电磁场与电磁波答案(英文版)
电磁场与电磁波 答案

23 谐振腔和波导管内的电磁场只能存在或者传播一定的频率的电磁波是由谐振腔和波
导管的边界决定的。
24 写出采用洛伦兹规范和在此规范下的电磁场方程: v v v 1 ∂2Α v 1 ∂ϕ 1 ∂ 2ϕ ρ 2 2 J , = − µ ∇⋅Α+ 2 = 0,∇ Α − 2 ∇ ϕ − =− 。 0 2 2 2 ε0 c ∂t c ∂t c ∂t 25 推迟势的本质是电磁作用具有一定的传播速度。
i 1 1 1v v 41 电磁场张量 Fµν按下列方式构成不变量。 Fµν Fµν = B 2 − 2 E 2 , ε µνλτ Fµν Fλτ = B ⋅ E c 2 8 c 42 静止µ子的寿命只有 2.197×10-6 秒,以接近光速运动时只能穿过 660 米。但实际上很
大部分µ子都能穿过大气层到达底部。在地面上的参考系把这种现象描述为运动µ子 寿命延长的效应。 但在固定于µ子上的参考系把这种现象描述为运动大气层厚度缩小 的效应。
二、填空题
1 电动力学的研究对象是电磁场的基本属性和运动规律,研究电磁场与带电粒子之间
的相互作用。
2 位移电流是由麦克斯韦首先引入的,其实质是电场的变化率。 3 麦克斯韦首先预言了电磁波的存在,并指出光波就是一种电磁波。 4 麦克斯韦方程和洛伦兹力公式正确描述了电磁场的运动规律以及它和带电物质的相
互作用规律。 v v v v 5 各向同性线性介质的极化强度 P 和外加电场 E 之间的关系是 P = χ e ε 0 E ,其中 χ e 是 介质的极化率, ε 0 是真空电容率。 v v ∂B 。 6 变化的磁场产生电场的微分方程为 ∇ × E = − ∂t
时空坐标相互变换。相应地,电磁场的三维矢势和一维标势构成一个统一体,不可 分割,当参考系改变时,矢势和标势相互变换。 (√) (×) 28 时间和空间是两个独立的物理量,不能统一为一个物理量。
电磁场与电磁波考试题答案参考资料

第一章 静电场一、选择题(每题三分)1) 将一个试验电荷Q (正电荷)放在带有正电荷的大导体附近P 点处,测得它所受力为F ,若考虑到电量Q 不是足够小,则:()A 、F/Q 比P 点处原先的场强数值大 C 、F/Q 等于原先P 点处场强的数值B 、F/Q 比P 点处原先的场强数值小 D 、F/Q 与P 点处场强数值关系无法确定 答案(B )·P+Q2) 图中所示为一沿X 轴放置的无限长分段均匀带电直线,电荷线密度分别为+λ(X<0)和一个-λ(X>0),则OXY 坐标平面上点(0,a )处的场强E为( )A 、0B 、a 2i 0πελC 、a 4i 0πελD 、a 4)j i (0πε+λ3) 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U为静电势)()A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系 C 、半径为R 的均匀带正电球体电场的U-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系 D 、半径为R 的均匀带正电球面电场的U-r 关系答案(B )4) 有两个点电荷电量都是+q ,相距2a,今以左边的点电荷为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和 2S 的电场强度通量分别为1ϕ和 2ϕ,通过整个球面的电场强度通量为3ϕ,则()为零D 、以上说法都不对 答案(C ) 6) 两个同心带电球面,半径分别为)(,b a b a R R R R <,所带电量分别为b a Q Q ,。
设某点与球心相距r,当b a R r R <<时,该点的电场强度的大小为() A 、2ba 0rQ Q 41+∙πε B 、2ba 0rQ Q 41-∙πε C 、)R Q r Q (412bb 2a 0+∙πε D 、2a 0r Q 41∙πε 答案(D )7) 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量为() A 、6q ε B 、12qε C 、24q ε D 、048qε 答案(C )8) 半径为R 的均匀带电球面,若其电荷密度为σ,则在距离球面R 处的电场强度为()A 、0εσ B 、02εσC 、04εσD 、8εσ答案(C )9) 高斯定理⎰⎰ερ=∙vs dV S d E ()A 、适用于任何静电场 C 、只适用于具有球对称性,轴对称性和平面对称性的静电场B 、只适用于真空中的静电场 D 、只适用于虽然不具有(C)中所述的对称性,但可以找到合适的高斯面的静电场 答案(B ) 10) 关于高斯定理的理解正确的是()A 、 如果高斯面上处处E为零,则该面内必无电荷 C 、如果高斯面内有许多电荷,则通过高斯面的电通量必不为零B 、 如果高斯面内无电荷,则高斯面上处处E为零 D 、如果高斯面的电通量为零,则高斯面内电荷代数和必为零 答案(D ) 11) 如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为() A 、2021r 4Q Q πε+ B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 答案(D )12)若均匀电场的场强为E,其方向平行于半径为R 的半球面的轴,则通过此半球面的电通量Φ为()13) 下列说法正确的是()A 、 闭合曲面上各点场强为零时,面内必没有电荷 C 、闭合曲面的电通量为零时,面上各点场强必为零B 、 闭合曲面内总电量为零时,面上各点场强必为零 D 、通过闭合曲面的电通量仅决定于面内电荷 答案(D )14) 在空间有一非均匀电场,其电力线分布如图,在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场线通量为e ∆Φ,则通过该球面其余部分的电场强度通量为()A 、e ∆Φ-B 、e S r ∆Φ⋅∆24π C 、e SSr ∆Φ⋅∆∆-24π D 、0 答案(15) 在电荷为q +的电场中,若取图中点P 处为电势零点,则M 点的电势为()16)下列说法正确的是()A 、 带正电的物体的电势一定是正的 C 、带负电的物体的电势一定是负的B 、 电势等于零的物体一定不带电 D 、物体电势的正负总相对电势参考点而言的 答案(D )17) 在点电荷q 的电场中,选取以q 为中心,R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ‘点电势为()A 、r 4q 0πε B 、)R 1r 1(4q 0-πε C 、)R r (4q 0-πε D 、)R1r 1(4q 0-πε-答案(B )18) 半径为R的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距球心为r 的P 强度和 电势为() A 、E=0, U=r 4Q 0πε B 、 E=0, U=R 4Q 0πε C 、E=2r 4Q0πε. U=r 4Q 0πε D 、E=2r 4Q0πε答案(B )19) 有N 个电量为q 布,比较在这两种情况下在通过圆心O 并垂直与圆心的Z 轴上任意点P 的 场强与电势,则有() A 、场强相等,电势相等B 、场强不相等,电势不相等C 、场强分量z E 相等,电势相等D 、场强分量z E 答案(C )20)在边长为a 正方体中心处放置一电量为Q A 、a 4Q 0πε B 、R 2Q 0πε C 、R Q 0πε D 、R22Q0πε答案(B )21)如图两个同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点的电势U 为()A 、r4Q Q 021πε+ B 、101R 4Q πε+202R 4Q πε C 、0 D 、101R 4Q πε 答案(B )22) 真空中一半径为R 的球面均匀带电为Q ,,在球心处有一带电量为q 的点电荷,如图设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为()A 、E R 2π B 、E R 22π C 、E R 221π D 、E R 22πE 、22ERπ 答案(A )A 、a 4q 0πε B 、a8q 0πε C 、a 4q 0πε-D 、a8q0πε- 答案(D )A 、r4Q 0πε B 、)R Q r q (410+πε C 、r 4q Q 0πε+ D 、)RqQ r q (410-+πε 答案(B )23)当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心出产生的电场强度E和电势U 将()A 、E 不变,U 不变 B 、E 不变,U 改变 C 、E 改变 ,U 不变 D 、E改变,U 也改变 答案(C )24) 真空中有一电量为Q 的点电荷,在与它相距为r 的A 点处有一检验电荷q,现使检验电荷q 从A 点沿半圆弧轨道运动到B 点,如图则电场场力做功为()A 、q2r r 4Q 220⋅π⋅πε B 、rq 2r 4Q 20⋅πε C 、rq r 4Q 20π⋅πε D 、0 答案(D ) 25) 两块面积为S 的金属板A 和B 彼此平行放置,板间距离为d (d 远远小于板的线度),设A 板带电量1q , B 板带电量2q ,则A,B 板间的电势差为() A 、S2q q 021ε+ B 、d S 4q q 021⋅ε+ C 、d S 2q q 021⋅ε- D 、d S4q q 021⋅ε- 答案(C )26)图中实线为某电场中电力线,虚线表示等势(位)面,由图可以看出() A 、c E >>b a E E c U >>b a U U C 、c E >>b a E E c U <<b a U UB 、c E <<b aE E c U <<ba U U D 、c E <<b a E Ec U >>b a U U 答案(A )27) 面积为S 的空气平行板电容器,极板上分别带电量为q ±,若不考虑边缘效应,则两极板间的相互作用力为()A 、S q 02ε- B 、S 2q 02ε- C 、202S 2q ε D 、202S q ε 答案(B )28)长直细线均匀带电。
电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。
如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。
解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。
解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。
由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。
解:以球心为坐标原点,转轴(一直径)为$z$轴。
设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。
电磁场与电磁波理论基础 课后答案

r a=2r jq 题2-11E 2E 3E 题2-2图()004,,()400P ,,oYZ1r 2r r 1R 2R 18q C=q 题2-3图第二章 静电场 2-1.已知半径为r a =的导体球面上分布着面电荷密度为0cos S S ρρϑ=的电荷,式中的0S ρ为常数,试计算球面上的总电荷量。
解 取球坐标系,球心位于原点中心,如图所示。
由球面积分,得到()220cos sin S S S Q dS r d d p p=r =rq q q j òòòò220022000200cos sin cos sin sin20S S S r d d rd d a d p pp pp =rq q q j=r q q q j =r p q q =òòòòò2-2.两个无限大平面相距为d ,分别均匀分布着等面电荷密度的异性电荷,求两平面外及两平面间的电场强度。
解 假设上板带正电荷,面密度为S r ;下板带负电,面密度为S -r 。
对于单一均匀带电无限大平面,根据书上例 2.2得到的推论,无限大带电平面的电场表达式为2SE r =e 对于两个相距为的d 无限大均匀带电平面,根据叠加原理 123000SE ,E ,E r ===e2-3.两点电荷18C q =和24C q =−,分别位于4z =和4y =处,求点(4,0,0)P 处的电场强度。
解 根据点电荷电场强度叠加原理,P 点的电场强度矢量为点S 1和S 1处点电荷在P 处产生的电场强度的矢量和,即()112233010244q q R R =+pe pe R R E r 式中11144x z ,R =-=-==R r r e e 22244x y ,R =-=-==R r r e e代入得到()()()()()330444844142x y x z x y z éù-êú-êú=-êúpe êúëûù=+-úûe e e e E r e e e 2-7.一个点电荷+q 位于(-a , 0, 0)处,另一点电荷-2q 位于(a , 0, 0)处,求电位等于零的面;空间有电场强度等于零的点吗?解 根据点电荷电位叠加原理,有120121()4q q u R R r πε⎡⎤=+⎢⎥⎣⎦式中()11y z x a y R =-=+++=R r r e e e()22y z x a y R =-=-++=R r r e e e代入得到()4q u r πε⎡⎤=电位为零,即令0()04q u r πε⎡⎤== 简化可得零电位面方程为()()2233330x a x a y z ++++=根据电位与电场强度的关系,有()()()()()()()()3322222222222222203322332222222()()2422x y z x yx a y z x a y z x a y z x a y z x a y u u u u xy z x a y z z q x a x a y y z z E r r e e e e e πε−−−−−−⎡⎤∂∂∂=−∇=−++⎢⎥∂∂∂⎣⎦⎧⎛⎫⎪⎡⎤⎡⎤=−−++− ⎪⎨⎣⎦⎣⎦ ⎪⎪⎝⎭⎩⎛⎫⎡⎤⎡⎤+−+ ⎪⎣⎦⎣⎦ ⎪⎝⎭⎛⎫⎡⎤⎡⎤+−+ ⎣⎦⎣+++−+++++−+++++++⎦ ⎝−⎭z e ⎫⎪⎪⎬⎪⎪⎭要是电场强度为零,必有 000x y z E ,E ,E ===即()()()()()()()()332233222222222222222233222222202020x a x a y y z z x a y z x a y z x a y z x a y z x a y z x a y z −−−−−−+++−+++++−⎧⎡⎤⎡⎤+++++−+−++−=⎪⎣⎦⎣⎦⎪⎪⎡⎤⎡⎤−+=⎨⎣⎦⎣⎦⎪⎪⎡⎤⎡⎤−+=⎪⎣⎣⎩+⎦⎦此方程组无解,因此,空间没有电场强度为零的点。
电磁场与电磁波部分答案1(陈抗生第二版)

DRAFT
6
%% 2.3 zl = 80; zc = 50; kl = 2*pi/4; zin1 = zc * (zl + 1j*zc*tan(kl)) / (zc + 1j*zl*tan(kl)); kl = 2*pi/2; zin2 = zc * (zl + 1j*zc*tan(kl)) / (zc + 1j*zl*tan(kl)); kl = 2*pi*3/8; zin3 = zc * (zl + 1j*zc*tan(kl)) / (zc + 1j*zl*tan(kl));
Ï••3ü«ªÇ§ÏdvkéA EêL«/ª¶ 1.3 Ñe EêL« ž L«µ
(1) C = 3 + 4j
C (t) = Re((3 + 4j )ejωt ) = 3 cos(ωt) − 4 sin(ωt)
(2) C = 4e−j 1.2
November 24, 2017
DRAFT
2
C (t) = 4 cos(ωt − 1.2)
(2) (3)
(2) I (t) = −10 sin(ωt)
I (t) = −10cos(ωt − π/2) I = −10e−jπ/2 = 10j
(4) (5)
(3) A(t) = 3cos(ωt) − 2sin(ωt)
A(t) = 3 cos(ωt) − 2 cos(ωt − π/2) A = 3 − 2e−jπ/2 = 3 + 2j
(6) (7)
(4) C (t) = 10 cos(1000πt − π/2)
C = −10j
(8) EêL«/ª¶
(5) D(t) = 1 − sin(ωt) Ï••3ü«ªÇ§ÏdvkéA (6) U (t) = sin(ωt + π/6) cos(ωt + π/3)
《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场与电磁波英文版

1. Directional Derivative & Gradient
The directional derivative of a scalar at a point indicates the spatial rate of change of the scalar at the point in a certain direction. l
Δl
P
P
of scalar l P at point P in the direction of l is defined as
The directional derivative
l
lim
P
( P) ( P)
Δl
Δl 0
The gradient is a vector. The magnitude幅度 of the gradient of a scalar field at a point is the maximum directional derivative at the point, and its direction is that in which the directional derivative will
be maximum.
In rectangular coordinate system直角坐标系, the gradient of a scalar field can be expressed as
grad e x
ey ez x y z
Where “grad” is the observation of the word “gradient”. In rectangular coordinate system, the operator算符 is denoted as
电磁场与电磁波答案

=
1 r2
∂ ∂r
(r2 sinθ cosφ) +
1 r sinθ
∂ ∂θ
(sin θ
cosθ
cosφ) +
1 r sinθ
∂ ∂φ
(− sinφ) =
2 sinθ cosφ + cosφ − 2sinθ cosφ − cosφ = 0
r
r sinθ
r
r sinθ
er reθ r sinθ eφ
∇× A= 1 ∂ ∂ r2 sinθ ∂r ∂θ
等于零。
解
(1) ∇u
= ex
∂u ∂x
+ ey
∂u ∂y
+ ez
∂u ∂z
= ex (2x + 3) + ey (4 y − 2) + ez (6z − 6) ;
(2)由 ∇u = ex (2x + 3) + ey (4 y − 2) + ez (6z − 6) = 0 ,得
x = −3 2, y =1 2,z =1
量 ex
3 50
+
ey
4 50
+
ez
5 定出;求 (2, 3,1) 点的方向导数值。 50
解
∇Ψ
= ex
∂ ∂x
(
x
2
yz)
+
e
y
∂ ∂y
(
x
2
yz
)
+
ez
∂ (x2 yz) = ∂z
ex 2xyz + ey x2 z + ez x2 y
故沿方向 el = ex
3 50