框架结构等效刚度的计算与分析

合集下载

关于结构侧向刚度的计算

关于结构侧向刚度的计算

关于结构侧向刚度的计算1. 关于侧向刚度《高层建筑混凝土结构技术规程》JGJ3-2010(以下简称“《高规》”)有若干处出现了关于楼层侧向刚度的规定,其相应计算方法和适用范围不尽相同。

1.1 判别结构竖向布置规则性(《高规》3.5.2)对于以剪切变形为主的框架结构(即结构中不含有剪力墙)的楼层侧向刚度比1γ的计算方法做出了规定,即: 111i i i i V V γ++∆=∆ (《高规》3.5.2-1)式中,1γ为楼层侧向刚度比,i+1i V V 、分别为第i 层和第i+1层的地震剪力标准值(注意,对于不同的地震作用计算方法,如分别采用底部剪力法和阵型分解反应谱法,该值的具体数值可能不同,但不影响楼层侧向刚度比1γ的计算),i+1i ∆∆、分别为第i 层和第i+1层在地震作用标准值作用下的层间位移。

该公式的物理意义清晰明了,代表第i 层侧向刚度与第i+1层侧向刚度的比值,即:111ii i i V V γ++=∆∆ 《高规》规定10.7γ≥,10.8γ'≥,1γ'的定义如下,即第i 层的侧向刚度与相邻上部三层的侧向刚度的比值: 112312313i i i i i i i i V V V V γ++++++∆'=⎛⎫++ ⎪∆∆∆⎝⎭对于其他结构形式,如框架-剪力墙结构、板柱-剪力墙结构、剪力墙结构、框架-核心筒结构、筒中筒结构,侧向刚度比2γ的计算公式有所不同,要考虑层高修正(原因是这类结构其楼面体系对结构侧向刚度贡献较小,当层高变化时刚度变化不明显),即: 1211i i i i i i V h V h γ+++∆=∆ (《高规》3.5.2-1)《高规》要求,当11.5i i h h +≤时,20.9γ≥;当11.5i i h h +>,2 1.1γ≥。

可以看出,《高规》关于该类结构考虑层高修正后的侧向刚度比2γ的限值要求较框架结构的侧向刚度比1γ严。

另外,《高规》还要求,对结构底部嵌固层,该比值2 1.5γ≥。

高层建筑框架结构的半解析静力分析

高层建筑框架结构的半解析静力分析

高层建筑框架结构的半解析静力分析引言:我们处于一个科学进步,不断变更的时代,科学的不断进步,经济的快速发展,城市的不断更新以及变迁,促使了房地产业的不断发展,这样在全球范围内,内陆城市的高层建筑已经成为很常见的事物。

因为高层建筑不同于其他的建筑物,在建筑的结构以及框架上都有着很大的不同,尤其是在传力、抗震、抗侧刚度以及发挥材料特长等方面可以带来很强大的优越性选择,并要求可以有着很好的技术经济指标的指引。

基于上述原因,我们知道了在高层建筑结构中框架的设计以及研究有着重要的地位以及应用。

但是,我们知道,对于框架结构与基础地基的共同工作在学者以及施工者那里是比较不成熟的。

大多数都是根据以往的经验在进行施工。

这样笔者经过实际的考察就要为我们的框架结构找到一种可以简单化的,具有效率的整体设计以及初步设计。

另外,笔者在文章中主要将高层框架结构与其基础等效连续化为一个半无限大弹性地基上的薄壁筒,并以此三维模型,用半解析法分析计算受静力作用的高层框架结构与其基础地基的共同工作。

希望通过一些结论和研究,可以帮助后来者进行研究和施工。

一、研究原因我们的建筑业在改革开放之后有着十分迅速的发展,因为城市的迅速扩张,我们的高层建筑变得十分的普遍并被我们接受。

另外,我们知道在高层和超高层建筑结构的选型由于巨型框架结构在传力、抗震、抗侧刚度和发挥材料特长等方面具有很强的优越性,且具有良好的技术经济指标,这就是说,我们的巨型框架结构是有着很大的优势和特点的,并在高层建筑的结构设计中扮演了十分重要的角色。

在我们国家,上海证券大厦就是采用了这种结构,并用了半解析静力上的分析的运用。

立足于国外,日本东京NEC 办公大楼等也是很好的例证。

但是,返回到实际,我们国家在空间巨型框架结构的研究上处于刚刚起步的阶段,这些对于我们的高层建筑框架结构与基础地基共同工作的半解析静力分析有着很好的借鉴作用,作为一些珍贵的文献参考。

因为此原因,本文立足于找到一种优化的,简便的,方便的建筑学分析方式,致力于研究高层建筑空间巨型框架结构与其基础等效连续化为一个半无限大弹性地基上的加劲薄壁筒组合体,并以此三维模型,用半解析法分析计算了受静力作用的超高层建筑空间巨型框架结构与其基础地基的共同工作。

框架-剪力墙结构自振周期及振型计算

框架-剪力墙结构自振周期及振型计算

框架-剪力墙结构自振周期及振型计算1. 基本原理(1)连续化方法(2)梁弯曲自由振动动力方程 (3)自由振动位移方程 2. 计算参数(1)刚度参数 框架刚度:C F 剪力墙刚度:EI 刚接连梁刚度:μ (2)质量参数单位高度质量m ,单位高度重量W=mg 3. 计算公式(1)框剪结构刚度特征值EIC HF μλ+= (2)自振周期gEIWH T i i 2ϕ= i ϕ由图表、根据λ及所要计算的振型查得(3)振型参数ϕπλλ221=,212ϕλπλ=或122ϕλπλ=22221λλλ=-()()0sin sh cos ch 2212221212142412221=-+++λλλλλλλλλλλλ一式代入二式,有:221212λϕλπλ=⎪⎪⎭⎫ ⎝⎛-,()022212221=⎪⎪⎭⎫ ⎝⎛--ϕπλλλ 24224221242224⎪⎪⎭⎫⎝⎛+±=⎪⎪⎭⎫ ⎝⎛+±=ϕπλλϕπλλλ 根据物理意义,有:24221242⎪⎪⎭⎫⎝⎛++=ϕπλλλ,2421242⎪⎪⎭⎫⎝⎛++=ϕπλλλ 汇总为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫ ⎝⎛++=242224212422242ϕπλλϕπλϕπλλλ (4)振型公式()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-+-=x H x H x H x H Y x Y 221122221121221210sin sh cos ch sh sin cos ch λλλλλλλλλλλλλλλ4. 补充说明(1)应计算3个、最多也只能计算三个振型。

(2)计算梁的刚度时,应计及现浇钢筋混凝土楼板作为梁的翼缘对梁截面刚度的增大效应,其中边梁截面惯性矩增大1.5倍,中梁刚度增大2.0倍。

(3)计算框架-剪力墙结构的自振周期时,应考虑框架填充墙对整体结构刚度的贡献,做法是对计算周期进行折减,折减系数为0.7-0.8。

5.结构刚度 5.1 框架刚度(1)框架梁刚度按矩形截面计算:3121bh I b =按T 型截面修正:3121bh I b β=,对于现浇钢筋混凝土框架边梁,.51=β,现浇钢筋混凝土框架中梁,.02=β(2)框架柱刚度 惯性矩;3c 121bh I =(此处h 为柱截面高度) 梁柱刚度比:cb i i i ∑=柱抗侧刚度修正系数:底层i i ++=2.50α,中间层ii+=2α 柱抗侧刚度D 值:212h i D cα=(此处h 为层高) 柱抗推刚度:Dh C =c (此处h 为层高) (3)框架抗推刚度∑∑===D h C C nm C F 1(此处h 为层高)5.2 剪力墙刚度 5.2.1 整体剪力墙 www d A H I I I 291μ+=5.2.2 开洞剪力墙(1)开洞墙连梁折算惯性矩bb bb A a I I I 271~μ+=,剪应力分布不均匀系数2.1=μ,a 为连梁净跨 (2)连梁刚度特征值32~aI c D b=,c 为连梁轴跨(3)墙肢刚度 墙肢惯性矩: 3121ww h b I =(按矩形截面计算,或按T 型等组合截面计算等)(4)剪切参数 墙肢剪切参数:∑∑∑∑==AHI AG H IE 22238.2μμγ(5)整体影响系数不考虑轴向变形影响的整体参数∑∑=+==ki ik i iD I h H 1112216α(此处k 为洞口总数)考虑轴向变形影响的整体系数T212αα=,轴向变形影响系数T 与洞口数量有关,近似值为墙肢数量3-4时,T=0.80,墙肢数量5-7时,T=0.85,墙肢数量大于8时,T=0.90。

框架刚度计算公式

框架刚度计算公式

框架刚度计算公式一、框架柱的线刚度(i)计算。

1. 等截面柱。

- 对于矩形截面柱,其线刚度计算公式为:i = (EI)/(h),其中E为柱材料的弹性模量(对于混凝土结构,不同强度等级的混凝土E值不同,例如C30混凝土E = 3.0×10^4N/mm^2),I为柱截面的惯性矩。

对于矩形截面b× h(b为截面宽度,h为截面高度),I=frac{bh^3}{12},h为柱的计算高度(柱上下节点中心之间的距离)。

- 对于圆形截面柱,I=frac{π d^4}{64}(d为圆形截面直径),线刚度i=(EI)/(h)。

2. 变截面柱。

- 当柱为变截面时,可采用等效惯性矩I_e来计算线刚度。

对于阶形柱,在计算柱顶位移等情况时,可根据不同的变截面形式和受力情况采用相应的等效方法计算I_e,然后再按照i=frac{EI_e}{h}计算线刚度。

二、框架梁的线刚度(i)计算。

1. 矩形截面梁。

- 同样采用i=(EI)/(l),其中E为梁材料的弹性模量(与柱材料相同时取值相同),I为梁截面的惯性矩。

对于矩形截面b× h(b为截面宽度,h为截面高度),I = frac{bh^3}{12},l为梁的计算跨度(一般取柱轴线之间的距离)。

2. T形、倒L形等截面梁。

- 对于T形截面,其惯性矩I的计算要考虑翼缘和腹板的共同作用。

对于翼缘宽度b_f、腹板宽度b、梁高h和翼缘厚度h_f的T形截面,其惯性矩I=(1)/(12)[b_fh^3-(b_f - b)(h - 2h_f)^3]。

然后再根据i=(EI)/(l)计算线刚度。

倒L形截面类似,根据其截面尺寸计算惯性矩后求线刚度。

三、框架整体刚度计算(以D值法为例)1. 柱的抗侧移刚度(D值)计算。

- 对于一般层柱:- 当框架结构为规则框架(各柱等高,梁的线刚度沿柱高度方向不变等情况)时,D=αfrac{12i_c}{h^2},其中α为柱的侧移刚度修正系数。

框架结构计算

框架结构计算

X X X X X设计学生:指导老师:三峡大学XX学院摘要:本设计课题为。

Abstract:The project is the design of a express hotel.关键词:框架结构抗震等级内力分析荷载组合独立基础板式楼梯Keywords:frame structure前言毕业设计是大学本科教育培养目标实现的重要阶段,是毕业前的综合学习阶段,是深化、拓宽、综合教与学的重要过程,是对大学期间所学专业知识的全面总结。

本组毕业设计题目为。

1.建筑设计1.1工程概况本工程为该工程采用钢筋混凝土框架结构,抗震设防烈度为7度(0. 1g),设计地震分组为第一组,抗震等级为三级。

1.2地质资料工程重要性等级为三级,本地区属亚热带大陆行季风气候,1.3平面布置在平面布置中1.4立面布置1.5各种用房和交通联系的设计本工程工程重要性等级为三级,根据《旅馆建筑设计规范》1.6建筑各构件用料、装饰及做法1.墙体:2.结构设计2.1.1结构布置方案及结构选型根据建筑使用功能要求,本工程采用框架承重方案。

框架柱网布置如下图2.1.1:2.1.2确定结构计算简图(1)计算基本假定:○1一片框架可以抵抗在本身平面内的侧向力,而在平面外的刚度很小,可以忽略(因而整个结构可以划分成若干个平面结构共同抵抗与平面结构平行的侧向荷载,垂直于该方向的结构不参加受力);○2楼板在其自身平面内刚度无限大,楼板平面外刚度很小,可以忽略(因而在侧向力作用下,楼板可做刚体平移或转动,各个平面抗侧力作用时,假定结构无侧移。

(2)计算简图如下图2.1.2(1)根据图2.1.13.9m++=5.1m,其中3.9m为层高,0.6m为室内外高差和基层顶面到室外地面的高度;二层柱高为 3.9m,标准层柱高从楼面算至上一层楼面,均为3m图2.1.2(1)框架计算单元简图框架梁跨度(按柱中心线确定):AB、CD跨:5400m;BC跨:7800m框架柱高度:底层:Z1=5100mm;二层:Z2=3900mm;标准层:Z3=3000mm,框架计算简图如下图所示。

第三节-框架结构的计算简图

第三节-框架结构的计算简图

第三节框架结构的计算简图4.3.1 梁、柱截面尺寸框架梁、柱截面尺寸应根据承载力、刚度及延性等要求确定。

初步设计时,通常由经验或估算先选定截面尺寸,以后进行承载力、变形等验算,检查所选尺寸是否合适。

1、梁截面尺寸确定2、柱截面尺寸柱截面尺寸可直接凭经验确定,也可先根据其所受轴力按轴心受压构件估算,再乘以适当的放大系数以考虑弯矩的影响。

即框架柱的截面宽度和高度均不宜小于300mm,圆柱截面直经不宜小于350mm,柱截面高宽比不宜大于3。

为避免柱产生剪切破坏,柱净高与截面长边之比宜大于4,或柱的剪跨比宜大于2。

3、梁截面惯性矩在结构内力与位移计算中,与梁一起现浇的楼板可作为框架梁的翼缘,每一侧翼缘的有效宽度可取至板厚的6倍;装配整体式楼面视其整体性可取等于或小于6倍;无现浇面层的装配式楼面,楼板的作用不予考虑。

设计中,为简化计算,也可按下式近似确定梁截面惯性矩I:4.3.2 框架结构的计算简图1、计算单元框架结构房屋是空间结构体系,一般应按三维空间结构进行分析。

但对于平面布置较规则的框架结构房屋,为了简化计算,通常将实际的空间结构简化为若干个横向或纵向平面框架进行分析,每榀平面框架为一计算单元。

就承受竖向荷载而言,当横向(纵向)框架承重,且在截取横向(纵向)框架计算时,全部竖向荷载由横向(纵向)框架承担,不考虑纵向(横向)框架的作用。

当纵、横向框架混合承重时,应根据结构的不同特点进行分析,并对竖向荷载按楼盖的实际支承情况进行传递,这时竖向荷载通常由纵、横向框架共用承担。

2、计算简图在框架结构的计算简图中,梁、柱用其轴线表示,梁与柱之间的连接用节点表示,梁或柱的长度用节点间的距离表示,框架柱轴线之间的距离即为框架梁的计算跨度;框架柱的计算高度应为各横梁形心轴线间的距离,当各层梁截面尺寸相同时,除底层外,柱的计算高度即为各层层高。

对于梁、柱、板均为现浇的情况,梁截面的形心线可近似取至板底。

对于底层柱的下端,一般取至基础顶面;当设有整体刚度很大的地下室;且地下室结构的楼层侧向刚度不小于相邻上部结构楼层侧向刚度的2倍时,可取至地下室结构的顶板处。

刚度计算公式

刚度计算公式

刚度(Stiffness)是描述材料或结构在受到外力作用时抵抗变形的能力。

对于线性弹性材料,刚度可以通过应力(Stress)与应变(Strain)之间的比例关系来计算,这个比例常数被称为弹性模量(Elastic Modulus)。

对于一维情况(例如拉伸或压缩),刚度计算公式为:
[ K = \frac{\sigma}{\epsilon} ]
其中:
( K ) 是刚度(N/m 或Pa)
( \sigma ) 是应力(N/m²或Pa)
( \epsilon ) 是应变(无量纲)
对于二维情况(例如梁的弯曲),刚度计算公式可能会涉及到弯矩(M)和曲率(κ):
[ EI = \frac{M}{\kappa} ]
其中:
( EI ) 是梁的弯曲刚度(N·m²)
( M ) 是弯矩(N·m)
( \kappa ) 是曲率(1/m)
对于三维情况(例如杆的扭转),刚度计算公式为:
[ GJ = \frac{T}{\phi} ]
其中:
( GJ ) 是杆的扭转刚度(N·m²)
( T ) 是扭矩(N·m)
( \phi ) 是扭转角(rad)
请注意,以上公式仅适用于线性弹性材料,并且在弹性范围内有效。

对于非线性材料或超出弹性范围的情况,刚度可能会发生变化,并且需要使用更复杂的模型来描述材料的力学行为。

此外,对于复杂的结构或组件,刚度可能需要通过有限元分析(FEA)或其他数值方法来计算。

这些方法可以考虑材料的非线性、几何非线性以及多种加载条件。

框架结构计算程序

框架结构计算程序

梁宽度(b)0.315柱宽(b c )0.3柱截面积(A c )190202.0202柱边长436.1215659底层柱高(m) 4.5线刚度(i)9.3006E+11宽(b)250恒载标准值计算b2. 20厚1:3水泥砂浆结合层第一页:荷载及内力计算;第c1. 12厚1:2水泥砂浆粘结10厚缸砖面层,块间留缝<10,1:1水泥砂浆3. 二毡三油上撒绿豆砂4. 刷冷底子油一道屋面(不上人)7. 结构层4. 25厚1:2.5水泥砂浆找平层5. 保温兼找坡层(水泥膨胀蛭石, 最薄处35mm)6. 25厚1:3水泥砂浆找平层(梁截面宽度不宜小于1/2柱宽,且不应小于250mm。

)各层楼面梁自重(kN/m)(1)纵向框架梁b1:0.25梁自重3抹灰层:粉刷石膏砂浆0.1815合计 3.1815 (2)横向AB、CD跨框架梁b2:0.25梁自重 2.375抹灰层:粉刷石膏砂浆0.1515合计 2.5265 (3)横向BC跨框架梁b3:0.25梁自重 1.75抹灰层:粉刷石膏砂浆0.1215合计 1.8715 (4)基础梁b4:0.25梁自重 1.75抹灰层:粉刷石膏砂浆0.1215合计 1.8715柱自重(kN/m)柱边长b0.5柱自重 6.25抹灰层:粉刷石膏砂浆0.3合计 6.55外纵墙1自重(kN/m)(1)标准层纵墙在计算单元内相对高度h 1.551724138纵向梁高0.6h'1.448275862纵墙1.706896552铝合金窗0.506896552水刷石外墙面0.775862069粉刷石膏砂浆内墙面0.232758621合计3.222413793(2)底层纵墙在计算单元内相对高度h 1.951724138纵向梁高0.6基础顶面至室外地面的高度0.5h'1.448275862纵墙2.146896552铝合金窗0.506896552水刷石外墙面0.975862069粉刷石膏砂浆内墙面0.232758621合计3.862413793(1)标准层层高 3.6纵墙3.3粉刷石膏浆内墙面0.9合计4.2(2)底层底层柱高4.5基础顶面至室外地面的高度0.5纵墙3.74粉刷石膏浆内墙面0.9合计4.64(1)标准层层高 3.6横墙3.41水刷石外墙面1.55粉刷石膏砂浆内墙面0.465合计5.425(2)底层底层柱高4.5基础顶面至室外地面的高度0.5横墙3.85水刷石外墙面2粉刷石膏砂浆内墙面0.465合计6.315内纵墙自重(kN/m)外横墙自重(kN/m)(1)标准层层高 3.6横墙3.41粉刷石膏浆内墙面0.93合计4.34(2)底层底层柱高4.5基础顶面至室外地面的高度0.5横墙3.85粉刷石膏浆内墙面0.93合计4.78(1)标准层纵墙在计算单元内相对高度h 1.709090909横向梁高0.5h'1.390909091走廊尽头墙 1.88铝合金窗0.486818182水刷石外墙面0.854545455粉刷石膏砂浆内墙面0.256363636合计3.477727273(2)底层纵墙在计算单元内相对高度h 2.109090909横向梁高0.5基础顶面至室外地面的高度0.5h'1.390909091走廊尽头墙 2.32铝合金窗0.486818182水刷石外墙面1.054545455粉刷石膏砂浆内墙面0.256363636合计4.117727273墙高1.5墙1.65压顶的混凝土0.5水刷石外墙面 1.7合计3.85不上人屋面0.5活荷载标准值计算(kN/m 2)内横墙自重(kN/m)女儿墙自重(kN/m)走廊尽头墙(kN/m)房间2走廊2S k =1.0×0.10 kN/ m 2l oy 8400l oy /l oz2.666666667梯形短边宽a 1.575荷载q屋面总荷载 6.451-2c 2+c 31恒荷载20.3175活荷载 1.575楼面总荷载 3.861-2c 2+c 31恒荷载12.159活荷载 6.3A—B梁自重2.5265恒荷载=梁自重+板传恒荷载22.844活荷载=板传活荷载 1.575内横墙自重4.2恒荷载=内横墙自重+梁自重+板传恒荷载18.8855活荷载=板传活荷载 6.3梁自重1.8715屋面梁、楼面梁恒荷载=梁自重 1.8715活荷载楼面梁因为是单向板,B、C间梁不实验室梯形荷载等效1=(1-2c2+c 3)q,c=a/l,A—B轴间框架梁屋面板传给梁(即屋面板两个梯形荷载等效为均布荷载):屋面梁B—C轴间框架梁A—B轴间框架梁均布荷载为:楼面板传给梁(即楼面板两个梯形荷载等效为均布荷载):板传至梁上的三角1=5/8q雪荷载标准值(kN/m 2)恒荷载和活荷载作用下框架的受荷图A轴柱纵向集中荷载的计算屋面板三角形荷载等效为均布荷载:屋面总荷载 6.45恒荷载0活荷载0楼面板三角形荷载等效为均布荷载:楼面总荷载 3.86恒荷载0活荷载0顶层柱恒荷载=女儿墙自重+外纵框架梁自重+板传恒荷载+次梁传恒女儿墙重度 3.85柱网长 6.3女儿墙自重24.255顶层柱恒荷载138.6525顶层柱活荷载=板传活荷载A轴柱屋面板传活荷载0柱网长 6.3顶层柱活荷载 6.615标准层柱恒荷载=外纵墙自重+外纵框架梁自重+板传恒荷载+次梁传外纵墙重度 3.222413793柱网长 6.3外纵墙自重18.69标准层柱恒荷载98.8218标准层柱活荷载=板传活荷载A轴柱楼面板传活荷载0柱网长 6.3标准层柱活荷载26.46基础顶面恒荷载=底面外纵墙自重+基础梁自重底面外纵墙重度 3.862413793柱网长 6.3底面外纵墙自重22.402基础顶面恒荷载33.2567B轴柱纵向集中荷载的计算走廊屋面板均布荷载:屋面总荷载 6.45恒荷载8.7075活荷载0.675走廊楼面板均布荷载:楼面总荷载 3.86恒荷载 5.211活荷载 2.7顶层柱恒荷载=内纵框架梁自重+板传恒荷载+次梁传恒荷载内纵框架梁重度 3.1815柱网长 6.3内纵框架梁自重18.4527顶层柱恒荷载164.901顶层柱活荷载=板传活荷载屋面板传活荷载重度0柱网长 6.3屋面活荷载(三角形)0顶层柱活荷载10.53标准层柱恒荷载=内纵墙自重+内纵框架梁自重+板传恒荷载+次梁传内纵墙重度 4.2走廊楼面恒荷载 5.211柱网长 6.3内纵墙自重24.36标准层柱恒荷载134.7156标准层柱活荷载=板传活荷载B轴柱楼面板传活荷载重度0走廊楼面活荷载 2.7柱网长 6.3B轴柱楼面板传活荷载0标准层柱活荷载52.2基底面内纵墙重度 4.64柱网长 6.3底面内纵墙自重26.912基础顶面恒荷载37.7667风荷载标准值计算基本风压( kN/m2)0.3风振系数(因屋高度小于30m)1计算单元迎风面宽度 6.3水平地震作用计算重力荷载代表值计算屋面处重力荷载标准值计算(KN)女儿墙565.6933333女儿墙重度总长屋面板7063.058167屋面板重度总长梁1323.1906(这个分类与上面的不完全相同)梁1重度梁1数轴网长梁1重力柱484.176柱重度柱数墙648.19外纵墙1重度墙长数量顶层总重力荷载标准值10084.30793 标准层楼面处重力荷载标准值计算(KN)墙1296.379658楼面板4226.884422屋面板重度纵跨数梁1323.1906柱1002.936柱重度柱数标准层层总重力荷载标准值7849.390681 底层楼面处重力荷载标准值计算(KN)底层墙737.0598292外纵墙1重度墙长数量墙1385.249658楼面板4226.884422梁1323.1906柱1262.316底层楼面处重力荷载标准值8197.640681 屋顶雪荷载标准值计算(KN)雪重度纵跨数屋顶雪荷载标准值109.5047778 楼面活荷载标准值计算(KN)房间活荷载轴网长纵跨数楼面活荷载代表值/标准值1998.32 总重力设计值/代表值计算(KN)屋面处12254.4762屋面处结构和构件自重标准层楼面处12216.91682楼面处结构和构件自重底层楼面12634.81682底层露面处结构和构件自重框架柱抗侧刚度D和结构基本自振周期计算横向D值计算AB、CD梁的相对线刚度底层柱高结构基本自振周期计算自振周期T10.468636932折减系数多遇水平地震作用计算最大影响系数Geq<5Tg,故:1影响系数1附加顶部集中力为AB、CD轴梁的相对线刚度i1当(i1+i2)<(i3+i4)时当(i1+i2)>(i3+i4)时上层层高h1修正系数阿尔法2修正系数阿尔法3水平地震作用下内力计算位移验算:根据《建筑抗震刚重比和剪重比验算(见上表)利用力学求解器分别算出活荷载、恒荷载、风荷载作用下框架梁因为(T1<1.4Tg),需要考虑顶部横重力荷载代表值作用下框架的内力均布重力荷载代表值计算屋面q AB=q CD框架梁上的均布荷载q BC框架梁上的均布荷载楼面q AB=q CD框架梁上的均布荷载q BC框架梁上的均布荷载作用于A柱集中重力荷载代表值计算屋面处139.314恒荷载雪荷载标准楼层处124.9218恒荷载基础顶面处37.7667 作用于B柱集中重力荷载代表值计算屋面处170.166恒荷载雪荷载标准楼层处160.8156恒荷载基础顶面处37.7667控制截面的弯矩标准值M'控制截面的弯矩标准值M'0各种荷载作用下梁控制截面的内力与M相应的梁柱中线柱控制截面的内力值为绘制出内力组合梁控制截面的内力值为梁柱中线交点框架梁内力组合非地震作用下框架梁内力组合(见上表)地震作用下框架梁内力组合梁端截面组合剪力设计值调整调整后的剪力设计值V b梁的剪力增大系数梁左框架梁内力组合地震作用下框架梁AB、BC的内力组合见下表框架柱内力组合、框架柱A柱端截面组合弯矩设计值和组合剪力设计值的调整(1)对“ 及相应的 ”组合弯矩设计值和组合剪力设计 为了使框架结构在地震作用下塑性铰首先在梁中出现,就必须满为了防止柱在压弯破坏前发生剪框架顶层柱和轴压比小于0.15的的增大系数后作为设计值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

框架结构等效刚度的计算与分析
摘要:本文根据等效刚度原则和等效质量原则,通过具体算例将框架结构等效为Timshenko beam的计算模型,并精确计算出结构的抗弯刚度和抗剪刚度,然后根据哈密尔顿原理推导出等效连续化模型自由振动的控制方程及其相应的边界条件,并利用高质高效的常微分方程求解器进行求解。

关键词:Timshenko beam;哈密尔顿原理;Fortran 90
1 引言
高层建筑结构除了受重力外,横向作用对其影响较大。

因此,在设计高层建筑时最主要的控制目标是结构体系刚度、抗风及抗震能力。

尤其是结构体系刚度的计算,如果根据结构动力学的方法确定结构等效刚度,工程量大且不能精确反映结构的受力特性。

2 等效刚度的确定(算例)
2.1算例
框架结构的计算模型如图2-1所示。

上部结构总高为30,层高为3,基础层高为12,框架结构的长度和宽度均为30,框架柱间距为6,框架梁间距为3,截面均。

其中,钢筋混凝土弹性模量为,地基采用的是刚性地基。

(1)等效抗剪刚度的计算:
(2)等效抗弯刚度的计算:
(3)等效转动惯量的计算:
由得:
(4)等效线质量的计算:
2.2 Timoshenko beam控制方程和边界条件的推导
根据能量原理导出Timoshenko Beam自由振动的方程,推导过程见下。

由,得:
GES:
BCS:
X=0X=L
2.3程序运行及计算结果分析
图2-3 振型图
通过分析图2-3可以得出如下结论:
计算的等效刚度与实际相符;框架结构在发生破坏时以剪切破坏为主,弯曲破坏为辅。

所以在计算框架结构时要特别注意结构的抗弯能力、抗剪能力是否达到标准。

除此之外,本文结果更具一般性,除可以直接用于工程实际外,还可以用来计算框架-剪力墙、剪力墙等结构。

相关文档
最新文档