杆件的变形形式
浅析材料力学四种基本变形的异同点

浅析材料力学四种基本变形的异同点公主岭市职业教育中心宋静辉机械基础高等教育中材料力学的研究范围主要限于杆件,即长度远大于宽度和厚度的构件。
作用远杆件上的外力有各种形式,但杆件的基本变形形式只有四种:拉伸或压缩(简称拉压)、剪切、扭转和弯曲。
这四种基本变形是材料力学的重点内容,构成了材料力学理论体系中的一个个独立部分,学生学习时后很容易混淆。
现分析和总结四种基本变形的异同点,便于学生学习和理解。
一、四种变形的不同点1.受力特点不同。
受拉伸或压缩的构件大多是等截面直杆,其受力特点是:作用在杆端的两外力(或外力的全力)大小相等,方向相反,力的作用线与杆件的轴线重合。
工程中的连接件(如铆钉、螺栓等)会发生剪切变形,其受力特点是:作用的构件两侧面上外力的全力大小相等,作用线平行且相距很近;另外,承受剪切作用的连接件在传力的接触面上同时还受挤压力作用。
机械中的轴类零件往往产生扭转变形,其受力特点是:在垂直于轴线的平面内,作用着一对大小相等、方向相反的力偶。
梁是机器设备和工程结构中最重要的构件,主要发生弯曲变形,其受力特点是:作用在梁上的外边与其轴线垂直.若这些外力只是一对等值反向的力偶时,则称为纯弯曲。
2.变形特点不同。
构件在外力作用下发生的几何形状和尺寸变化称为变形。
拉压变形的特点是杆件沿轴线方向伸长或缩短;剪切变形的变形特点是介于两作用之间的各截面有沿作用力方向发生相对错动的趋势;扭转变形的变形特点是轴的各截面绕轴线将由直线变成曲线。
3.内力不同。
物体内某一部分与另一部分间相互作用的力称为内力。
构件在受到外力作用的同时,其内部将产生相应的内力。
对于发生拉压变形的杠件,内力遍及整个杆体内部,因为外力的作用线与杆件的轴线重合,故分布内力的合力作用线也必与杆件轴线重合,这种内力称为轴力。
轴力或为拉力或为压力。
构件受剪切时的内力称为剪刀,剪力分布在剪切面上(受剪件中发生相对错动的截面),其分布比较复杂,在工程实力是一个截面平面内的力偶,其力偶矩称为截面上的扭矩。
直杆的基本变形

直杆的基本变形
1、 轴向拉伸与压缩
拉伸: 在轴向力大作用下,杠杆产生伸长变形 压缩: 在轴向力大作用下,杠杆产生缩短变形
受力特点:沿杆件轴向作用一对等值、反向的拉力或
压力
变形特点:杆件沿轴向伸长或者缩短。
公式:
Fn 表示横截面轴力 A 表示横截面积
2、 剪切 剪切:杆件受到一定垂直于杆轴方向的大小相等、方
向相反、作用线相距很近大外力作用做引起大变形。
受力特点:截面两侧受一对等值、反向、作用线相近
的横向力
变形特点:截面沿着力的作用方向很对错动。
3、 扭转
扭转:直杆在两端受到作用于杆断面的大小相等方向
想法大力矩(扭矩)作用,则发生扭转。
受力特点:在很截面内作用一对等值、方向的力偶 N F A σ=
变形特点:轴表面的纵线变成螺旋线。
4、弯曲
弯曲:杆件在垂直于其轴线的载荷作用下,使原为直线大轴线变成曲线的变形
受力特点:受垂直于梁轴线的外力或在轴线平面内作用的力偶
变形特点:使梁的轴线由直变弯。
材料力学第04章 杆件变形分析

例4-2 桁架是由1、2杆组成,
通过铰链连接,在节点A承受 铅垂载荷F=40kN作用。已知
杆1为钢杆,横截面面积
A1=960mm2,弹性模量 E1=200GPa,杆2为木杆,横 截面面积A2=2.5×104mm2, 弹性模量E2=10GPa,杆2的杆 长为1m。求节点A的位移。
M (x) EI 24
d2w/dx2与弯矩的关系如图所示,坐标轴w以向上为正。由
该图可以看出,当梁段承受正弯矩时,挠曲线为凹曲线,如
图(a)所示,d2w/dx2为正。反之,当梁段承受负弯矩时, 挠曲线为凸曲线,如图(b)所示,d2w/dx2为负。可见, d2w/dx2与弯矩M的符号一致。因此上式的右端应取正号,即
于梁的高度,剪力对梁的变形影响可以忽略不计,上式仍可
用来计算横力弯曲梁弯曲后的曲率,但由于弯矩不再是常量,
上式变为
1 M (x)
(x) EI
即挠曲线上任一点处的曲率与该点处横截面上的弯矩成正比,
而与该截面的抗弯刚度(flexural rigidity)EI成反比。
23
由高等数学可知,平面曲线w=w(x)上任一点的曲率为
15
对于扭矩、横截面或剪切弹性模量沿杆轴逐段变化的圆 截面轴,其扭转变形为
n
Tili
i1 Gi I Pi
式中,Ti、li、Gi与IPi分别为轴段i的扭矩、长度、剪切弹 性模量与极惯性矩,n为杆件的总段数。
16
2.圆轴扭转的刚度条件
在圆轴设计中,除考虑其强度问题外,在许多情况下对刚 度的要求更为严格,常常对其变形有一定限制,即应该满足 相应的刚度条件。
杆件受力变形的四种基本形式

杆件受力变形的四种基本形式
梁、柱、桁架和悬臂梁是结构力学中最常见的四种支撑件,它们受力变形的基本形式也是结构力学中最重要的内容之一。
首先,梁受力变形的基本形式是弯曲变形。
梁受力时,梁的中部会发生弯曲变形,两端会发生拉伸变形,而两端的变形量要比中部的变形量大得多。
其次,柱受力变形的基本形式是压缩变形。
柱受力时,柱的中部会发生压缩变形,两端会发生拉伸变形,而两端的变形量要比中部的变形量小得多。
第三,桁架受力变形的基本形式是拉伸变形。
桁架受力时,桁架的中部会发生拉伸变形,两端会发生压缩变形,而两端的变形量要比中部的变形量小得多。
最后,悬臂梁受力变形的基本形式是拱形变形。
悬臂梁受力时,悬臂梁的中部会发生拱形变形,两端会发生拉伸变形,而两端的变形量要比中部的变形量大得多。
以上就是梁、柱、桁架和悬臂梁受力变形的四种基本形式,它们是结构力学中最重要的内容之一,在结构设计中,我们必须正确理解这些变形形式,以便正确设计结构,使结构具有足够的强度和刚度。
第7章 杆件的变形与刚度

32Tmax ⋅180 4 32 × 2000 ×180 d ≥4 = ×103 = 83.5mm G[θ ]⋅ π 2 80 ×109 × 0.3π 2
该圆轴直径应选择:d =83.5mm.
[例2]图示圆轴,已知mA =1.4kN.m, mB =0.6kN.m, mC =0.8kN.m;d1 =40mm,d2 =70mm; l1 =0.2m,l2 =0.4m; [τ]=60MPa,[θ]=1°/m,G=80GPa;试校核该轴的强度和刚 度,并计算两端面的相对扭转角。 mC
D
解:本题应分4段考虑。 π D4 I P1 = I P 2 = 32
d
A
a
1
2
B 3 b b
4
a
C
32 π D3 Wt1 = Wt 2 = 16 d4 π D3 (1 − 4 ) Wt 3 = Wt 4 = 16 D
I P3 = I P 4 =
π
(D4 − d 4 )
0.5kN.m 0.3kN.m 0.8kN.m 4 1 2 3
16mC
⊕
○ 1kN.m
π [τ ]
16 × 2000 3 = ×10 6 π 60 ×10
3
= 55.4mm
mA A
mB
mC
⑵按刚度条件
l1
B l C 2
2kN.m
⊕
○ 1kN.m
θ max = T ⋅ 180 ≤ [θ ] (°/m) GI p π π 4 Tmax 180 IP = d ≥ ⋅ 32 G[θ ] π
d2
mA
d1
mB
解: ⑴按强度校核
C
l2
A l1 B
0.6kN.m
T1 16mB τ1 = = Wt1 π d13 16 × 600 = = 47.7 MPa < [τ ] 3 π ×4
简述杆件基本变形的类型及内力和应力的特点。

简述杆件基本变形的类型及内力和应力的特点。
杆件是指在它的横截面上允许受力,而沿杆轴方向的变形很大的构件。
杆件受外力作用时会产生应力和变形,在静力学中,可以分为以下基本变形类型:拉伸变形、压缩变形、弯曲变形、剪切变形、扭转变形。
拉伸变形是指杆件沿轴向受拉力作用,导致杆件整体拉长,这种变形引起的应力称为拉应力。
拉伸变形容易观察和测量,对钢材来说,拉伸应力可以很好地近似表达为复合应力。
压缩变形是指杆件沿轴向受压力作用,导致杆件整体缩短,这种变形引起的应力称为压应力。
压缩变形对杆件的强度会产生不利影响,因为它往往容易造成杆件失稳。
弯曲变形是指杆件在轴向沿一定力臂受力下弯曲,这种变形引起的应力称为弯曲应力。
杆件在弯曲时会产生剖面矩形,控制剖面矩形是理解弯曲变形的关键。
剪切变形是指杆件沿截面剪切受力,这种变形引起的应力称为剪切应力。
杆件在剪切变形时,杆件截面的形状会改变。
剪切变形不会引起杆件的长度变化,而是改变杆件截面的形状。
扭转变形是指杆件在轴向沿一定力臂受扭力作用下发生扭转,这种变形引起的应力称为剪应力。
扭转变形主要对薄壁的圆柱形杆件有影响,对杆件横截面上的应
力会形成主剪应力,对杆件轴向则会形成附剪应力。
总之,不同的基本变形类型在不同的情况下都会对杆件产生应力和变形。
了解不同基本变形类型的特点对于设计杆件或者判断其受力状况都至关重要。
第三章材料力学的基本概念第六节杆件变形的基本形式

第三章材料力学的基本概念第六节杆件变形的基本形式有下列说法,________是错误的。
A.杆件的几何特征是长度远大于横截面的尺寸B.杆件的轴线是各横截面形心的连线C.杆件的轴线必是直线D.A+B+C下列说法________是正确的。
A.与杆件轴线相正交的截面称为横截面B.对于同一杆件,各横截面的形状必定相同C.对于同一杆件,各横截面的尺寸必定相同D.对于同一杆件,各横截面必相互平行下列说法________是正确的。
A.与杆件轴线相平行的截面称为横截面B.对于同一杆件,各横截面的形状必定相同C.对于同一杆件,各横截面的尺寸不一定相同D.对同一杆件,各横截面必相互平行不管构件变形怎样复杂,它们常常是由________种基本变形形式所组成。
A.3B.4C.5D.6不管构件变形怎样复杂,它们常常是轴向拉压、________、扭转和弯曲等基本变形形式所组成。
A.位移B.错位C.膨胀D.剪切不管构件变形怎样复杂,它们常常是轴向拉压、剪切、________和________等基本变形形式所组成。
A.错位/膨胀B.膨胀/弯曲C.弯曲/扭转D.扭转/位移在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生伸长变化的变形,称为________。
A.弯曲变形B.扭转变形C.轴向拉伸变形D.剪切变形在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生缩短变化的变形,称为________。
A.弯曲变形B.扭转变形C.轴向压缩变形D.剪切变形受拉压变形的杆件,各截面上的内力为________。
A.剪力B.扭矩C.弯矩D.轴力轴力的单位是________。
A.牛顿B.牛顿/米C.牛顿·米D.牛顿/米2关于轴力,下列说法中________是正确的。
①轴力是轴向拉压杆横截面上唯一的内力;②轴力必垂直于杆件的横截面;③非轴向拉压的杆件,横截面上不可能有轴向力;④轴力作用线不一定通过杆件横截面的形心。
A.①②B.③④C.①③D.②④受拉压变形的杆件,各截面上的应力为________。
机械基础第2版习题答案u2

第二单元直杆的基本变形练习题一、名词解释1.杆件杆件是指纵向(长度方向)尺寸远大于横向(垂直于长度方向)尺寸的构件。
2.内力在外力作用下,材料(或杆件)产生变形,杆件内部产生阻止变形的抗力称为内力。
3.应力杆件在外力作用下,其截面上单位面积上的内力称为应力。
4.应变应变是杆件在外力作用下其内部某一点的变形程度。
5.力学性能力学性能又称为机械性能,是指材料在外力作用下所表现出来的性能。
6.抗拉强度抗拉强度是指拉伸试样拉断前承受的最大标称拉应力。
7.塑性塑性是指金属材料在断裂前发生不可逆永久变形的能力。
8.扭转变形构件受到作用面与轴线垂直的外力偶作用时,各横截面绕轴线发生相对转动的现象,称为扭转变形。
9.弯曲变形杆件受到垂直于轴线的外力或作用面在轴线所在平面内的外力偶作用时,杆件的轴线将由直线变为曲线,这种变形称为弯曲变形。
10.交变应力随时间发生周期性变化的应力称为交变应力。
二、填空题1.杆件有两个主要几何要素,即横截面和轴线。
横截面是指垂直于杆件轴线方向的截面;轴线是指各横截面形心(几何中心)的连线。
2.根据载荷作用性质的不同,载荷分为静载荷、冲击载荷和交变载荷。
3.根据载荷作用形式的不同,载荷又可分为拉伸载荷、压缩载荷、弯曲载荷、剪切载荷和扭转载荷等。
4.杆件的基本变形形式主要有拉伸(或压缩)变形、剪切变形、扭转变形和弯曲变形。
5.通常将产生轴向拉伸变形的杆件称为拉杆,将产生轴向压缩变形的杆件称为压杆。
6.内力是杆件内部产生阻止变形的抗力,外力是作用于杆件上的载荷和约束力。
7.应力分为正应力和切应力。
8.材料的力学性能指标有强度、塑性、硬度、韧性和疲劳强度等。
9.从退火低碳钢的力(F)-伸长(l )曲线图可以看出,拉伸试样从开始拉伸到断裂要经过弹性变形阶段、屈服阶段、变形强化阶段、缩颈与断裂四个阶段。
10.强度是材料在力的作用下,抵抗永久变形和断裂的能力。
11.材料在静拉伸试验中的强度指标主要有: 屈服强度、规定总延伸强度、抗拉强度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3.3
图3.4
上一页
返回
3.2.2 杆件的变形形式
(2) 组合变形的常见形式 组合变形 :在复杂外载作用下,构件的变形会 包含几种简单变形,当几种变形所对应的应力属同 一量级时,不能忽略,这类构件的变形称为组合变 形。 工程中常见的组合变形模式有斜弯曲、偏心压 缩(拉伸)、弯扭、拉(压)弯等。
上一页
返回
3.3 材料力学中的几个 重要概念
上一页
返回
3.3.1. 内
力
材料力学中的内力,是指物体内部各 部分之间因外力而引起的附加相互作用力, 即“附加内力”。
上一页
返回
3.3.2. 截面法
截面法是材料力学分析内力的 基本方法。 如图3.6所示,用截面假想地 把杆件分成两部分, 以显示并确定内力的方法称为 截面法。 截面法计算杆件内力过程中的 四个要点: 切开:沿所求截面假想地将杆 图3.6 件切开; 取出:取出其中任意一部分作为研究对象; 替代:以内力代替弃去部分对选取部分的作用; 平衡:列平衡方程求出内力。 注意:在使用截面法求内力是时,杆件在被截开前,静力学中的 力系等效代换及力的可传性原理是不适用的。
上一页
返回
3.3.4. 应
变
(1)变形 杆件在荷载作用下,其形状和尺寸发生变化的现象称之为变形。 (2)应变 应变是用以表明由外力所引起的变形体的内部的单位尺寸变化、 形状变化或体积变化的重要名词。 应变是衡量变形的尺度,通常把应变分为线应变和角应变两类, 线应变和角应变是度量一点处变形程度的两个基本量。 单位长度的变形称为线应变,用符号ε表示,如图3.10(a)所示; 单元体相邻棱边所夹直角的改变量,称为角应变或切应变,用γ表示, 如图3.10(b)所示。
Sz A dSz A ydA Sy A dS y A zdA
(3-5) 图3.11
单元3
教学目标:
材料力学基础知识
1. 了解材料力学的研究对象及任务,了解杆件变形的分类情况; 2. 理解强度、刚度、稳定性、内力、应力、应变、静矩、惯性矩等 的概念; 3. 掌握组合图形的形心位置确定,理解惯性矩的平行移轴定理。
本单元内容
3.1
材料力学的研究对象及任务
3.2
杆件及其变形形式
3.3
材料力学中的几个重要概念
上一页
返回
3.3.3. 应
力
(1)应力的概念 内力在截面上一点处的分布集度称为应力。 (2)应力的分类 应力p又称为全应力,它是一个矢量,其方向与内力的方向 相同。在材料力学中,通常将全应力p分解为沿截面法线方向的 分量σ和与截面相切的分量τ,其中σ称为正应力,τ称为剪应力。 (3)应力的单位 应力的量纲是[力]/[长度] 2 ,应力的基本单位是“帕斯卡”, 简称帕 (Pa),1Pa=1N/m 2。常用单位是兆帕(MPa),1MPa=10 6 Pa,另外应力的单位还有吉帕(GPa),1GPa=10 9Pa 。
上一页
返回
3.2
杆件及其变形形式
上一页
返回
3.2.1 杆
件
实际的工程结构中,许多受力构件如桥梁、汽车传 动轴、房屋的梁、柱等,其长度方向的尺寸远远大于横 截面尺寸,这一类的构件在材料力学的研究中,通称为 杆件。 杆的所有横截面形心的连线,称为杆的轴线,若轴 线为直线,则称为直杆;轴线为曲线,则称为曲杆。所 有横截面的形状和尺寸都相同的杆称为等截面杆;否则 称为变截面杆。材料力学主要研究对象为等截面直杆。
图3.2
上一页
返回
3.2.2 杆件的变形形式
③ 扭转 当在杆件的两端截面内施加大小相等、方向相反的力 偶时,杆件将产生扭转变形,如图3.3所示。 ④ 平面弯曲 当外力施加于杆的某个纵向平面内并垂直于杆的轴线, 或者在某个纵向平面内施加力偶时,杆件轴线将由直线变 成曲线,如图3.4所示,这种变形称为平面弯曲。
图3.10
上一页
返回
3.4
平面图形的几何性质
平面图形的几何性质是影响杆件承载能力的重要因素,杆 件的应力和应变不仅与杆件的内力有关,而且还与杆件截面的 横截面面积、惯性矩、抗弯截面模量、极惯性矩等平面图形的 几何性质密切相关。平面图形的几何性质纯粹是一个几何问题, 但它是计算杆件强度、刚度、稳定性等问题中必不可少的几何 参
材料力学的研究对象 及任务
上一页
返回
3.1.1 材料力学的研究对象
材料力学的研究对象是变形固体。 由各种固体材料制成的构件,在荷载作用下将产生变形,统 称为变形固体。 变形固体的基本假设: (1)连续性假设 即认为组成构件的物质毫无空隙地充满到整个构件的几何容 积内。 (2)均匀性假设 即认为材料的各个部分的力学性能完全相同。 (3)各向同性假设 即材料在各个方向的力学性能完全相同。 (4)小变形假设 在材料力学中,认为构件受力后的变形量与构件原始尺寸相 比是极其微小的。 综上所述,材料力学研究的是均匀连续的、各向同性的理想 弹性体,且限于小变形范围。
上一页
返回
3.2.2 杆件的变形形式
(1)杆件变形的基本形式 ① 轴向拉伸与压缩 当作用于杆件的外力合力的作用线与杆件的轴线 重合,杆将产生轴向拉伸或压缩变形,如图3.1所示。 ② 剪切 当杆件受到一对大小相等、方向相反、作用线相 距很近并垂直杆轴的外力作用时,将产生剪切变形, 如图3.2所示。
图3.1
上一页
返回
3.4.1 静
3.4.1.1静矩的定义
矩
一任意形状的平面图形如图3.11所示,面积 为A,在平面图形所在平面内内任意选取一个平 面坐标系zoy,在坐标(z,y)处取微面积dA,则微 面积dA与坐标y(或坐标z)的乘积称为微面积dA 对z轴(或对y轴)的静矩,记作dSz(或dSy)。 平面图形对z轴的静矩用Sz表示,平面图形 对y轴的静矩用Sy表示。我们定义
上一页
返回
3.1.2 材料力学的研究任务
材料力学的研究任务是:在保证构件满足强度、 刚度和稳定性要求的前提下,以最经济的代价为构件 选择最适合的材料、确定合理的截面形状及尺寸,提 供必要的理论基础、计算方法和实验技术。 构件在外力作用下抵抗破坏的能力称为构件的强 度。 构件在外力作用下抵抗变形的能力称为构件的刚 度。 构件维持原有平衡状态的能力称为构件的稳定性。