感悟数学思想积累数学活动经验

合集下载

数学思想方法理论学习的心得体会(通用15篇)

数学思想方法理论学习的心得体会(通用15篇)

数学思想方法理论学习的心得体会数学思想方法理论学习的心得体会(通用15篇)我们得到了一些心得体会以后,写心得体会是一个不错的选择,这么做可以让我们不断思考不断进步。

是不是无从下笔、没有头绪?以下是小编为大家收集的数学思想方法理论学习的心得体会,仅供参考,欢迎大家阅读。

数学思想方法理论学习的心得体会篇120xx年10月,我有幸成为田老师“省能手工作站”中的成员。

在田老师的带领下,我们团队积极开展活动,首先确立了第一个研讨主题—————“关于小学数学思想方法在课堂中的渗透”。

为了更好的开展课题研究活动,我们首先收集了许多资料、文献,进行基础理论学习,为后面的研究实践奠定良好的基础。

通过一次又一次的学习、交流,让我对数学思维能力培养的重要性和小学阶段常用的数学思维方法有了更新、更深刻的认识。

数学思维能力是数学能力的核心,是我们运用数学知识分析和解决问题能力的前提。

但数学思维能力的形成需要一个漫长过程,是离不开一节节数学课的积淀的。

我想,作为一名数学老师,在课堂上不仅仅要传授数学知识,更重要的是渗透数学思想方法,培养孩子创新独立能力,这样才能有助于学生形成良好的思维习惯和品质,使其终生受益。

一、注重独立思考当我们遇到新问题的时候,首先要给予学生独立思考判断的空间。

如:这个问题中已经给出的条件是什么,要干什么?需要用到哪些知识,怎么来解决比较合理等等。

当学生的思维判断有困难时,我们进行适当的点拨,或跟他们合作进行研究来解决。

在这样的过程中,学生的思维力会得到训练和提高。

二、强调实践操作在学生的学习过程中,我们要创设有利于质疑、探究的情境,让学生在独立学习的基础上学会与他人合作。

同时,引导学生主动参与、乐于探索、勤于动手、学思结合,把抽象的知识具体化、形象化,从中感受认识、理解、掌握知识,在解决问题的过程中提高思维能力。

三、提倡逆向思维课堂的40分钟是有限的,但学生的思维方向不能是单一的。

这就要求我们在教学设计是,充分研读教材、整合资源,同时把握顺向、逆向这两条思维主线,通过“观察、实验、比较、归纳、猜想、推理、反思”等活动,优化思维品质,提高思维能力,培养创新精神和实践能力。

新课标学习心得之感悟数学思想

新课标学习心得之感悟数学思想

“双基”变“四基”之“感悟数学思想”——2011版《义务教育数学课程标准》学习心得之一党坝学区中心校蔡成2011版《义务教育数学课程标准》(以下简称〈新课标〉)已经颁布实施。

学习、贯彻、落实《新课标》精神,是当前时期的一项重要而紧迫的任务。

《新课标》内容很多,篇幅很长,本文仅对“感悟数学思想”谈点学习体会。

《新课标》在继承我国数学教育注重“双基”传统的同时,突出了培养学生创新精神和实践能力,提出了使学生理解和掌握“基本的数学思想和方法”,获得“基本的数学活动经验”。

在“课程基本理念”部分中提出:“教师教学应该……使学生理解和掌握基本的数学知识与技能,数学思想和方法,获得基本的数学活动经验”。

《新课标》在第四部分“实施建议”中又强调:“数学教学应根据具体的教学内容,注意使学生在获得间接经验的同时也能够有机会获得直接经验,即从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流等获得数学的基础知识、基本技能、基本思想、基本活动经验,促进学生主动地,富有个性地学习,不断提高发现问题和提出问题的能力,分析问题和解决问题的能力”。

课程目标的整体实现“不仅要重视学生获得知识技能,而且要激发学生的学习兴趣,通过独立思考或者合作交流,感悟数学的基本思想,引导学生在参与数学活动的过程中积累基本经验,帮助学生形成认真勤奋、独立思考、合作交流、反思质疑等良好的学习习惯。

”由此可以看出,《新课标》由原来提出的“双基”改变为“四基”,其中的“数学思想和方法”是一个极其重要的领域,是需要我们认真学习、研究、思考的。

那么,什么是数学思想?小学数学的基本思想有哪些?数学思想与数学方法二者之间是什么关系?在教学实践中教师应该如何渗透这些数学思想,如何引导学生在数学学习中感悟数学思想?一、什么是数学思想方法,数学思想与数学方法是什么关系。

所谓数学思想,是指人们对数学这门科学的理论和内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,又反过来支配和指导数学实践活动。

数学教学中 如何帮助学生积累活动经验

数学教学中 如何帮助学生积累活动经验

数学教学中如何帮助学生积累活动经验数学活动经验是一种过程性知识,它是指学习者在参与数学活动的过程中所形成的感性知识、情绪体验和应用意识。

在教学中,应从以下几个方面来主动探索学习过程,不断积累数学活动经验。

一、从已有生活经验入手,积累数学活动经验教师在教学中,要从学生已有的生活经验入手。

因知识来源于生活,来源于数学活动经验的积累,把数学知识与学生已有经验有机结合,让学生在主动参与学习的过程中不断积累数学活动经验是学生主动探索数学活动的过程。

如:郑老师在讲解《比较图形的面积》一课中,在学习新知识、解决新问题时,可通过数俄罗斯方格,把未知的转化为已知的,把陌生的转化为熟悉的,运用以往的经验和已有的知识去了解、认识新知识,探索、解决新问题。

二、从问题入手,生成数学活动经验教学中,教师引导学生从问题入手,通过独立思考,合作交流,不断探讨新知识的学习,从而积累数学活动经验。

如:新授环节郑老师先让学生自己计算出各个图形面积的大小,看哪些图形的面积是相等的。

再看一下小组内大多数同学都有的结论,并在这个结论前面打上对号;如果跟别人不一样,首先思考这个结论是否正确,要是正确就补充在报告单的下面,然后除了这些,你还能得出更多的结论吗?再给大家5分钟。

小组讨论,老师巡视指导。

5分钟后,教师请同学们迅速坐好。

有的同学还在继续思考着,可能还有一些是你们认为两个图形面积相等,但还没有拿出论证的,我们一会再来研究。

现在来汇报一下刚才讨论的结果,先汇报大多数同学都能发现的那些结论...... 在本环节中,郑老师通过让学生独立思考和小组合作学习,找出共同点,然后引导学生解决不同点,层层分析,在学习活动中领悟学习方法,在活动过程中积累活动经验,让学生记忆更深刻。

既提高了教学效率,又促进了学生不断积累活动经验。

三、从兴趣入手,提升数学活动经验教学中,要激发小学生探求数学知识的兴趣。

让学生在兴趣中分析信息来源、交流数学信息。

学生通过动手操作、自主探究来解决问题。

数学学习感悟心得及收获

数学学习感悟心得及收获

数学学习感悟心得及收获(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作资料、合同协议、条据文书、方案大全、职场资料、个人写作、教学资料、经典美文、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays for everyone, such as work materials, contracts and agreements, clauses, documents, plans, workplace materials, personal writing, teaching materials, classic American essays, essays, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!数学学习感悟心得及收获数学学习感悟心得及收获(通用8篇)怎么写数学学习感悟心得及收获才合适?看看吧。

以生为本,积累数学活动经验

以生为本,积累数学活动经验

以生为本,积累数学活动经验《数学课程标准》(2011版)中,课程目标将传统的“双基”修订为“四基”,增加了基本思想和基本活动经验两个目标。

什么是数学基本活动经验?怎样帮助学生积累数学基本活动经验?……一个个问号在脑中回旋。

此时,犹如及时雨,孙颖老师的团队用一节《比较图形的面积》向我们动态解读课标中的“基本活动经验”的课程目标。

下面就郑老师的课,以及我在教学中的实践,谈一谈我对帮助学生积累数学基本活动经验的思考。

一、目标制定,心中有学生,关注学生的经验我们在日常教学中经常出现这样的情况:我精心备课了,也努力上课了,课堂上的“我”激情飞扬,学生却“不买账”。

就像郑旭老师第一次试讲后的感受:本来会的还是会了,本来不会的还是不会。

为什么会出现这种情况?究其原因,是我们在备课时考虑最多的是学生的学,还是教师的教的问题,即“生本”与“文本”的关系问题。

在观看郑老师的课时,我关注了郑老师精彩的课堂,更关注了课堂之外的打磨过程。

学生学习知识要“知其然,知其所以然”,在观课中,我看到了精彩的课,更想了解精彩的课之所以精彩的原因何在?于是,我首先看到了教学的起点——教学目标制定的变化。

在第一稿教案设计中,郑老师的教学目标是这样的:1.借助方格纸,能直接判断图形面积的大小。

2.通过交流,知道比较图形面积大小的基本方法。

3.体验图形形状的变化与面积大小变化的关系。

这样的目标设计是我们的原生态,也是我们大多数时候所关注的教学目标。

从郑老师的介绍中,我们了解到,这是教学参考书上的目标,从中可以看到,目标的描述比较笼统,知识目标多于学生思维目标,缺少对学生学习经验、情感体验的关注。

经过两次试讲,两次反思、研讨,我们发现,郑老师的教学目标已经悄然变化,到第三稿,形成了以下教学目标:1.通过观察、交流等活动,使学生掌握比较图形面积大小的基本方法。

2.让学生在操作活动中,经历随机性到条理性的发现过程,体验学习数学的乐趣。

至此,教学目标中出现了这样的描述语“通过观察、交流等活动”“让学生在操作活动中”“经历”“体验”,这些词语的变化,标志着教师教学设计的关注点已经发生了质的变化。

学习《小学数学新课标》心得体会范文(3篇)

学习《小学数学新课标》心得体会范文(3篇)

学习《小学数学新课标》心得体会范文(3篇)研究《小学数学新课标》心得体会范文(精选3篇)写心得体会是一个不错的选择,可以帮助我们了解自己的研究、工作和生活状态。

以下是研究《小学数学新课标》心得体会范文(精选3篇),希望对大家有所帮助。

21世纪是知识经济时代,知识开展和更新日益加速。

现代教育观念强调以学生为主,要求受教育者不仅是学到什么,更重要的是学会怎样研究。

《新课程标准》中也指出,教师应激发学生的研究积极性,向学生提供充分从事数学活动的时机,帮助他们在自主探索和合作交流的过程中真正理解和掌握根本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

学会研究已经成为广阔教育工作者的共识。

研究成绩优秀学生之所以成绩优秀,重要原因之一,是因为他们研究方法比较科学。

要使全体学生都得到快速开展,教师必须加强学法指导。

课堂教学是教学的根本形式,而教学的本质是教与学的对立统一关系。

要探讨如何进行有效的研究方法指导,首先必须从教师的“教”开始。

在备课过程中,老师要探讨学生如何学,要根据不同的内容确定不同的研究目标,指导学生如何进行预、听课、记笔记、做复、做作业等,考虑到观察能力、想象能力、思维能力、推理能力及总结归纳能力的培养。

一位老师教学水平的上下,不仅表现在他对知识的传授,更主要表现在他对学生研究能力的培养。

在上课过程中,老师要变“走教案”为生成性课堂,激发学生的研究兴趣和创造力,让学生在实践中掌握知识和技能,提高学生的自主研究能力。

以上是研究《小学数学新课标》心得体会的精选范文,希望能够对大家有所启发。

在修订《课标》时,除了继承数学教育中注重“双基”传统的理念外,还强调了培养学生创新精神和实践能力,提出了使学生理解和掌握“根本的数学思想和方法”,获得“根本的数学活动经验”。

此外,还增加了发现和提出问题能力的课程目标。

现代数学教育越来越注重培养学生的数学思想方法,这是数学研究的灵魂。

数学思想方法是伴随学生知识、思维的开展逐渐被理解的,数学思想方法的感悟是在学生数学活动中积累的。

积累数学活动经验,提升学生数学素养

积累数学活动经验,提升学生数学素养
教学创新
积累数蒋 炼
《数学课程标准 (2011)》 明 确提出:数学活动经验的积累是提 高学生数学素养的重要标志。帮助 学生积累数学活动经验是数学教学 的重要目标,是学生不断经历、体 验各种数学活动过程的结果。数学 活动经 验 需 要 在 “做” 的 过 程 和 “思考” 的过程中积淀,是在数学 学习活动过程中逐步积累的。在小 学数学课堂教学中如何结合具体学 习内容,设 计 有 效 的 数 学 探 究 活 动,使学生经历数学的发生发展过 程,掌握基本的数学知识与技能, 积累基本的数学活动经验,感悟基 本的数学思想与方法,是每一个小 学数学教师需要潜心思考与研究的 问题。
形、梯形等平面图形面积的探究过 程中,学生 再 也 没 有 出 现 此 类 猜 测,而猜测的结果也与验证后的结 果越来越近。事实证明,学生不再 仅仅停留在过去已有经验的基础之 上,而是做 出 了 更 深 刻 全 面 的 思 考,考虑问题的深度与广度也将得 到更大的拓展。
教师在课堂上,不仅要设计有 效的数学活动来帮助学生积累基本 的活动经验,更要深入到学生中去 了解他 们 在 活 动 过 程 中 的 思 想 动 态,了解他们的思维方式,关注课 堂的动态生成,帮助学生将负面经 验转化为正面经验。
一、联系生活实际,生活经验 上升为数学经验
数学来源于生活,然而生活经 验并不是数学活动经验。新课程理 念下的数学教学应该是在一定的生 活情境之下引导学生发现问题、提 出问题、解决问题的过程。挖掘学 生已有的生活经验并以此为载体, 精心设 计 学 生 乐 于 参 与 的 数 学 活 动,引导学生提出自己真正关心的 有价值的数学问题,想办法解决问 题,在此 “做” 的 过 程 中 就 能 将 生活经验上升为数学活动经验。以 北师大版小学数学义务教育教科书 为例,在编排上每一个单元每一个 重要内容的呈现都采用了情境加问 题串的叙述方式,这样的设计本身 就着眼于学生的需要,有利于学生 体会数学与生活的联系。教师不仅

积累数学活动经验

积累数学活动经验

如何为学生积累数学活动经验公园路小学郝翠荣学者史宁中曾说过:“我们必须清楚,世界上有很多东西是不可传递的,只能靠亲身经历。

智慧并不完全依赖知识的多少,而依赖知识的运用、依赖经验,教师只能让学生在实际操作中磨炼。

”荷兰数学教育家弗赖登塔尔也说:“数学学习是一种活动,这种活动与游泳、骑自行车一样,不经过亲身体验,仅仅从看书本、听讲解、观察他人的演示是学不会的。

”新修订的《数学课程标准》在“双基”的基础上提出了“四基”:即基础知识、基本技能、基本思想和基本活动经验。

这就要求我们的数学教学在继续保证“双基”的基础上,还必须启发学生领会数学的基本思想,积累数学活动的基本经验。

数学活动经验就是指学习者在参与数学活动的过程中所形成的感性知识、情绪体验和应用意识.感性知识是指具有学生个人意义的过程性知识,也包括学生大脑中那些未经训练的、不那么严格的数学知识;情绪体验是指对数学的好奇心和求知欲、在数学学习活动中获得的成功体验、对数学严谨性与数学结果确定性的感受以及对数学美的感受与欣赏等;应用意识包括“数学有用”的信念、应用数学知识的信心、从数学的角度提出问题与思考问题的意识以及拓展数学知识应用领域的创新意识。

基本数学活动经验是学生在数学活动过程中的一种体验,随着学生年龄的增长,这种体验越发丰富,成为学生思维的载体。

学生原来的数学活动经验是新的学习活动的基础,而这样的数学活动经验又将是后续数学活动的基础。

因此,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

对于数学活动经验,我的理解是:首先是“数学”的,所从事的活动要有明确的数学目标,没有数学目标的活动不是“数学活动”;其次是“经验”的,所谓经验,即由实践得来的知识或技能。

经验是一种感性认识,包含双重意义,一是经验事物,二是经验的过程。

数学活动经验是数学的感性认识,是在数学活动中积累的;再次是“活动”的。

前苏联著名数学教育家斯托利亚尔的《数学教育学》认为:“数学教学是数学活动的教学,是思维活动的教学”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

感悟数学思想、积累数学活动经验
———“三角形的面积”教学设计与思考
◇张红娜“三角形的面积”是传统的教学内容。

既为传统的内容,则必有传统的教学方法与之相应:课前,让学生分别准备完全一样的锐角三角形、直角三角形和钝角三角形卡片各两个。

课上,要求学生动手将两个完全一样的三角形拼成一个平行四边形,然后组织交流讨论:三角形与拼成的平行四边形有什么关系?最后得出三角形面积的计算方法。

整个学习过程中,学生经历了动手操作、讨论交流等学习活动和由直观演示到抽象概括的过程,也似乎符合新课程所倡导的新理念。

但是,如果细细思考和品味这样的教学,其中的问题和困惑便应运而生:
一、是对学生真实学情的“顺应”,还是教材编排和教师设计意图的“强加”?我一直有这样的困惑:学生在学习长方形、正方形和平行四边形的面积时,都没有事先准备两个完全一样的图形的经验,为什么学习三角形的面积,事先要做这样的准备?这是学生自身学习的需要,还是教师教学的需要?是对学生真实学情的“顺应”,还是教材编排和教师设计意图的“强加”?学生是在主动学习还是依然在被动接受?
二、是三角形转化为平行四边形,还是平行四边形转化为三角形?
把两个完全一样的三角形拼成一个平行四边形,实现三角形到平行四边形的转化,这是大家公认的转化思路。

在学生真实的思维中,这样的转化是被动的。

把平行四边形的其中两条邻边“挤压”为一条边从而转化为三角形并保留转化痕迹,或直接沿对角线把平行四边形分成两个完全一样的三角形,直观看到三角形的面积正好为原平行四边形面积的一半,岂不是更符合学生的认知习惯和认知规律?
三、是让学生直观感知,还是引发学生深层思考?
直观的拼摆,固然能帮助学生感知和理解三角形与平行四边形面积间的关系,对三角形面积计算公式的推导具有一定的价值。

但作为新课程理念下的数学学习,是让学生只“知其然”,还是让学生既“知其然”,也能“知其所以然”?是让学生匆匆地参与数学活动,还是通过数学活动让学生积累经验?是让学生牢记数学结论,还是引导学生感悟数学思想方法,引发他们深层的数学思考?
修订后的数学课程标准明确提出,通过义务教育阶段的数学学习,学生能“获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想和基本活动经验”。

在每个人发展的过程中,需要运用到的知识和技能可能只是他所学全部知识和技能的一部分,而在学习掌握知识和技能的过程中感悟到的基本思想和基本活动经验,则能广泛地迁移到学习和工作中。

正是基于上述思考,我在本节课的教学中做
了如下尝试。

教学过程
一、复习铺垫
教师围绕以下问题引导学生复习旧知:
1.我们认识的平面图形有哪些?
根据学生的回答课件出示:
2.你会计算哪些平面图形的面积?
课件留下:
3.它们的面积怎么计算?
(课件引出长方形、正方形、平行四边形面积的计算方法及字母公式,如下)4.沟通并提升:当平行四边形的一组底和高正好是它的一组相邻的底边时,就成了长方形或正方形。

作为特殊的平行四边形,长方形和正方形的面积计算方法是否也可以用 S=ah 来表示?
师小结:看来,知识之间的“联系”(板书:联系)是非常紧密的。

找到了这些联系,也就抓住了数学问题的实质,我们的进一步学习就有了依据。

因为很多时候,我们遇到新问题时,都要利用知识间的联系将新知识“转化”为学过的旧知识来解决。

比如,学习平行四边形的面积时,就把它转化成长方形从而发现它的面积计算方法。

这是我们学习数学的一个很重要并且很有效的“招数”,掌握和使用这种“招数”,你会感受到数学学习的其乐无穷!
二、引入新课
师:通过复习,我们进一步理解了这些平行四边形的面积计算方法,知道它们的面积与底和高有关系:用一组对应的底和高相乘就可以求出这些特殊的四边形的面积。

如果把这些四边形变成由三条线段围成的图形———三角形(课件动态演示如下图),三角形的面积该怎样计算呢?这节课,我们就重点来探讨这个问题。

三、学习新知
1.激励引导。

师:和长方形、正方形、平行四边形一样,三角形的面积也有它的计算方法。

同学们想知道吗?(生异口同声:想!)是让张老师直接告诉你们,还是你们自己来发现?(生:自己发现!)同学们真是好样的!因为,只有自己发现的问题才能掌握得最牢固,记忆得最深刻!我尊重你们的意见,并且愿意帮助你们来学习!不过,我们的学习可不能急于求成,因为这样往往无从下手。

我有个建议:我们的学习可以从提出具体的问题入手,通过一个个细小的问题再步步深入地去解决大问题。

每个问题出现后,我们都可以先做出大胆的猜想,然后再通过一定的方法进行验证。

如果这样带着问题有层次地思考,我们的学习不但有成效,而且非常有意义!咱们一起来试一试,好吗?
2.尝试探究。

(1)三角形的面积与底和高是否有关系?
①提出问题。

师:张老师给大家带个头,先提出一个问题:三角形也有底和高,那么,它的面积与底和高是否有关系呢?
②学生猜想。

③思考验证。

(教师用课件演示)
④得出结论。

三角形的面积与它的底和高有关系:底或高变化,它的面积就随之发生变化。

(2)三角形的面积与底和高有什么关系?
师:接下来,你们有什么问题要提出来?
生:三角形的面积与它的底和高有什么关系?
师:你们猜猜看,面积与底和高会有什么关系?
生:三角形的面积会不会也是底和高相乘啊?(师顺势板书:S=ah?)
师:三角形的面积计算方法是不是大家猜想的结果呢?我们还要通过认真的思考来验证。

这个重要的任务要交给大家来完成,敢接受挑战吗?在你们开始行动之前,张老师先做个提醒,说不定对大家有所帮助:①三角形按角分为锐角三角形、直角三角形和钝角三角形,每种三角形都有三组对应的底和高。

请你选择一种三角形,再选择它其中的一组对应底和高。

然后思考:这一组底和高相乘计算出的是不是三角形的面积?如果不是,那应该是谁的面积?把你的想法在练习本上画出来。

②如果学习起来有困难,把你学过的知识搬出来,试着用知识间的联系来帮忙,或用转化的方法来解决问题。

③如果需要的话,同桌或小组之间可以共同交流探讨,也可以向张老师求助。

学生开始尝试探究:或独立,或合作。

教师巡视并参与学习,及时收集学生的学习情况。

教师组织学生交流自己或小组探究的“成果”:
生 1:我选的是锐角三角形的一组底和高,它们相乘算出的不是三角形的面积,而是外面这个平行四边形的面积。

这个平行四边形的底和高正好与三角形的底和高一样,面积正好是三角形的 2 倍,所以用 ah 先算出平行四边形的面积,再除以 2 就是三角形的面积了。

生 2:我选的是直角三角形的一组底和高,它们相乘正好是长方形的面积,再除以 2 就是直角三角形的面积了。

生 3:我选的是钝角三角形的一组底和高,底和高相乘也是先算出了平行四边形的面积,再除以 2 就是三角形的面积。

师小结:大家很会思考!发现的结果也很有价值!三角形的面积的确与它的底和高有关,用底和高相乘算出的不是三角形的面积,而是与三角形等底等高的平行四边形的面积,而这个平行四边形的面积正好是三角形面积的 2 倍,所以用底×高÷2 就可以算出三角形的面积了。

四、尝试练习(略)
五、学习总结(略)
六、拓展延伸
师:三角形的面积计算方法,根据学过的知识,还可以通过其他方法来探究和发现,有兴趣的同学可以课下试一试。

课后思考
一、感悟数学思想
本节课的教学,我抓住了“转化”这一核心思想并贯穿在教学的始终:在复习长方形、正方形和平行四边形面积计算方法的基础上加以提升,指出可以统一用“底×高”计算三者的面积。

这样,既沟通了知识间的联系,让学生感受到知识在联系中的不断发展,也为下面学习三角形面积计算公式的推导做好了铺垫;接着,在引入新课环节,我利用课件动态演示“四边形”变“三角形”的过程(如下图),实则已经暗示
了“平行四边形”转化为“三角形”的过程,为发现三角形面积与平行四边形面积的关系埋下了伏笔;在组织学生学习时,我有意识地、不断地对学生进行这样的引导:知识之间的“联系”是非常紧密的。

找到了这些联系,也就抓住了数学问题的实质,我们的进一步学习就有了依据……如果学习起来有困难,把你学过的知识搬出来,试着用知识间的联系来帮忙,或用转化的方法来解决问题。

在课的结尾,我依然引导学生感悟到“转化”在数学学习中的作用和魅力。

二、积累数学活动经验
在三角形面积的探究过程中,我鼓励学生积极思考、自主探索、合作交流,经历“提出问题———大胆猜想———学习验证———推理发现”的数学学习过程。

教师则努力做到积极参与、组织引导、扶放有度。

如:“我尊重你们的意见,并且愿意帮助你们来学习!”“我有个建议……咱们一起来试一试,好吗?”“张老师给大家带个头,先提出一个问题……”“在你们开始‘行动’之前,张老师先做个简单的提醒,说不定对大家有所帮助。

”“如果需要的话,同桌或小组之间可以共同交流探讨,也可以求助张老师。

”教师为学生的学习活动提供了宽松的环境,学生在学习的过程中不盲目、不盲从,有目的、有思路、有方法,这样的学习活动必定能积累到宝贵的活动经验,这样的学习活动必定是有效的学习活动。

(作者单位:河南许昌市普通教育教学研究室)。

相关文档
最新文档