实验四 回溯法

合集下载

回溯法科普

回溯法科普

回溯法科普
回溯法是一种在问题的解空间树中,按照深度优先搜索的策略,从根节点出发,通过递归调用不断探索解空间的过程。

它是一种试探性的解决问题方法,当探索到某一分支路径无法产生可行解时,就“回溯”返回上一步,尝试其他可能的分支。

具体步骤如下:
1. 选择一个初始解或状态作为当前解。

2. 如果当前解满足目标条件(即是一个可行解),则输出该解,并结束算法;否则,转至下一步。

3. 扩展当前解:生成当前解的一个新的后代解,并使其成为新的当前解。

4. 重复步骤2和3,直至找到可行解或者所有可能的后代解都被探索完毕(即解空间树被完全遍历)且没有找到可行解为止。

回溯法通常用于解决约束满足问题,例如八皇后问题、数独问题、旅行商问题等组合优化问题。

它的核心思想是在寻找问题答案的过程中,通过剪枝操作避免无效搜索,以提高求解效率。

实验四 皇后问题求解

实验四 皇后问题求解

实验实习名实验二皇后问题求解(以下为参考内容,具体内容要求由课程在实验实习指导书中规定。

)一、实验实习目的及要求实验题目:皇后问题求解实验目的:1)以Q-皇后问题为例,掌握回溯法的基本设计策略。

2)掌握回溯法解决Q-皇后问题的算法并实现;3)分析实验结果。

二、实验实习设备(环境)及要求(软硬件条件)实验环境:计算机、C语言程序设计环境三、实验实习内容与步骤实验内容与步骤1.用回溯法求解N-Queen,参考教材算法思想,并实现你的算法。

要求:用键盘输入N;输出此时解的个数,并统计运算时间。

2.给出N=4,5,6时,N-Queen解的个数。

3.尝试增大N,观察运行情况;并理解该算法的时间复杂度。

四、实验实习过程或算法(源程序、代码)源程序:#include<stdio.h>#include<math.h>#include <time.h>int X[10];bool PLACE (int k){int i=1;while(i<k){if (X[i]==X[k] || abs(X[i]-X[k])==abs(i-k) )return false;i=i+1;}return true;}void main(){int k=1,n;int count=0;printf("请输入一个正整数:\n");scanf("%d",&n);double duration;clock_t finish, start;start = clock();while (k>0) //对所有行执行以下语句{X[k] = X[k]+1; //移到下一列while(X[k]<=n && !PLACE(k) ){X[k] = X[k]+1; //移到下一列,再判断}if (X[k] <= n) //找到一个位置{if (k==n) //一个完整的解{//printprintf("the soution is:");for (int t=1;t<=n;t++)printf("%3d",X[t]);printf("\n");count +=1 ;}else{k=k+1;X[k]=0;} //转向下一行}elsek=k-1; //回溯}finish = clock();duration = (double)(finish - start);printf("\n the number of the solutions is %d \n", count);printf( "The count time is %2.6f seconds.\n", duration);}五、实验实习结果分析和(或)源程序调试过程(一)算法理论分析使用回溯算法求解的问题特征,求解问题要分为若干步,且每一步都有几种可能的选择,而且往往在某个选择不成功时需要回头再试另外一种选择,如果到达求解目标则每一步的选择构成了问题的解,如果回头到第一步且没有新的选择则问题求解失败。

回溯法

回溯法

回溯法回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。

当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。

如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。

在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。

扩大当前候选解的规模,以继续试探的过程称为向前试探。

1、回溯法的一般描述可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。

其中Si是分量xi的定义域,且|Si| 有限,i=1,2,…,n。

我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。

解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D 的全部约束,若满足,则为问题P的一个解。

但显然,其计算量是相当大的。

我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2, (xi)满足D中仅涉及到x1,x2,...,xi的所有约束意味着j(jj。

因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,...,xj)违反D中仅涉及x1,x2, (x)的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。

回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。

回溯法首先将问题P的n元组的状态空间E表示成一棵高为n的带权有序树T,把在E 中求问题P的所有解转化为在T中搜索问题P的所有解。

算法设计与分析实验指导4_回溯法

算法设计与分析实验指导4_回溯法
数据:
防卫点
角色
1
2
3
4
5
1
60
40
80
50
60
2
90
60
80
70
20
3
30
50
40
50
80
4
90
40
30
70

5
60
80
90
60
50
2.0-1背包问题(选做)
编程实现0-1背包问题的回溯算法。
数据文件见附件。
四、实验报告
1.实验报告只写实验⑴。
2.写出算法思想、主要程序代码、算法复杂性分析。
void Print1(Type a[],int n)
{
for(int i=1; i<=n; i++)
cout<<a[i]<<' ';
cout<<endl;
}
三、实验内容及要求:
1.排兵布阵问题
某游戏中,不同的兵种处在不同的地形上其攻击能力不一样,现有n个不同兵种的角色{1,2,...,n},需安排在某战区n个点上,角色i在j点上的攻击力为Aij。试设计一个布阵方案,使总的攻击力最大。
void TwoDimArray(Type** &p,int r,int c)
{
p=new Type *[r];
for(int i=0; i<r; i++)
p[i]=new Type[c];
for(int i=0;i<r;i++)
for(int j=0;j<c;j++)

回溯法的实验报告

回溯法的实验报告

一、实验目的1. 理解回溯法的概念和原理;2. 掌握回溯法的基本算法设计思想;3. 通过实例验证回溯法的正确性和效率;4. 深入了解回溯法在实际问题中的应用。

二、实验内容1. 实验一:八皇后问题2. 实验二:0/1背包问题3. 实验三:数独游戏三、实验原理回溯法是一种在解空间树中搜索问题解的方法。

其基本思想是:从问题的起始状态开始,通过尝试增加约束条件,逐步增加问题的解的候选集,当候选集为空时,表示当前路径无解,则回溯到上一个状态,尝试其他的约束条件。

通过这种方法,可以找到问题的所有解,或者找到最优解。

四、实验步骤与过程1. 实验一:八皇后问题(1)问题描述:在一个8x8的国际象棋棋盘上,放置8个皇后,使得任意两个皇后都不在同一行、同一列和同一斜线上。

(2)算法设计:- 定义一个数组,用于表示棋盘上皇后的位置;- 从第一行开始,尝试将皇后放置在第一行的每一列;- 检查当前放置的皇后是否与之前的皇后冲突;- 如果没有冲突,继续将皇后放置在下一行;- 如果冲突,回溯到上一行,尝试下一列;- 重复上述步骤,直到所有皇后都放置完毕。

(3)代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if col == row else '.' for col in range(len(board))]))board = [-1] 8if solve_n_queens(board, 0):print_board(board)2. 实验二:0/1背包问题(1)问题描述:给定一个背包容量为W,n件物品,每件物品的重量为w[i],价值为v[i],求在不超过背包容量的前提下,如何选取物品,使得总价值最大。

实验报告4.回溯算法

实验报告4.回溯算法

算法设计与分析实验报告实验名称_____回溯算法_____学院________数学与计算机学院____ 班级_______信科00000___________ 学号_______6666666666__________ 姓名_____000000________________ 2016年月日{if(((a+b)==24)||((a-b)==24)||((a*b)==24)||(b!=0&&a%b==0&&a/b==24)){//如果经过上面的计算得到解while(!route.empty()){node now=route.front();printf("%d%c%d=%d\n",now.a,now.oper,now.b,now.sum);//依次输出前面的计算过程route.pop();}if((a+b)==24){if(b>a) swap(a,b);printf("%d+%d=%d\n",a,b,a+b);}if((a-b)==24) printf("%d-%d=%d\n",a,b,a-b);if((a*b)==24) {if(b>a) swap(a,b);printf("%d*%d=%d\n",a,b,a*b);}if(a%b==0&&b!=0&&(a/b)==24) printf("%d/%d=%d\n",a,b,a/b);//a/b比较特殊,要求结果必须是整数flag=true;//表示找到解,一旦找到任何一个解就退出}return ;}queue <node> temp=route;node x;x.a=a,x.b=b,x.sum=a+b,x.oper='+';if(b>a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a+b,num[cur+1],temp);//(((a*b)*c)*d) 模型temp=route;x.a=a,x.b=b,x.sum=a*b,x.oper='*';if(b>a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a*b,num[cur+1],temp);temp=route;x.a=a,x.b=b,x.sum=a-b,x.oper='-';temp.push(x);dfs(cur+1,a-b,num[cur+1],temp);if(b!=0&&a%b==0){//a/b需要验证合法性temp=route;x.a=a,x.b=b,x.sum=a/b,x.oper='/';temp.push(x);dfs(cur+1,a/b,num[cur+1],temp);}temp=route;x.a=b,x.b=num[cur+1],x.sum=b+num[cur+1],x.oper='+';if(x.b>x.a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a,b+num[cur+1],temp);//a*((b*c)*d) 模型temp=route;x.a=b,x.b=num[cur+1],x.sum=b*num[cur+1],x.oper='*';if(x.b>x.a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a,b*num[cur+1],temp);temp=route;x.a=b,x.b=num[cur+1],x.sum=b-num[cur+1],x.oper='-';temp.push(x);dfs(cur+1,a,b-num[cur+1],temp);if(num[cur+1]!=0&&b%num[cur+1]==0) {temp=route;x.a=b,x.b=num[cur+1],x.sum=b/num[cur+1],x.oper='/';temp.push(x);dfs(cur+1,a,b/num[cur+1],temp);}}int main(){//freopen("point24.in","r",stdin);//输入输出重定向//freopen("point24.out","w",stdout);queue <node> t;scanf("%d %d %d %d",&num[0],&num[1],&num[2],&num[3]);while(!flag){dfs(1,num[0],num[1],t);printf("%d %d %d %d\n",num[0],num[1],num[2],num[3]);if(!next_permutation(num,num+4)) break;}if(!flag) printf("No answer!\n");system("pause");return 0;}。

用回溯算法解n皇后问题实验步骤

用回溯算法解n皇后问题实验步骤

湖州师范学院实验报告课程名称:算法实验四:回溯算法一、实验目的1、理解回溯算法的概念,掌握回溯算法的基本要素。

2、掌握设计回溯算法的一般步骤,针对具体问题,能应用回溯算法求解。

二、实验内容1、问题描述1 )n后问题在n×n格的棋盘上放置彼此不受攻击的n个皇后。

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。

2)0-1 背包问题需对容量为 c 的背包进行装载。

从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。

对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高。

每种物品要么放进背包,要么丢弃。

2、数据输入:文件输入或键盘输入。

3、要求:1)完成上述两个问题,时间为2 次课。

2)独立完成实验及实验报告。

三、实验步骤1、理解方法思想和问题要求。

2、采用编程语言实现题目要求。

3、上机输入和调试自己所写的程序。

4、附程序主要代码:1.n后问题:#include<iostream>using namespace std;class Queen {friend int nQueen(int);private:bool Place(int k);void Backtrack(int t);int n,*x;long sum;};bool Queen::Place(int k) {for (int j = 1; j < k; j++)if ((abs(k - j) == abs(x[j] - x[k])) || (x[j] == x[k]))return false;return true;}void Queen::Backtrack(int t) {if (t > n) {for (int i = 1; i <= n; i++)cout << x[i] << " ";cout << endl;sum++;}else {for (int i = 1; i <= n; i++) {x[t] = i;if (Place(t)) Backtrack(t + 1);}}}int nQueen(int n) {Queen X;//初始化XX.n = n;X.sum = 0;int* p = new int[n + 1];for (int i = 0; i <= n; i++)p[i] = 0;X.x = p;X.Backtrack(1);delete [] p;return X.sum;}void main() {int n, set;cout << "请输入皇后个数:"; cin >> n;cout << "可行方案所有解:" << endl;set = nQueen(n);cout << "可行方案数:" << set << endl;}2.0-1背包:#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装入//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j]) perp[],order[],sortv[],sortw[] {temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i]; order[i]=order[j]; order[j]=temporder; temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右子数 backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输入物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输入物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装入的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}5、实验结果:四、实验分析1、:n后问题分析只要不要在同一直线和斜线上就行。

回溯法方法简介

回溯法方法简介

回溯法方法简介
回溯法是一种基于深度优先搜索的算法,用于求解问题的所有解或任意解。

它通过递归探索所有可能的解路径,并在此过程中剪枝无效的解路径。

当遇到一个不满足约束条件的解时,回溯法会回溯到上一个状态,并尝试其他可能的解。

回溯法的基本思想是将问题的解空间转化成图或者树的结构表示,然后使用深度优先搜索策略进行遍历。

在搜索过程中,记录和寻找所有可行解或者最优解。

回溯法的应用非常广泛,包括组合优化、人工智能、机器学习等领域。

它是一种通用解题法,可以系统地搜索一个问题的所有解或任一解。

回溯法的优点是可以找到所有可能的解,并且在某些情况下可以找到最优解。

但是,它的缺点是对于大规模问题可能会非常慢,因为它的时间复杂度是指数级的。

因此,在实际应用中,通常需要结合其他算法和优化技巧来提高回溯法的效率和可扩展性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档