末势不能穿鲁缟”。

这是无数学子的血泪教训。

重点任务:1.收集考研信息,包括所报考专业的未来发展趋势、就业难易程度、所报考专业的难易程度、所报考学校的录取率、资料。

毕竟考研所需关注的点无非就两个:一是考研成功的可能性,二是研究生毕业后的就业问题。

2.根据所收集到的信息决定所报考的学校和专业。

对于这一点,育明教育团队认为,选择学校和专业的方案有两个:一是,选择尽可能好的学校,如北大、清华、人大、中传、北影、中央财经、南开、复旦,专业可以稍微差一点;二是,选择尽可能好的专业,如金融、经济、电影、新闻、法学、计算机、自动化等,学校可以差一点。

考研数学二历年真题

考研数学二历年真题

2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x xy x +=-的渐近线条数( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++ ,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 ( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭ . (11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x yy +-=满足条件11x y==的解为y = .(13) 曲线()20y x x x =+<上曲率为22的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<. (21)(本题满分10 分)(I)证明方程1x x x ++= n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根; (II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限.(22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解. (23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a 的值;(II) 求正交变换x Qy =将f 化为标准形.2011年全国硕士研究生入学统一考试数学二试题2010年考研数学二真题一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. (3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11 1 ()f x -2 0 2 3x-1O()C .()D .(7)设A 、B 均为2阶矩阵,**A B ,分别为A 、B 的伴随矩阵。

2012年考研数学真题及参考答案(数学二)

2012年考研数学真题及参考答案(数学二)

(B) I2< I2< I3.
(C) I1< I3 <I1,
(D) I1< I2< I3.
【答案】:(D)
∫ 【 解 析 】::
Ik =
k ex2 sin xdx
e
看为以
k
为自变量的函数,则可知
∫ Ik ' = ek2 sin k ≥ 0, k ∈(0,π ) ,即可知 Ik =
k ex2 sin xdx 关于 k 在(0,π ) 上为单调增
=
(
y3
+
C
)
1 y
又因为 y = 1时 x = 1,解得 C = 0 ,故 x = y2 .
(13)曲线 y = x2 + x(x < 0) 上曲率为
2
的点的坐标是________。
2
您所下载的资料来源于 考研资料下载中心
获取更多考研资料,请访问
又因为,当 x → 0 时, x − sin x 与 1 x3 等价,故 f (x) − a ~ 1 x ,即 k = 1
6
6
(16)(本题满分 10 分)
求 f ( x, y) = xe − x2 + y2 的极值。
2
【解析】: f ( x, y) = xe − x2 + y2 ,
2
您所下载的资料来源于 考研资料下载中心 获取更多考研资料,请访问
(C) x1< x2, y1< y2.
(D) x1< x2, y1> y2.
【答案】:(D)
【解析】: ∂f (x, y) > 0 , ∂f (x, y) < 0 表示函数 f (x, y) 关于变量 x 是单调递增的,关于变

2012考研真题及答案

2012考研真题及答案

2012考研真题及答案2012年的考研真题是许多考生备战考研的重要资料,了解这些真题并熟悉其中的答案对于备考考研的同学来说是至关重要的。

在本文中,将为您介绍2012年的考研真题及其答案。

第一部分:数学一2012年的考研数学一科目主要涵盖了数学分析、高等代数和概率论等内容。

以下是部分考题及其答案的概要。

题一:设函数f(x)在区间[a,b]上连续,且在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使得f(b)-f(a)=(b-a)f' ( ξ )。

解析:根据罗尔定理,由于f(x)在[a,b]上连续,且在(a,b)内可导,那么在[a,b]上有f(a)=f(b)。

根据拉格朗日中值定理,存在一点ξ∈(a,b),使得f' ( ξ )=(f(b)-f(a))/(b-a)。

所以,f(b)-f(a)=(b-a)f' ( ξ )。

题二:已知数列{a_n}的通项公式为a_n=2^n-3^n+4^n-5^n,求证数列{a_n}是等差数列。

解析:我们可以通过数学归纳法来证明这个结论。

当n=1时,a_1=2-3+4-5=-2。

当n=k时,假设a_k=2^k-3^k+4^k-5^k成立。

当n=k+1时,我们需要证明a_(k+1) =2^(k+1)-3^(k+1)+4^(k+1)-5^(k+1)也成立。

根据等差数列的性质,我们有a_(k+1)-a_k = (2^(k+1)-3^(k+1)+4^(k+1)-5^(k+1)) - (2^k-3^k+4^k-5^k)。

化简后可得a_(k+1)-a_k= -2 × 3^k + 3^(k+1) -2 × 5^k + 5^(k+1)。

通过整理和变换,我们得到a_(k+1)-a_k = -3^k (2-3) + 5^k (5-2) = 0。

因此,数列{a_n}是等差数列。

通过以上两道题目,我们可以看出2012年考研数学一科目的难度适中,考察了数学分析和代数的基本概念和推导方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档