杆件变形的形式及基本
二建考试必备-建筑结构与设备(7) 杆件的基本变形与组合变形

第二节杆件的基本变形与组合变形一、轴向拉伸与压缩1.轴力与轴向变形轴向拉(压)杆件横截面上的内力只有轴力,轴力可采用截面法求得。
轴力的正负号一般规定为:拉力为正,压力为负。
轴力沿杆轴方向的变化采用轴力图表示。
依据平面假设,轴向拉(压)杆件的变形沿整个横截面是均匀的,因而应力在横截面上也是均匀分布的(图3-8)。
横截面上应力的计算式为:式中N 一轴力;A ―横截面面积。
在弹性变形范围内,轴向拉(压)杆的伸长(缩短)量与杆所受轴力、杆的长度成正比,与杆的抗拉(压)刚度EA 成反比,即【例3-4】计算图3-9(a)时所示轴向受力杆件的内力,作出内力图,并判断整个杆件的变形是伸长还是缩短。
E A=常数。
在BC段内任一截面处截开,取右侧部分为隔离体(图3-9b ) ,由平衡条件可得:同理,在AB 段内任一截面处截开,取右侧部分为隔离体(图3 -9c),由平衡条件可得因整个杆件的EA=常数,AB 段的杆长虽为BC 段的一半,但其所受的拉力为BC 段的3 . 5 / 1 . 5 ≈2 . 3 倍,因此AB 段的伸长量大于BC 段的缩短量,整个杆件的变形是伸长的。
2.温度改变的影响自然界中的物体普遍存在热胀冷缩的现象,杆件结构也是一样。
例如图 3 -10 ( a )所示的杆件,若其温度升高Δt,因没有多余约束(即为静定),故杆件可以自由地伸缩,并不会产生内力或反力。
在温度改变作用下,杆件的伸长量△l 与杆长l及温度改变量△t 成正比,即:式中α——材料的线膨胀系数。
对于图3 一10 ( b )的杆件,若温度升高△t,由于杆件两端固定(即为超静定),阻止了杆件的自由伸缩,这样杆内将产生温度应力。
显然,如果该杆温度升高(△t>0 ) ,则杆内将产生压力;若温度降低(△t < 0 ),则杆内将产生拉力。
二、剪切当杆件的某一截面受一对相距很近,方向相反的横向力作用时,杆件在该截面处将发生剪切变形。
例如图3-11所示的螺栓连接件,当钢板受拉力P 作用时,螺栓将在截面m-m处承受剪力,并产生剪切变形。
直杆的基本变形

直杆的基本变形
1、 轴向拉伸与压缩
拉伸: 在轴向力大作用下,杠杆产生伸长变形 压缩: 在轴向力大作用下,杠杆产生缩短变形
受力特点:沿杆件轴向作用一对等值、反向的拉力或
压力
变形特点:杆件沿轴向伸长或者缩短。
公式:
Fn 表示横截面轴力 A 表示横截面积
2、 剪切 剪切:杆件受到一定垂直于杆轴方向的大小相等、方
向相反、作用线相距很近大外力作用做引起大变形。
受力特点:截面两侧受一对等值、反向、作用线相近
的横向力
变形特点:截面沿着力的作用方向很对错动。
3、 扭转
扭转:直杆在两端受到作用于杆断面的大小相等方向
想法大力矩(扭矩)作用,则发生扭转。
受力特点:在很截面内作用一对等值、方向的力偶 N F A σ=
变形特点:轴表面的纵线变成螺旋线。
4、弯曲
弯曲:杆件在垂直于其轴线的载荷作用下,使原为直线大轴线变成曲线的变形
受力特点:受垂直于梁轴线的外力或在轴线平面内作用的力偶
变形特点:使梁的轴线由直变弯。
第四章 杆件的变形计算

第四章杆件的变形计算杆件在载荷作用下都将发生变形,过大的变形将影响杆件的正常使用,必须加以限制,而有时又希望杆件能有较大的变形,以起缓冲作用,如弹簧等,因此必须计算杆件的变形。
本章具体讨论了拉伸(压缩)、扭转、弯曲三种情况的杆件变形计算。
第一节拉(压)杆的轴向变形直杆在沿其轴线的外力作用下,纵向发生伸长或缩短变形,而其横向相应变细或变粗,如图4-1所示。
设杆原长l,宽b,在力F作用下产生变形,变形后长l1,宽b1。
则杆件在轴线方向的伸长为纵向应变为根据虎克定律和拉(压)杆横截面正应力公式,可以得到(4-1)上式表明,杆的轴向变形值与轴力F N及杆长l成正比,与材料的杨氏模量及杆的横截面面积成反比。
因此EA称为拉(压)杆的抗拉(压)刚度,EA值越大,杆件刚度越大,在一定外力作用下单位长度变形量就越小。
另一方面,横向变形,横向应变。
通过试验发现,当材料在弹性范围内时,拉(压)杆的纵向应变与横向应变之间存在如下比例关系:(4-2a)或=-(4-2b)式中比例常数称为泊松比。
弹性模量E、泊松比及切变模量G均是材料的弹性常数,可由实验测得。
对于各向同性材料,可以证明这三个弹性常数之间存在下列关系:(4-3)材料的值小于0.5,表4-1列出几种常见金属材料的E和的值。
例4-1 阶梯形直杆受轴力如图4-2,已知该杆AB段横截面面积A1=800mm2 , 段横截面面积A2=240mm2,杆件材料的弹性模量为E=200GPa。
试求该杆总伸长量。
解(1)求AB、BC段轴力F NAB=40kN(拉),F NBC=-20kN(压)(2)求AB、BC段伸长量AB段BC段由以上计算可以看出,AB段是伸长,而BC段是缩短。
(3)AC杆总伸长AC杆计算结果为负,说明AC杆是缩短而不是伸长。
例4-2 图示桁架,钢杆AC横截面面积A1=960mm ,弹性模量E1=200GPa。
木杆BC横截面,杨氏模量E2=10GPa 。
求铰节点C的位移。
简述杆件基本变形的类型及内力和应力的特点。

简述杆件基本变形的类型及内力和应力的特点。
杆件基本变形是指杆件的基本构造和变形,按照变形的特点主要分为弯曲变形和转角变形。
弯曲变形:杆件在受力后,弯曲变形是其形状改变最大的形式,一般杆件由一定的中心轴受力后,呈泊散变形,但也有按曲率弯曲的状态,如拉伸、挤压等。
转角变形:杆件受力后,呈旋转状态,一般情况只有一个转角,但也有多个转角的状态,如滚动、滑动等。
内力和应力的特点
杆件受力后,内力的大小和变形的特点之间有着密切的关系,一般来说,内力的大小与变形的特点成正比,而杆件内部的应力则是由变形特点决定的,主要以拉力、挤压、剪切等不同的应力形式存在。
- 1 -。
第7章 杆件的变形与刚度

② 刚度校核
Tmax 180 θ max = × GI P π 32 × 40 × 180 = = 1.89 < [θ ] 9 2 4 4 80 × 10 × π D (1 − α )
③右端面转角
2 20 xdx T ( x)dx 10 x 2 2 40 =∫ = ϕ =∫ 0= 0 GI l GI GI P GI P P P
D
解:本题应分4段考虑。 π D4 I P1 = I P 2 = 32
d
A
a
1
2
B 3 b b
4
a
C
32 π D3 Wt1 = Wt 2 = 16 d4 π D3 (1 − 4 ) Wt 3 = Wt 4 = 16 D
I P3 = I P 4 =
π
(D4 − d 4 )
0.5kN.m 0.3kN.m 0.8kN.m 4 1 2 3
[例5] 求图示结构中刚性杆AB 中点C 的位移δC。[不讲]
①
2EA
EA
②
解:由平衡方程得 l
A
δA
a δC
C a
δB
B
F
P FN 1 = FN 2 = 2 FN 1l Fl δ A = Δl1 = = EA 2 EA FN 2 l Fl δ B = Δl 2 = = 2 EA 4 EA
1 3Fl δ C = (δ A + δ B ) = 2 8 EA
0.5 ×103 ×103 − 30 − 30 20 ( ) = + + 9 −6 200 ×10 ×10 1000 500 500 = −0.125mm
[例3]
长l =2m,重P=20kN 的均质杆,上端固定。杆的横截面
4.2 杆件变形的基本形式1

杆件变形杆件变形-剪切
剪切
(合力)
n
P
(合力)
剪切面
n P
n
V
n P
杆件变形杆件变形-剪切
(1)剪切面 (1)剪切面:构件将发生相互的错动面,如n– 剪切面 剪切变形中, n 。联接件剪切变形中,产生相对错动的部分的 剪切变形中 交结面。剪切面界于相反外力的交结处,可为平 交结面 面,也可为曲面。 实际上剪切面就是发生错动的面。 剪切面就是发生错动的面 剪切面就是发生错动的面。
材料力学
杆件变形的基本形式
材料力学材料力学-基本概念
材料力学:研究物体受力后的内在表现, 材料力学:研究物体受力后的内在表现, 即变形规律和破坏规律特征。 即变形规律和破坏规律特征。 1、材料力学的研究对象及任务 2、材料的理想化和基本假设 3、构件及杆件变形的基本形式
材料力学的研究对象
工程中多为梁、 工程中多为梁、杆、轴结构
材料力学的基本假设
具有这种性质的材料为各向同性材料。 具有这种性质的材料为各向同性材料。 各向同性材料 如玻璃,金属等。 如玻璃,金属等。不具有这种性质的材料 各向异性材料。如纤维织品、木材等。 为各向异性材料。如纤维织品、木材等。 小变形假设:构件的变形远远小于构 小变形假设: 件的尺寸时,则这类问题为小变形问题。 件的尺寸时,则这类问题为小变形问题。 在研究这类问题的平衡和运动时, 在研究这类问题的平衡和运动时,可不计 构件变形的影响, 构件变形的影响,仍按变形前的原始尺寸 进行分析计算。 进行分析计算。
杆件变形杆件变形-剪切
2、受力特点和变形特点: 受力特点和变形特点:
以铆钉为例: 以铆钉为例
(合力) P n
(1)受力特点: 受力特点 构件受两组大小相等、 方向相反、作用线相互很 近(差一个几何平面)的 平行力系作用。 n 变形特点: (2)变形特点 P 构件沿两组平行力系 (合力) 的交界面发生相对错动。
第三章 杆件的基本变形

第三章 杆件的基本变形这一章主要研究材料力学的有关内容,主要研究各种构件在外力作用下的内力和变形。
在保证满足强度、刚度和稳定性的前提下,为构件选用适宜的材料、确定合理的截面形状和尺寸,以达到即安全又经济的目的。
材料力学的研究对象主要是“杆件”,所谓杆件是指纵向(长度方向)尺寸远比横向(垂直于长度方向)尺寸大的多的构件,例如柱、梁和传动轴等。
杆有两个主要的几何因素,即横截面和轴线。
横截面指的是垂直于轴线方向的截面,后者即为所有横截面形心的连线。
杆件在外力作用下产生的变形,因外力作用的方式不同而有下列四种基本形式:(1) 轴向拉压变形;(2) 剪切变形;(3) 扭转变形,(4) 弯曲变形。
在工程实际中,有些构件的变形虽然复杂,但总可以看作是由以上几种基本变形组合而成,称为组合变形。
第1节 拉伸和压缩在工程结构和机器中,有许多构件是轴向拉伸和压缩作用。
本节主要讨论轴向拉伸的压缩时杆的内力和变形,并对材料在受拉、压时的力学性能进行研究,从而得出轴向拉、压杆的强度计算方法。
1、 内力与截面法1、内力的概念杆件在外力作用下产生变形,其内部的一部分对另一部分的作用称为内力。
显然,若外力消失,则内力也消失,外力增大,内力也增大。
但是对一定的材料来说,内力的增加只能在材料所特有的限度之内,超过这个限度,物体就会破坏。
所以,内力与强度是密切相关的。
2、截面法设一直杆,两端受轴向拉力F作用。
为了求出此杆任一截面m-m上的内力,,我们可以假想用一个平面,沿截面m_m将杆截断,把它分成Ⅰ、Ⅱ两部分,取Ⅰ段作为研究对象。
在Ⅰ段的截面m_m上到处都作用着内力,其合力为F N。
F N是Ⅱ段对Ⅰ段的作用力,并与外力F相平衡。
由于外力F的作用线沿杆件轴线,显然,截面m_m上的内力的合力也必然沿杆件轴线。
对Ⅰ段建立平衡方程:F N-F=0 得 F N=F将受外力作用的杆件假想地切开用以显示内力,并以平衡条件来确定其合力的方法,称为截面法。
杆件变形的基本形式及受力情况

杆件变形的基本形式有五种,包括拉伸或压缩、剪切、扭转、弯曲和组合变形。
1.拉伸或压缩:主要是在轴向受到力的作用,使杆件沿着轴线方向伸长或缩
短。
例如,拉杆、压杆和传动轴等。
2.剪切:主要是在垂直于轴线的平面内,由一对反向内力引起的杆件相对位
置的改变。
例如,房屋结构的梁在剪力作用下发生剪切变形。
3.扭转:主要是在垂直于轴线的平面内,由一对大小相等、方向相反且作用
线与杆轴线重合的外力偶引起的杆件各横截面间的相对转动。
例如,汽车方向盘的转动。
4.弯曲:主要是在垂直于轴线的平面内,由一个或多个大小相等、方向相反
且作用线与杆轴线垂直的外力偶引起的杆件各横截面间的相对转动。
例
如,桥梁和建筑物的梁在重力作用下发生弯曲变形。
5.组合变形:以上四种基本变形中的两种或两种以上的组合。
例如,在机械
制造和建筑领域中,常常会遇到各种复杂的组合变形情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 变性固体及其基本假定 第二节 杆件的外力与变形特点
第一节 变性固体及其基本假定
理想变形固体是指,对实际变形固体材料作出一些假设,将其理想化。 理想变化固体的基本假设有: (1)连续均匀假设。连续是材料内部没有空隙,均匀是指材料的性质各 处相同。连续均匀假设,即认为物体的材料无空隙的连续分布,且各 处性质相同。 (2)各向同性假设。即认为材料沿不同方向的力学性质均相同。具有这 种性质的材料称为各向同性材料,而各方向力学性质不同的材料称为 各向异性材料。 按照上述假设理想化了的变形固体,称为理想变性固体。刚体和理想变 性固体都是工程力学研究中,必不可少的理想化的力学模型。
图5-4
表5-1 4种基本变形的受力特点和变形特点
第二节 杆件的外力与变形特点
一、轴向拉伸与压缩 受力特点:杆件受到与杆轴线重合的外力 作用。 变形特点:杆轴沿外力方向伸长或缩短 产生轴向拉伸与压缩变形的杆件称为拉杆。 图5-1所示屋架中的弦杆、牵拉桥的拉 索、闸门启闭机的螺杆等均为拉杆。
图5-1
第二节 杆件的外力与变形特点
二、剪切 受力特点:杆件受到垂直杆轴方向的一组等值、反向、作用线相距极 近的平行力作用。 变形特点:二力之间的横截面产生相对错动变形。 产生剪切变形的杆件通常为拉杆的连接件。如图5-2所示螺栓、销轴连接 中的螺栓销钉,均产生剪切变形。
第一节 变性固体及其基本假定
变形固体受力作用产生变形。撤去荷载可完全消失的变形,称为弹性变 形。撤去荷载不能恢复的变形,称为塑性变形或残余变形。 在多数工程问题中,要求只发生弹性变形。 工程中多数构件在荷载作用下产生的变形量与其原始尺寸相比很微小时, 称为小变形,否则称为大变形。 小变形构件的计算,可采取变形前的原始尺寸并略去某些高阶微量,以 达到简化计算的目的。
图5-2
第二节 杆件的外力与变形特点
MX
三、扭转 受力特点:杆件受到垂直秆轴平面内的 力偶作用。 变形特点:相邻横截面绕杆轴产生相对 旋转变形。 产生扭转变形的杆件多为传动轴,房屋 的雨棚梁等也发生扭转变形,如图 5-3所示。
F
MX
(aபைடு நூலகம்
(b
mx
q
m
mx 雨篷板
Fy
雨篷梁
Fy
(c
图5-3
第二节 杆件的外力与变形特点
四、弯曲 弯曲变形的受力特点:杆件受到垂直杆轴方向 的外力,及在弯曲平面内作用着外力偶。 弯曲变形的变形特点:杆轴由直变弯。 发生弯曲变形为主的杆件称为梁。工程中常见 梁的横截面多有一根对称轴,各截面对称 轴形成一个纵向对称平面。若荷载与约束 反力均作用在梁的纵向对称平面内,梁的 轴线也在该平面内弯成一条曲线,这样的 弯曲称为平面弯曲,如图5-4所示。