最新实验六主成分分析
主成分分析报告

主成分分析报告第一点:主成分分析的定义与重要性主成分分析(Principal Component Analysis,PCA)是一种统计方法,它通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这组变量称为主成分。
这种方法在多变量数据分析中至关重要,尤其是在数据的降维和可视化方面。
在实际应用中,数据往往包含多个变量,这些变量可能存在一定的相关性。
这样的数据集很难直接进行分析和理解。
主成分分析通过提取数据中的主要特征,将原始的多维数据转化为少数几个互相独立的主成分,使得我们能够更加清晰地看到数据背后的结构和模式。
主成分分析的重要性体现在以下几个方面:1.降维:在数据集中存在大量变量时,通过PCA可以减少数据的维度,简化模型的复杂性,从而降低计算成本,并提高模型的预测速度。
2.去除相关性:PCA能够帮助我们识别和去除变量间的线性相关性,使得我们分析的是更加纯净的独立信息。
3.数据可视化:通过将多维数据映射到二维或三维空间中,PCA使得数据的可视化成为可能,有助于我们直观地理解数据的结构和模式。
4.特征提取:在机器学习中,PCA可以作为一种特征提取工具,提高模型的性能和泛化能力。
第二点:主成分分析的应用案例主成分分析在各个领域都有广泛的应用,下面列举几个典型的案例:1.图像处理:在图像处理领域,PCA被用于图像压缩和特征提取。
通过将图像转换到主成分空间,可以大幅度减少数据的存储空间,同时保留图像的主要信息。
2.金融市场分析:在金融领域,PCA可以用来分析股票或证券的价格动向,通过识别影响市场变化的主要因素,帮助投资者做出更明智的投资决策。
3.基因数据分析:在生物信息学领域,PCA被用于基因表达数据的分析。
通过识别和解释基因间的相关性,PCA有助于揭示生物过程中的关键基因和分子机制。
4.客户细分:在市场营销中,PCA可以用来分析客户的购买行为和偏好,通过识别不同客户群的主要特征,企业可以更有效地制定市场策略和个性化推荐。
主成分分析

主成分分析法实验报告一、实验名称:主成分分析二、实验目的:利用计算机实现主成分分析,完成综合评价。
三、实验原理:四、实验过程:(一)数据录入:将相关指标数据录入如下表(二)数据标准化:为避免不同量纲引起的大数吃小数问题,我们对相关数据进行标准化,结果如下:表1:标准化后的数据录入表表2:描述统计量表表1是标准化后的相关数据,表2给出了标准化过程中涉及到的均值、标准差等数值。
(三)分析表3:公因子方差表表3给出了该次分析从每个原始变量中提取的信息,表格下的表注表明,该次分析使用主成分分析完成的。
可以看出除百元销售收入实现利税信息损失较大外,主成分几乎包含了各个原始变量至少85%的信息。
表4:相关矩阵表4为各指标因素量化后的相关矩阵。
表5:解释的总方差表由输出结果表5可以看出,前两个主成分y1,y2的方差和占全部方差的的比例为84.7%。
我们就选取y1为第一主成分,y2为第二主成分,且这两个主成分的方差和占全部方差的84.7%,即基本上保留了原来的指标的信息,这样由原来的9个指标转化为2个新指标,起到了降维的作用。
表6:因子载荷矩阵因子载荷矩阵(表6)是主成分和变量间的因子负荷量,即相关系数,代表相关度。
并非主成分的系数;所以我们要通过该成分矩阵计算出主成分的系数,计算结果如表7:表7:主成分系数表7中,a1代表第一主成分与各变量间的因子负荷量,a2代表第二主成分与各变量间的因子负荷量;u1代表y1的系数,u2代表y2的相应系数。
由此可得到两个主成分y1、y2的线性组合。
(四)主成分得分及分类表8:主成分得分为了分析各样品在主成分所反映的经济意义方面的情况,还将标准化后的原始数据代入主成分表达式中计算出各样品的主成分得分,如表8,得到28个省的、直辖市、自治区的主成分的分。
将这28个样品在平面直角坐标系上描出来,进而得到样品分类,如下图所示:由上图可以看出,分布在第一象限的是上海、北京、天津、广西四个省区,这四个省区的经济效益在全国来说属于较好的,上海经济效益最好。
华南理工大学数学实验实验六

2 问题描述
2.1 问题描述 利用各种增量人脸识别算法:基于回归模型的增量人脸识别算法,最远子空 间增量分类算法、 最近最远子空间增量分类算法或其他快速算法,选择其中的一 种或几种算法,对给定的人脸数据库进行识别测试,得出识别正确率和(或)运 行时间。并与第 5 节不采用增量学习的算法进行比较,分析实验结果。在实验过 程中, 可以察看原始的人脸图片,哪些人脸识别错误?该算法有哪些优缺点?改 进方向是什么?如果有新的样本加入训练集合中,如何处理? 当训练集的样本数较多时,如何处理? (1) 传统的处理方法是,将新增加的训练样本和原来的训练样本放在一起, 重新训练模型,将会造成时间和存储空间的巨大开销,严重影响计算的效率。 (2) 这会使得训练数据库的样本不断增多 给定的数据库为: Yale_32x32 , Yale_64x64 , ORL_32 x32, ORL_64 x64, YaleB_32x32。例如 Yale_32x32.mat,包含两个变量,一个是 fea:165*1024,表 示该数据集含有 165 个人脸,每个人脸是 1024 维(32*32 的人脸数据,已经被 拉成了 1014 维的向量),一个是 gnd:165*1,代表这 165 个人脸的类别,分别 用 1,2,…,15 表示。
1 实验目的....................................................................................................................3 2 问题描述....................................................................................................................3 2.1 问题描述............................................................................................................. 3 2.2 问题背景............................................................................................................. 4 3 文献调研....................................................................................................................4 3.1 国内外研究现状................................................................................................. 5 3.2 常用人脸识别算法............................................................................................. 6 3.2.1 基于回归模型的人脸识别方法................................................................... 6 3.2.2 基于神经网络的人脸识别方法................................................................... 6 3.2.3 基于特征脸的人脸识别方法....................................................................... 7 3.3 利用增量学习改进的人脸识别......................................................................... 9 4 算法与编程..............................................................................................................10 4.1 编程流程........................................................................................................... 10 4.2 文件结构........................................................................................................... 12 4.3 编程细节........................................................................................................... 14 4.4 实现代码........................................................................................................... 15 5 实验结果..................................................................................................................27 5.1 命令行输出....................................................................................................... 27 5.2 结果分析........................................................................................................... 30 6 实验总结和实验感悟..............................................................................................33 6.1 实验总结........................................................................................................... 33 6.2 实验感悟........................................................................................................... 33 7 参考文献..................................................................................................................34 2
主成分变换实验报告

一、实验背景随着遥感技术的快速发展,遥感图像数据在地理信息系统、环境监测、资源调查等领域得到了广泛应用。
然而,遥感图像数据通常具有高维、大数据量等特点,给数据处理和分析带来了巨大挑战。
主成分变换(PCA)作为一种有效的数据降维方法,能够将高维数据转化为低维数据,同时保留大部分信息,在遥感图像处理中具有广泛的应用。
二、实验目的本次实验旨在通过主成分变换方法对遥感图像进行降维处理,分析不同主成分对图像信息的贡献,并探讨主成分变换在遥感图像中的应用。
三、实验原理主成分变换是一种基于特征值分解的降维方法。
其基本原理如下:1. 对原始数据进行标准化处理,消除不同量纲的影响;2. 计算原始数据的协方差矩阵;3. 对协方差矩阵进行特征值分解,得到特征值和特征向量;4. 根据特征值的大小,选取前k个特征向量,构成主成分变换矩阵;5. 对原始数据进行主成分变换,得到降维后的数据。
四、实验步骤1. 读取遥感图像数据;2. 对图像数据进行预处理,包括去噪声、归一化等;3. 计算图像数据的协方差矩阵;4. 对协方差矩阵进行特征值分解;5. 根据特征值的大小,选取前k个特征向量,构成主成分变换矩阵;6. 对原始图像数据进行主成分变换;7. 分析不同主成分对图像信息的贡献;8. 生成降维后的图像,并进行可视化。
五、实验结果与分析1. 主成分分析结果:经过主成分变换后,前k个主成分的方差贡献率逐渐减小,其中第一主成分的方差贡献率最大,说明第一主成分包含了原始图像的大部分信息。
2. 主成分可视化:通过将主成分绘制成散点图,可以直观地观察到不同主成分之间的相关性。
可以发现,第一主成分与其他主成分之间的相关性较低,说明主成分变换有效地降低了数据之间的冗余。
3. 降维后的图像:将原始图像进行主成分变换后,得到的降维图像具有较低的分辨率,但能够保留原始图像的主要特征。
在遥感图像处理中,可以通过降维后的图像进行后续分析,如目标检测、分类等。
主成份数据分析报告Spss和R语言

一、实验题目主成份分析实验二、实验目的通过本次实验对数据的处理,掌握主成份分析的原理,熟悉主成份分析在SPSS软件和R语言中的实现。
三、实验原理四、实验数据如下给出中国近年国民经济主要指标统计,用主成分分析法对这些指标提取主成份,写出提取的主成份与这些指标之间的表达式。
原始数据如下:四、SPSS实验步骤○1、定义变量②、输入数据③在菜单栏中选择“分析”→“降维”→“因子分析”。
④、除了“年份”选项都选入变量列表。
⑤、单击“描述”→选中“原始分析结果”复选框→“度”设为线性;选中“系数”⑥单击“抽取”,选中“未旋转的因子解”复选框。
其余默认⑦、选中“得分”→“保存为变量”⑧、选中“转换”→“计算变量”,数字表达式中分别输入“a9=b9/SQR(3.849)”“a10=b1 0/SQR(1.808)”,由载荷矩阵得到主成份特征向量矩阵(a9 a10),(变量视图中改变增加的变量b9、b10、a9、a10的小数位数为3)五、SPSS实验结果与分析1、运行结果图如下所示:2、spss结果分析:由成分矩阵可以得到各个变量的线性组合表达的主成份:F1=0.322*全国人口+0.448*农林牧渔业总产值+0.497*工业总产值+0.475*国内生产总值+0.392*油料+0.432*全社会投资总额+0.458*棉花-0.093*粮食;F2=-0.021*全国人口+0.267*农林牧渔业总产值+0.062*工业总产值+0.027*国内生产总值-0.368*油料+0.261*全社会投资总额-0.126*棉花+0.719*粮食。
在第一主成份中,除了粮食以外的变量的系数比较大,可以看成反映那些变量的综合指标;在第二主成份中,变量粮食的系数比较大,可以看成反映粮食的综合指标。
主成分分析是一种矩阵变换,各个主成分并不一定有实际意义,本题目中的主成份含义不明确。
由系数相关矩阵,各个变量之间都有一定的相关关系,一些相关系数接近于1,适合用主成分分析。
请解释6载样缓冲液中各成分的作用

6×载样缓冲液是一种专门用于实验室生物学实验的溶液,它的主要成分有氯化钠、磷酸、磷酸氢钾、DTT和葡萄糖。
氯化钠是作为缓冲剂,可以维持溶液中离子浓度的稳定,避免pH值偏离实验要求的范围,从而确保实验结果的准确性。
磷酸作为酸性缓冲剂,可以降低溶液的pH值,使实验更加准确。
磷酸氢钾是一种弱酸,可以抑制核酸和蛋白质的氧化作用,从而有效保护样品中的生物大分子,从而确保实验结果的准确性。
DTT是一种双胜氨基酸,具有抗氧化的特性,可以有效抑制和抵抗蛋白质的氧化,从而保证实验结果的准确性。
葡萄糖是一种常见的碳源,具有营养支持的作用,有利于样品的生长和繁殖,从而保证实验结果的准确性。
总之,6×载样缓冲液的各成分均具有维持实验环境稳定、保护样品物质完整性以及支持样品生长繁殖等作用,从而使实验结果更加准确可靠。
主成分分析实验报告

主成分分析地信0901班陈任翔010******* 【实验目的及要求】掌握主成分分析与因子分析的思想和具体步骤。
掌握SPSS实现主成分分析与因子分析的具体操作。
【实验原理】1.主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。
通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,即所谓主成分,并用以解释资料的综合性指标。
由此可见,主成分分析实际上是一种降维方法。
2.因子分析研究相关矩阵或协方差矩阵的内部依赖关系,它将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。
【实验步骤】1.数据准备●1)首先在Excel中打开“水样元素成分分析数据”,删除表名“水样元素成分分析数据”,保存数据。
●3)数据格式转换。
2.数据描述分析操作1)Descriptives过程点击Analyze下的Descriptive Statistics选项,选择该选项下的Descriptives●选中待处理的变量(左侧的As…..Hg等);●点击使变量As…..Hg 移至Variable(s)中;●选中Save standrdized values as variables;●点击Options2)数据标准化标准化处理后的结果2.主成分分析1)点击Analyze下的Data Reduction选项,选择该选项下的Factor过程。
选中待处理的变量,移至Variables2)点击Descriptives判断是否有进行因子分析的必要Coefficients(计算相关系数矩阵)Significance levels(显著水平)KMO and Bartlett’s test of sphericity (对相关系数矩阵进行统计学检验)Inverse(倒数模式):求出相关矩阵的反矩阵;Reproduced(重制的):显示重制相关矩阵,上三角形矩阵代表残差值,而主对角线及下三角形代表相关系数;Determinant(行列式):求出前述相关矩阵的行列式值;Anti-image(反映像):求出反映像的共同量及相关矩阵。
主成分分析实验报告

一、实验目的本次实验旨在通过主成分分析(PCA)方法,对给定的数据集进行降维处理,从而简化数据结构,提高数据可解释性,并分析主成分对原始数据的代表性。
二、实验背景在许多实际问题中,数据集往往包含大量的变量,这些变量之间可能存在高度相关性,导致数据分析困难。
主成分分析(PCA)是一种常用的降维技术,通过提取原始数据中的主要特征,将数据投影到低维空间,从而简化数据结构。
三、实验数据本次实验采用的数据集为某电商平台用户购买行为的调查数据,包含用户年龄、性别、收入、职业、购买商品种类、购买次数等10个变量。
四、实验步骤1. 数据预处理首先,对数据进行标准化处理,消除不同变量之间的量纲影响。
然后,进行缺失值处理,删除含有缺失值的样本。
2. 计算协方差矩阵计算标准化后的数据集的协方差矩阵,以了解变量之间的相关性。
3. 计算特征值和特征向量求解协方差矩阵的特征值和特征向量,特征值表示对应特征向量的方差,特征向量表示数据在对应特征方向上的分布。
4. 选择主成分根据特征值的大小,选择前几个特征值对应特征向量作为主成分,通常选择特征值大于1的主成分。
5. 构建主成分空间将选定的主成分进行线性组合,构建主成分空间。
6. 降维与可视化将原始数据投影到主成分空间,得到降维后的数据,并进行可视化分析。
五、实验结果与分析1. 主成分分析结果根据特征值大小,选取前三个主成分,其累计贡献率达到85%,说明这三个主成分能够较好地反映原始数据的信息。
2. 主成分空间可视化将原始数据投影到主成分空间,绘制散点图,可以看出用户在主成分空间中的分布情况。
3. 主成分解释根据主成分的系数,可以解释主成分所代表的原始数据特征。
例如,第一个主成分可能主要反映了用户的购买次数和购买商品种类,第二个主成分可能反映了用户的年龄和性别,第三个主成分可能反映了用户的收入和职业。
六、实验结论通过本次实验,我们成功运用主成分分析(PCA)方法对数据进行了降维处理,提高了数据可解释性,并揭示了数据在主成分空间中的分布规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六主成分分析实验课:主成分分析实验目的理解主成分(因子)分析的基本原理,熟悉并掌握SPSS中的主成分(因子)分析方法及其主要应用。
一、相关知识1 概念因子分析(Factor analysis):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。
主成分分析(Principal component analysis):是因子分析的一个特例,是使用最多的因子提取方法。
它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。
选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。
从数学角度来看,主成分分析是一种化繁为简的降维处理技术。
两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。
2 特点(1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。
(2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。
(3)因子变量之间不存在显著的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显著的相关关系。
(4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。
在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。
显然,在一个低维空间解释系统要比在高维系统容易的多。
3 类型根据研究对象的不同,把因子分析分为R型和Q型两种。
当研究对象是变量时,属于R型因子分析;当研究对象是样品时,属于Q型因子分析。
但有的因子分析方法兼有R型和Q型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。
4分析原理假定:有n 个地理样本,每个样本共有p 个变量,构成一个n ×p 阶的地理数据矩阵 :当p 较大时,在p 维空间中考察问题比较麻烦。
这就需要进行降维处理,即用较少几个综合指标代替原来指标,而且使这些综合指标既能尽量多地反映原来指标所反映的信息,同时它们之间又是彼此独立的。
线性组合:记x1,x2,…,xP 为原变量指标,z1,z2,…,zm (m ≤p )为新变量指标(主成分),则其线性组合为:Lij 是原变量在各主成分上的载荷无论是哪一种因子分析方法,其相应的因子解都不是唯一的,主因子解仅仅是无数因子解中之一。
Z 为因子变量或公共因子,可以理解为在高维空间中互相垂直的m 个坐标轴。
zi 与zj 相互无关;⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X 212222111211⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111z1是x1,x2,…,xp 的一切线性组合中方差最大者,z2是与z1不相关的x1,x2,…的所有线性组合中方差最大者。
则,新变量指标z1,z2,…分别称为原变量指标的第一,第二,…主成分。
主成分分析实质就是确定原来变量xj (j=1,2 ,…,p )在各主成分zi (i=1,2,…,m )上的荷载 lij 。
从数学上容易知道,从数学上也可以证明,它们分别是相关矩阵的m 个较大的特征值所对应的特征向量。
5分析步骤5.1 确定待分析的原有若干变量是否适合进行因子分析(第一步)因子分析是从众多的原始变量中重构少数几个具有代表意义的因子变量的过程。
其潜在的要求:原有变量之间要具有比较强的相关性。
因此,因子分析需要先进行相关分析,计算原始变量之间的相关系数矩阵。
如果相关系数矩阵在进行统计检验时,大部分相关系数均小于0.3且未通过检验,则这些原始变量就不太适合进行因子分析。
⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=pp p p p p r r r r r r r r r R212222111211进行原始变量的相关分析之前,需要对输入的原始数据进行标准化计算(一般采用标准差标准化方法,标准化后的数据均值为0,方差为1)。
SPSS在因子分析中还提供了几种判定是否适合因子分析的检验方法。
主要有以下3种:巴特利特球形检验(Bartlett Test of Sphericity)反映象相关矩阵检验(Anti-image correlation matrix)KMO(Kaiser-Meyer-Olkin)检验(1)巴特利特球形检验该检验以变量的相关系数矩阵作为出发点,它的零假设H0为相关系数矩阵是一个单位阵,即相关系数矩阵对角线上的所有元素都为1,而所有非对角线上的元素都为0,也即原始变量两两之间不相关。
巴特利特球形检验的统计量是根据相关系数矩阵的行列式得到。
如果该值较大,且其对应的相伴概率值小于用户指定的显著性水平,那么就应拒绝零假设H0,认为相关系数不可能是单位阵,也即原始变量间存在相关性。
(2)反映象相关矩阵检验该检验以变量的偏相关系数矩阵作为出发点,将偏相关系数矩阵的每个元素取反,得到反映象相关矩阵。
偏相关系数是在控制了其他变量影响的条件下计算出来的相关系数,如果变量之间存在较多的重叠影响,那么偏相关系数就会较小,这些变量越适合进行因子分析。
(3)KMO(Kaiser-Meyer-Olkin)检验该检验的统计量用于比较变量之间的简单相关和偏相关系数。
KMO值介于0-1,越接近1,表明所有变量之间简单相关系数平方和远大于偏相关系数平方和,越适合因子分析。
其中,Kaiser给出一个KMO检验标准:KMO>0.9,非常适合;0.8<KMO<0.9,适合;0.7<KMO<0.8,一般;0.6<KMO<0.7,不太适合;KMO<0.5,不适合。
5.2 构造因子变量因子分析中有很多确定因子变量的方法,如基于主成分模型的主成分分析和基于因子分析模型的主轴因子法、极大似然法、最小二乘法等。
前者应用最为广泛。
主成分分析法(Principal component analysis):该方法通过坐标变换,将原有变量作线性变化,转换为另外一组不相关的变量Zi(主成分)。
求相关系数矩阵的特征根λi (λ1,λ2,…,λp>0)和相应的标准正交的特征向量li;根据相关系数矩阵的特征根,即公共因子Zj的方差贡献(等于因子载荷矩阵L中第j列各元素的平方和),计算公共因子Zj的方差贡献率与累积贡献率。
主成分分析是在一个多维坐标轴中,将原始变量组成的坐标系进行平移变换,使得新的坐标原点和数据群点的重心重合。
新坐标第一轴与数据变化最大方向对应。
通过计算特征根(方差贡献)和方差贡献率与累积方差贡献率等指标,来判断选取公共因子的数量和公共因子(主成分)所能代表的原始变量信息。
公共因子个数的确定准则:1)根据特征值的大小来确定,一般取大于1的特征值对应的几个公共因子/主成分。
2)根据因子的累积方差贡献率来确定,一般取累计贡献率达85-95%的特征值所对应的第一、第二、…、第m (m ≤p )个主成分。
也有学者认为累积方差贡献率应在80%以上。
5.3 因子变量的命名解释因子变量的命名解释是因子分析的另一个核心问题。
经过主成分分析得到的公共因子/主成分Z1,Z2,…,Zm 是对原有变量的综合。
原有变量是有物理含义的变量,对它们进行线性变换后,得到的新的综合变量的物理含义到底是什么?在实际的应用分析中,主要通过对载荷矩阵进行分析,得到因子变量和原有变量之间的关系,从而对新的因子变量进行命名。
利用因子旋转方法能使因子变量更具有可解释性。
计算主成分载荷,构建载荷矩阵A 。
⎪⎪⎪⎨⎧+++=+++=p p p p z a z a z a x z a z a z a x 2222121212121111⎪⎪⎪⎨⎧+++=+++=p p p p x l x l x l z x l x l x l z 2222121212121111计算主成分载荷,构建载荷矩阵A。
载荷矩阵A中某一行表示原有变量 Xi 与公共因子/因子变量的相关关系。
载荷矩阵A中某一列表示某一个公共因子/因子变量能够解释的原有变量 Xi的信息量。
有时因子载荷矩阵的解释性不太好,通常需要进行因子旋转,使原有因子变量更具有可解释性。
因子旋转的主要方法:正交旋转、斜交旋转。
正交旋转和斜交旋转是因子旋转的两类方法。
前者由于保持了坐标轴的正交性,因此使用最多。
正交旋转的方法很多,其中以方差最大化法最为常用。
方差最大正交旋转(varimax orthogonal rotation)——基本思想:使公共因子的相对负荷的方差之和最大,且保持原公共因子的正交性和公共方差总和不变。
可使每个因子上的具有最大载荷的变量数最小,因此可以简化对因子的解释。
斜交旋转(oblique rotation)——因子斜交旋转后,各因子负荷发生了变化,出现了两极分化。
各因子间不再相互独立,而是彼此相关。
各因子对各变量的贡献的总和也发生了改变。
斜交旋转因为因子间的相关性而不受欢迎。
但如果总体中各因子间存在明显的相关关系则应该考虑斜交旋转。
适用于大数据集的因子分析。
无论是正交旋转还是斜交旋转,因子旋转的目的:是使因子负荷两极分化,要么接近于0,要么接近于1。
从而使原有因子变量更具有可解释性。
5.4 计算因子变量得分因子变量确定以后,对于每一个样本数据,我们希望得到它们在不同因子上的具体数据值,即因子得分。
估计因子得分的方法主要有:回归法、Bartlette 法等。
计算因子得分应首先将因子变量表示为原始变量的线性组合。
即:回归法,即Thomson 法:得分是由贝叶斯Bayes 思想导出的,得到的因子得分是有偏的,但计算结果误差较小。
贝叶斯(BAYES )判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。
Bartlett 法:Bartlett 因子得分是极大似然估计,也是加权最小二乘回归,得到的因子得分是无偏的,但计算结果误差较大。
因子得分可用于模型诊断,也可用作进一步分析如聚类分析、回归分析等的原始资料。
关于因子得分的进一步应用将在案例介绍一节分析。
5.5 结果的分析解释此部分详细见案例分析⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111二、案例分析1 研究问题20名大学生关于价值观的9项测试结果,包括合作性、对分配的看法、行为出发点、工作投入程度、对发展机会的看法、社会地位的看法、权力距离、职位升迁和领导风格的偏好。