(完整版)二次根式的估值与比较大小
比较二次根式大小的几种方法

比较二次根式大小的几种方法一、比较系数法:对于形如√a和√b的二次根式,如果a>b,那么√a>√b;如果a<b,那么√a<√b。
例如,比较√5和√7的大小。
由于5<7,所以√5<√7二、平方法:对于形如√a和√b的二次根式,如果a²>b²,那么√a>√b;如果a²<b²,那么√a<√b。
例如,比较√3和√8的大小。
由于3²=9,8²=64,所以√3<√8三、绝对值法:对于形如√a和√b的二次根式,如果,a,>,b,那么√a>√b;如果,a,<,b,那么√a<√b。
例如,比较√(-2)和√(-5)的大小。
由于,-2,=2,-5,=5,所以√(-5)<√(-2)。
四、化简法:对于形如√a的二次根式,如果a可以化简为形式p²×q(p和q为正整数),那么√a=√(p²×q)=p√q。
例如,化简√72、首先可以将72分解为2²×3²×2,然后利用根式的乘法法则和化简法则,得到√72=2×3√2=6√2五、近似法:如果无法直接通过上述方法比较二次根式的大小,可以使用近似法。
通过计算近似值,可以比较二次根式的大小。
例如,比较√3和√2的大小。
可以使用计算器或手算,得到√3≈1.732,√2≈1.414,所以√2<√3需要注意的是,以上方法比较的是二次根式的大小,而不是数值的大小。
当a和b的大小关系无法确定时,使用以上方法可以对二次根式的大小关系进行比较。
「初中数学」比较二次根式大小的十二种方法

「初中数学」比较二次根式大小的十二种方法含二次根式的数或式的大小比较,是同学们学习的一个难点,若能根据二次根式的特征,灵活地、有针对性地采用不同的方法,将会得到简捷的解法,常见的比较方法有:平方法、作商法、分子有理化法、分母有理化法、作差法、倒数法、特殊值法、定义法、根号外因式内移法、传递法、参数法、放缩法等.下面分别介绍.一.平方法依据:当a>0,b>0时,若a²>b²,则a>b.二.作商法依据:当a>0,b>0时,若a/b>1,则a>b,若a/b=1,则a=b,若a/b<><>三.分子有理化法对于形如'√a+√b'或'√a一√b”的式子,若两项a一b的值相等,采用分子有理化法简捷四.分母有理化法对于分母形如'√a+√b'或'√a一√b'的式子,可先分母有理化,再比较.五.作差法依据:若a一b>0,则a>b;若a一b=0,则a=b;若a一b<><>六.倒数法依据:当ab>0时,若1/a>1/b,则a<>七.特殊值法取给定范围内的特殊值进行求值比较.八.定义法依据:二次根式的定义.九.根号外因式内移法依据:若a≥0,则a=√a²,若√a>√b,则a>b.十.传递法依据:若a>b,b>c,则a>c.十一.参数法对于复杂二次根式和简单二次根式比大小,先设辅助元化简复杂的二次根式或求出复杂二次根式的值,然后比较十二.放缩法对难以寻找特征的两个二次根式,可以采用放缩的方法转化后比较【总结】上边所说的方法,希望同学们认真体会,有的题可以用多种方法进行比较,同学们灵活掌握,寻找较简便的解法.感谢大家的关注、转发、点赞、交流!。
(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
数学中的二次根式知识点

数学中的二次根式知识点一、定义与性质二次根式是指具有以下形式的数:√a,其中a为非负实数。
其中,√a被称为二次根式的根号形式,a被称为二次根式的被开方数。
二次根式的一些重要性质如下:1. 非负性质:对于任意非负实数a和b,如果a<b,则√a<√b。
2. 非负完全平方值:对于任意非负实数a,若存在非负实数b满足b^2=a,则称b为a的平方根,记作√a=b。
3. 非负根式相等:对于任意非负实数a和b,如果a≥0,b≥0且√a=√b,则a=b。
4. 非负根式与绝对值:对于任意实数a,有√(a^2)=|a|。
二、化简与运算1. 化简(1)合并同类项:对于形如√a±√b的二次根式,可以根据运算规则合并同类项。
(2)有理化分母:对于形如1/√a的二次根式,可以通过有理化分母的方法,将分母中的二次根式消去。
(3)去除分母内的二次根式:对于形如a/√b的二次根式,可以通过有理化分母的方法,去除分母内的二次根式。
2. 运算(1)加减运算:对于形如√a±√b的二次根式,可以根据运算规则进行加减运算。
(2)乘法运算:对于形如√a*√b的二次根式,可以根据运算规则进行乘法运算。
(3)除法运算:对于形如√a/√b的二次根式,可以根据运算规则进行除法运算。
(4)幂运算:对于形如(√a)^n的二次根式,可以根据运算规则进行幂运算。
三、应用与解题思路1. 求解二次根式的值:根据给定的被开方数,利用二次根式的定义和运算规则,可以求解二次根式的值。
2. 化简二次根式:根据给定的二次根式,利用化简的方法,将其化简为最简形式,以便于进行运算或比较大小。
3. 比较大小:根据二次根式的性质,可以通过比较被开方数的大小,来比较二次根式的大小关系。
4. 解方程与不等式:在数学中的各种问题中,经常会涉及到二次根式的方程或不等式,可以利用二次根式的性质以及运算规则,对方程或不等式进行求解。
综上所述,二次根式是数学中重要的知识点之一。
二次根式的估值与比较大小(北师版)(含答案)

二次根式的估值与比较大小(北师版)试卷简介:本套试卷主要考查学生无理数的估值以及比较大小,其中估值涉及无理数的直接估值以及无理数的整数、小数部分等内容,比较大小涉及多种比较大小的方法,学生需要结合题目的结构选择合适的方法解决问题。
一、单选题(共6道,每道10分)1.的值( )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间答案:C解题思路:因为,所以故选C试题难度:三颗星知识点:估算无理数的大小2.估算的值( )A.在4和5之间B.在5和6之间C.在6和7之间D.在7和8之间答案:D解题思路:,因为,所以.故选D试题难度:三颗星知识点:估算无理数的大小3.若与的小数部分分别是a和b,则a+b=( )A.1B.C.0D.11答案:A解题思路:因为,因此,相应小数部分为;,相应小数部分为.因此,,a+b=1故选A试题难度:三颗星知识点:无理数的整数部分、小数部分4.现有四个无理数,,,,其中在实数+1和+1之间的有( )A.1个B.2个C.3个D.4个答案:B解题思路:考虑通过平方法比较大小:,,,,,;∵,∴∴∵∴∴∴在实数+1和+1之间的有,故选B试题难度:三颗星知识点:乘方法比较大小5.下面四个结论正确的是( )A.>B.<C.<D.<答案:C解题思路:在A选项中,不等号两边都是两个根式相加的形式,因此比较与:,,故,A选项错误;在B选项中,分母有理化可得:,,且,因此B选项错误;在C选项中,作差可得:,因此C 选项正确;在D选项中,因为,,所以,,因此D选项错误.试题难度:三颗星知识点:作差法比较大小6.,,的大小关系是( )A.<<B.<<C.<<D.<<答案:B解题思路:比较与:,,因此;比较与:,因此.试题难度:三颗星知识点:乘方法比较大小二、填空题(共4道,每道10分)7.如图,在数轴上表示数的点可能是点____.答案:P解题思路:因为,所以,所以对应的点应该在3与4之间,并且离4更近.试题难度:知识点:估算无理数的大小8.若的整数部分是x,小数部分是y,则的值是____.答案:1解题思路:因为,所以x=3,,所以.试题难度:知识点:无理数的整数部分、小数部分9.已知与的小数部分分别是a和b,则的值为____.答案:-13解题思路:因为,所以,相应小数部分为;,相应小数部分为.因此,,试题难度:知识点:无理数的整数部分、小数部分10.设,的小数部分分别为a,b,则的值为____.答案:-2解题思路:因为,因此,.试题难度:知识点:无理数的整数部分、小数部分。
估算与二次根式

估算知识点一:方根的估算估算是现实生活在中一种常用的解决问题的方法,很多情况下需要估算无理数的近似值,估算的一般步骤 (1)估算被开方数在哪两个平方数(立方数)之间 (2)确定无理数的整数(3)按要求估算,一般地,开平方估算到一位小数,开立方估算到整数 例1:估算下列数的大小)(精确到0.132733453(精确到1)知识点二:比较无理数的大小1.估算法:用估算法比较两个数的大小,一般至少有一个是无理数,在比较大小时,一般先采用分析的方法,估算出无理数的大致范围,再作具体比较 例2:比较的大小与4143-10 2.求差法b a b a >>-则若,0;b a b a <<-则若,0;b a b a ==-则若,03.平方法:当比较两个带根号的无理数的大小时,可用如下结论:若b a b a b a 33,0>>≥>则,若题型一:估算是现实生活中一种常用 的解决问题的方法,如有一片长方形小树林,长是宽的3倍,而对角线的长为210米,若每棵树的占地面为1平方米,则这片小树林共有多少棵树?这片长方形小树林的长大约是多少米?(精确到1米) 知识清单全练 知识点一:方根的估算对方根进行估算,平方根一般精确到____________,立方根一般精确到______________ 基础闯关全练 知识点一:方根的估算1. 0.00057的算术平方根在 ( )A.0.05与0.06之间B.0.02与0.03之间C.0.03与0.04之间D.0.2与0.3之间 2.估算结果的误差最小的是 ( )A.5.312≈B.10300≈C.1012343≈ D.01.06.0≈3.一个正方体的体积为28360立方厘米,则这个正方体的棱长估计为 ( )A.22厘米B.27厘米C.30.5厘米D.40厘米 4.大于17-3且小于103的整数有____________个知识点二:比较无理数的大小 5.将757575,,三数按从小到大的顺序排列为_____________________ 6.比较大小51171+)( 与109(2) 5.124与 三年模拟全练 一:选择题1.将2,,,525这三个数用“>”连接正确的是( ) A.5252>>B.5225>>C.2525>>D.2255>> 2.一个正方形的面积是12,估计它的边长大小在( )A.2与3之间B.3与4之间C.4与5之间 D,5与6之间 3.估计6+1的值在( )A.2与3之间B.3与4之间C.4与5之间 D,5与6之间 二:填空题4.若m 是13的整数部分,其小数部分为n ,则n 的值为__________5.比较大小:4____23 五年中考全练1.a,b是两个连续整数,若b a <<7,则a,b 的分别是_____________2.下列无理数中,在-2与-1之间是( )A.5-B.3-C.3 D,5 3.大于的整数是且小于52___________4.把7的平方根和立方根按从小到大的顺序排列为_______________ 二次根式知识点一:二次根式,最简二次根式的概念1.二次根式的定义:一般地,形如)0(≥a a 的式子叫做二次根式,a 叫做被开方数2.最简二次根式:同时满足下列两个条件的二次根式叫做最简二次根式(1)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式例1.在个中,最简二次根式有,,,_____21862 知识点二:二次根式的性质 1.性质:(1){002≥≤-==a a a a a a(2))0,0(≥≥∙=b a b a ab 积的算术平方根等于各因数算术平方根的积(3))0,0(>≥=b a ba b a 商的算术平方根等于被除式的算术平方根除以除式的算术平方根 2.化二次根式为最简二次根式的一般步骤:(1)把被开方数中的带分数或绝对值大于1的小数化为假分数,把绝对值小于1的小数化为分数(2)被开方数是整数或是整式,先将它分解因式或因式,然后把开得尽方的因数或因式化到根号外面(3)化去分母中的根号或根号内的分母(4)约分 例2:化简3283知识点三:二次根式的运算1.在实数范围内,可以进行加,减,乘,除,乘方和开方的运算,并且有理数的运算法则和运算律在实数范围内仍然成立2.二次根式的乘除运算公式3.二次根式加减运算步骤: (1)把二次根式化成最简二次根式(2)找出同类二次根式(被开方数相同),并合并 例3:计算下列各式练习:)(18-212 )()(5-62322+ 632-5520⨯+ 题型二:利用二次根式计算几何问题例2:如图,每个小正方形的边长为1,求∆ABC 的面积和周长实数知识清单全练:知识点一:二次根式,最简二次根式的概念1.一般地,形如________(a 》0)的式子叫做二次根式,a 叫做_________2.最简二次根式必须同时满足两个条件: (1)被开方数不能含__________的因数或因式(2)被开方数的因数是___________,因式是_____________ 知识点二:二次根式的性质 3.二次根式的性质知识点三:二次根式的运算4.二次根式的加减运算:先化成_____________二次根式,再合并___________二次根式5.二次根式的乘法运算:)0,0(__________≥≥=∙b a b a ;)0,0________(>≥=b a ba基础闯关全练知识点一:二次根式,最简二次根式的概念C B A1.下列式子中二次根式的个数有( )2.下列二次根式中,最简二次根式是( ) A.23a B.31C.152D.143 3.使式子2-m 的意义的m 的最小整数值是______________ 知识点二:二次根式的性质4.若______20的最小值是是整数,则正整数n n5.化简:知识点三:二次根式的运算6.如果bab a b a ab =<+>)那么下面各式:(1,0,0(2)b b a ab a b b a -=÷=∙)3(1其中正确的是______7.下列二次根式中,不能与合并的是()2 A.21B.8C.12D.18 8.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是________________9.化简)(222-8+=__________10.计算1052-40⨯⎪⎪⎭⎫ ⎝⎛ 361-24÷⎪⎪⎭⎫ ⎝⎛ 2-31227+ 11.。
比较二次根式大小的方法

。
<
.
.
√ +√1< +√I . 5 3 √7 1
3 3
“ 国际护士 节" 是在 每年 的哪 一天?5月 1 ( 2日)
…
I 掰 学
思考题:你能看 出待 比较 的两个式子的关系特征吗? 自己编
几道类似的题试试看 !
四、运用求差法进行 比较
比较依据 :若 a b O — > ,则 a b >;
解:. √ =√ 2 ‘3 2 3 =√l,√ = 2 3 1, /8√l, 。 × 8 2 3 √ 一√ 2 而、 > 2 × / 1
・ . .
3
> 2
.
二 、运 用根 式 的定 义 进 行 比较 比较 依 据 : 二次 根 式 的定 义 .
例 2 比 / 一 与 一 的大小. 较, a 3 2
解 : 由题 意 得 2 a , .口 . .a 3 0 . a < . - ≥0 ’ ≤2 。 一 < . 。 一3 0 . . .
又x2 ,. , 一 >, 一 . /一 ≥0 。/ 口 / 3 .2 a
三、运用平方法进行 比较
比较 依 据 : 当 a O > > ,b O时 ,若 > 6,则 a b >.
七 、运用 分母有 理化进 行 比较 对 于分母 中含二 次根式 的式 子的大 小 比较 问题 ,常用此法 . 嵫
=
与
,
的
.
4 +3  ̄v
ห้องสมุดไป่ตู้
=
,
Z 3+ < 5+
,
.
5 +1 , s一 1 1一
八 、运 用不等 式的传 递性进 行 比较 比较依据 :若 a b > ,则 a c > ,b c >.
【解析】专题二 二次根式大小比较

5 1
4
4
7 3
4
4
5 1 7 3
9. 已知 M 101 100 , N 99 98 ,则 M 与 N 的大小关系是(
)
A. M N
B. M N
【考点】根式的大小比较
C. M N
D. M ≤ N
【解析】∵ M 101 100
1
, N 99 98 1
bc
ac
ab
∴ abc 1 abc 1 abc 1
bc
ac
ab
∴ ab ac bc ∴ a b c ,选 B.
王文君老师
保持优秀是种习惯
不进则退
18. 正实数 a , b , c , d 满足 a b c d 1 ,
设 p 3a 1 3b 1 3c 1 3d 1 ,则(
101 100
99 98
∴ M N ,选 B .
10. 已知 a 2 1, b 2 2 6 , c 6 2 ,那么 a , b , c 的大小关系是____.
A. a b c B. b a c 【考点】根式的大小比较
C. c b a D. c b a
⑵ 2 3 2 与 1 3 20
2
【考点】根式的大小比较
【解析】⑴ 23 7 3 23 7 3 56 , 33 2 3 33 2 3 54 ,因为 3 56 3 54 ,所以 2 3 7 33 2
⑵ 2 3 2 3 16 , 1 3 20 3 5 ,因为 3 16 3 5 ,所以 2 3 2 1 3 20
1
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的估值与比较大小(北师版)
1.(本小题10分)的值( )
A. 在1和2之间
B. 在2和3之间
C. 在3和4之间
D. 在4和5之间
2.(本小题10分)估算的值( )
A. 在4和5之间
B. 在5和6之间
C. 在6和7之间
D. 在7和8之间
3.(本小题10分)若与的小数部分分别是a和b,则a+b=( )
A. 1
B.
C. 0
D. 11
4.(本小题10分)现有四个无理数,,,,其中在实数+1和+1之间的有( )
• A. 1个 B. 2个 C. 3个 D. 4个
•
5.(本小题10分)下面四个结论正确的是( )
A. >
B. <
C. <
D. <
6.(本小题10分),,的大小关系是( )
A. <<
B. <<
C. <<
D. <<
7.(本小题10分)如图,在数轴上表示数的点可能是点____.
8.(本小题10分)若的整数部分是x,小数部分是y,则的值是____.
9.(本小题10分)已知与的小数部分分别是a和b,则的值为____.
10.(本小题10分)设,的小数部分分别为a,b,则的值为____.
二次根式性质应用(北师版)
1.(本小题8分)若实数a,b满足,则=( )
• A. 16 B. -16 C. D.
2.(本小题8分)已知a,b,c是△ABC的三边长,且满足关系式,则△ABC的形状为( ) • A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形
3.(本小题8分)若,则x-y的值为( )
• A. 1 B. -1 C. 3 D. -3
4.(本小题8分)当m<3时,( )
A. m-3
B. 3-m
C. 0
D. 1
5.(本小题8分)若,则x的取值范围是( )
A. x>2
B. x≥2
C. x<2
D. x≤2
6.(本小题8分)当x≤0时,化简的结果是( )
• A. 1-2x B. -1 C. 2x-1 D. 1
7.(本小题8分)若b<0,化简的结果是( )
• A. B. C. D.
8.(本小题8分)已知△ABC的三边长分别为a,b,c,化简的结果为( )
• A. 2a-2b B. -2b C. 2c D. 0
9.(本小题9分)实数a,b在数轴上的位置如图所示,化简的结果为( )
A. 2a
B. -2a
C. 2b
D. -2b
10. 数轴上A,B两点对应的实数分别是和2,若点A关于点B的对称点为点C,则点C所对应的实数为( ) • A. B. C. D.
11.(本小题9分)比较2,,的大小,正确的是( )
• A. B. C. D.
12.(本小题9分)下列比较大小错误的是( )
• A. B. C. D.
轴对称与旋转变换(二)(北师版)
1.(本小题10分)如图,将长方形纸片ABCD折叠,使点C与点B重合,折痕为EF,AE=4cm,CE=8cm,则折痕EF的长是( )cm.
A. 4
B. 8
C.
D.
2.(本小题10分)如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在的位置,若BC=4,则的长为( )
A. B. C. 4 D. 3
3.(本小题10分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,F D=2,则BC的长为( )
A. B. C. D.
4.(本小题10分)如图,先把矩形ABCD对折,折痕为MN,展开后再折叠,使点B落在MN上,此时折痕为AE,点B在MN上的对应点为,则=( )
A. 15°
B. 30°
C. 45°
D. 60
5.(本小题10分)如图,正方形ABCD边长为12,E为CD上一点,沿AE将△ADE折叠得△AEF,延长EF交BC于G,连接AG, CF,BG=6,下列说法正确的有( ) ①ABG≌△AFG;②DE=4;③AG∥CF;④S△FGC=.
A. 1个
B. 2个
C. 3个
D. 4个
6.(本小题10分)如图,圆柱形玻璃杯,高为6cm,底面周长为16cm,在杯内离杯底2cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )cm.
A. B. C. D. 10
7.(本小题10分)如图,把△ABC绕B点逆时针旋转26°得到,若正好经过A点,则∠BAC=( )
A. 52°
B. 64°
C. 77°
D. 82°
8.(本小题10分)如图,两块相同的直角三角形完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到的位置,若点在AC上,与AB相交于点D,则=( )
A. B. 2 C. D.
9.(本小题10分)如图,将△ABC绕顶点A顺时针旋转60º后得到,若为BC的中点,则=( )
A. 1:2
B. 1:
C. 1:
D. 1:3
10.(本小题10分)如图,凸四边形ABCD满足条件:AB=AD,∠BAD=60°,∠BCD=120°,则AC与BC+CD的数量关系为
( )
A. B. C. D. 不确定
轴对称与旋转变换(三)(北师版)
1.(本小题10分)如图,AD是△ABC的中线,∠ADC=60°,把△ADC沿直线AD翻折,点C落在点C′的位置,如果DC=2,那么BC′=()
A. B. 2 C. D. 4
2.(本小题10分)如图,在长方形纸片ABCD中,AB=8,BC=12,点M在BC边上,且CM=4,将矩形纸片折叠使点D落在点M 处,折痕为EF,则AE的长为( )
A. 1
B. 2
C. 3
D. 5
3.(本小题10分)如图,在长方形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.若,则( )
A. k
B.
C.
D.
4.(本小题10分)如图,在长方形纸片ABCD中,AB=5,AD=3,将纸片折叠,使点B落在边CD上的B′处,折痕为
AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为( )
A. 1
B.
C.
D.
5.(本小题10分)如图,将△ABC绕顶点A逆时针旋转一角度,使点D落在BC边上,得到△ADE,此时恰好
AB∥DE,若∠E=35°,则∠DAC的度数为( )
A. 15°
B. 20°
C. 25°
D. 30°
6.(本小题10分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至
△A′B′C,使得点A′恰好落在AB上,连接BB′,则BB′的长为( )
A. 1
B.
C.
D. 2
7.(本小题10分)如图,在Rt△ABC中,∠ACB=90°.在同一平面内,将△ABC绕点C逆时针旋转70°与△EDC重合,恰好使点D在AB上,则∠E=()
A. 20°
B. 25°
C. 30°
D. 35°
8.(本小题10分)已知两个全等的直角三角形纸片ABC,DEF,如图放置,点B,D重合,点F在BC上,AB与EF交于点G,∠C =∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.若纸片DEF不动,纸片ABC绕点F逆时针旋转30°,则C到DE的距离为( )
A. 4
B.
C.
D.
9.(本小题10分)如图,在等腰Rt△ABC中,∠A=90°,AC=9,点O在AC上,且AO=2,点P是AB上一动点,连接OP将线段OP绕O逆时针旋转90°得到线段OD,要使点D恰好落在BC上,则AP的长等于( )
A. 2
B.
C. 5
D. 7
10.(本小题10分)如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24,则AC长是( )
A. B. C. D. 5。