应用时间序列分析EVIEWS实验手册
ARMA模型的eviews的建立--时间序列分析实验指导

时间序列分析实验指导42-2-450100150200250统计与应用数学学院前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。
为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。
为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。
这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。
②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。
这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。
统计与数学模型分析实验中心 2007年2月目录实验一 EVIEWS中时间序列相关函数操作···························- 1 - 实验二确定性时间序列建模方法 ····································- 8 - 实验三时间序列随机性和平稳性检验 ···························· - 18 - 实验四时间序列季节性、可逆性检验 ···························· - 21 - 实验五 ARMA模型的建立、识别、检验···························· - 27 - 实验六 ARMA模型的诊断性检验····································· - 30 - 实验七 ARMA模型的预测·············································· - 31 - 实验八复习ARMA建模过程·········································· - 33 - 实验九时间序列非平稳性检验 ····································· - 35 -实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。
EVIEWS时间序列实验指导(上机操作说明)

⒉在工作文件窗口中选取所要删除或更名的变量,点击工作文件窗口菜单栏中的Objects/Delete selected…(Rename selected…),即可删除(更名)变量
进行预测:打开对应的方程窗口,点forecast按纽,将出现对话框,修改对话框 sample range for forecast中的时间期限的截止日期为预测期.
相对误差的计算公式为:(实际值-预测值)/实际值
二、单参数和双参数指数平滑法进行预测的操作练习
2、某地区1996~2003年的人口数据如表1.2,运用二次指数平滑法预测该镇2004年底的人口数(单位:人)。
掌握确定性时间序列建立模型的几种常用方法。
【实验内容】
一、多项式模型和加权最小二乘法的建立;
二、单参数和双参数指数平滑法进行预测的操作练习;
三、二次曲线和对数曲线趋势模型建立及预测;
【实验步骤】
一、多项式模型和加权最小二乘法的建立;
1、我国1974—1994年的发电量资料列于表中,已知1995年的发电量为10077.26亿千瓦小时,试以表1.1中的资料为样本:
建立系列方程:smpl 1974 1994
ls y c t
ls y c t t^2
ls y c t t^2 t^3
通过拟合优度和外推检验的结果发现一元三次多项式模型效果最好。
首先生成权数序列:genr m=sqr(0.6^(21-t))
加权最小二乘法的命令方式:ls(w=m) y c t
普通最小二乘法命令方式:ls y c t
步骤:(1)打开该文件。
Eviews 实验操作手册(部分)

Eviews实验操作记录(慢慢整理)相关系数检验:W AGE ED SEXW 1.000000 0.210152 0.495856 -0.260906AGE 0.210152 1.000000 -0.038637 0.144689ED 0.495856 -0.038637 1.000000 -0.084487SEX -0.260906 0.144689 -0.084487 1.000000①可以在命令窗口键入命令:cor x y z……,就会输出相关系数矩阵。
②假设你的样本数据序列:x1 x2从主菜单选择Quick/Group Statistics/Correlations之后会弹出个对话框,在对话框选择你的目标序列x1 x2说明:序列相关好像只有正相关、负相关、完全相关、完全不相关、强相关、弱相关等概念。
相关系数为1是完全正相关,-1是完全负相关,0是完全不相关。
个人感觉0.5左右的相关关系(趋势)就比较弱了。
eviews提供的相关计算是指序列之间的线性相关关系。
如果序列之间不存在线性相关,也有可能存在其他类型的相关关系,如对数相关、指数相关等等。
通常显著性是和建设检验关联的。
统计假设检验也称为显著性检验,即指样本统计量和假设的总体参数之间的显著性差异。
显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。
显著性差异就是实际样本统计量的取值和假设的总体参数的差异超过了通常的偶然因素的作用范围,说明还有系统性的因素发生作用,因而就可以否定某种条件不起作用的假设。
假设检验时提出的假设称为原假设或无效假设,就是假定样本统计量与总体参数的差异都是由随机因素引起,不存在条件变动因素。
假设检验运用了小概率原理,事先确定的作为判断的界限,即允许的小概率的标准,称为显著性水平。
如果根据命题的原假设所计算出来的概率小于这个标准,就拒绝原假设;大于这个标准则接受原假设。
这样显著性水平把概率分布分为两个区间:拒绝区间,接受区间。
时间序列eviews软件课程设计

时间序列eviews软件课程设计一、课程目标知识目标:1. 学生能理解时间序列分析的基本概念,掌握eviews软件操作流程。
2. 学生能描述时间序列数据的特征,并运用eviews软件进行数据预处理。
3. 学生能运用eviews软件进行时间序列模型的建立和预测。
技能目标:1. 学生能运用eviews软件导入、处理和分析时间序列数据。
2. 学生能通过eviews软件绘制时间序列图,识别数据的趋势、季节性和循环性。
3. 学生能运用eviews软件进行时间序列模型的参数估计和假设检验。
情感态度价值观目标:1. 学生培养对经济学、金融学等相关领域数据分析的兴趣,提高实际应用能力。
2. 学生培养合作精神和批判性思维,学会在团队中分享观点,共同解决问题。
3. 学生通过时间序列分析的学习,增强对数据规律的洞察力,形成严谨的科学态度。
课程性质分析:本课程为选修课,旨在让学生掌握时间序列分析的基本方法,学会运用eviews软件进行数据处理和分析,提高实际操作能力。
学生特点分析:学生为高中年级,具备一定的数学基础和计算机操作能力,对经济、金融等领域有一定了解。
教学要求:结合学生特点,课程设计应注重理论与实践相结合,注重培养学生的实际操作能力和解决问题的能力。
通过分解课程目标为具体学习成果,使学生在课程学习过程中不断提升自身能力。
二、教学内容1. 时间序列分析基本概念:时间序列的定义、平稳性、自相关性和白噪声。
2. eviews软件操作基础:软件界面介绍、数据导入与编辑、图形绘制与数据处理。
3. 时间序列数据的预处理:数据清洗、缺失值处理、异常值检测与处理。
- 教材章节:第一章 时间序列分析概述,第三章 数据的预处理。
4. 时间序列模型建立:- 自回归模型(AR)- 移动平均模型(MA)- 自回归移动平均模型(ARMA)- 自回归积分移动平均模型(ARIMA)- 教材章节:第四章 时间序列模型的建立与预测。
5. 模型参数估计与假设检验:- 参数估计方法- 模型适用性检验:单位根检验、滞后阶数确定- 模型预测效果评估:预测误差分析、预测区间计算- 教材章节:第五章 模型参数估计与假设检验,第六章 模型预测与评估。
eviews实验指导(ARIMA模型建模与预测)

eviews实验指导(ARIMA模型建模与预测) eviews实验指导(ARIMA模型建模与预测)ARIMA模型是一种常用的时间序列分析方法,可以用于建模和预测时间序列数据。
在eviews软件中,我们可以利用其强大的功能进行ARIMA模型的建模和预测分析。
一、数据准备与导入在进行ARIMA模型建模之前,首先需要准备好相关的时间序列数据,并导入eviews软件中。
可以通过以下步骤进行操作:1. 创建一个新的工作文件,点击"File" -> "New" -> "Workfile",选择合适的时间范围和频率。
2. 在eviews软件中,点击"Quick" -> "Read Text",导入包含时间序列数据的文本文件。
确保文本文件中的数据格式正确,并根据需要设置导入选项。
3. 确认数据已经成功导入,可以通过在工作文件窗口中查看和编辑数据。
二、ARIMA模型建模在eviews中,建立ARIMA模型需要进行以下步骤:1. 点击"Quick" -> "Estimate Equation",打开方程估计对话框。
2. 在对话框中,选择要建模的时间序列变量,并选择ARIMA模型。
根据数据的特点,可以选择不同的AR、MA和差分阶数。
3. 设置其他参数,如是否包含常数项、是否进行季节性调整等。
根据具体分析需求进行选取。
4. 点击"OK",进行模型估计。
eviews将自动计算出ARIMA模型的系数估计和相应的统计指标。
5. 检查模型的拟合优度,可以通过观察残差序列的ACF和PACF图、Ljung-Box检验等方法来判断模型是否合适。
三、模型诊断与改进建立ARIMA模型后,需要对模型进行诊断,以确保其满足建模的基本假设。
常见的诊断方法包括:1. 检查模型的残差序列是否为白噪声,可以通过观察残差序列的ACF和PACF图、Ljung-Box检验等方法来判断。
应用时间序列Eviews

2.1 自相关图检验法
2.3 *单位根检验法
常用的单位根检验法为DF检验和ADF检验。
DF检验法:
原假设为序列存在单位根。 只能对AR(1)过程的时间序列作检验。
ADF检验法:
是DF检验的增广形式,可以对AR(p)过程作检验。 原假设为序列至少存在一个单位根。
两种检验方法都需要:
Dynamic(动态预测):向前多步预测 Static(静态预测):向前一步预测
Forecast
sample(预测区间):设定预测区间
扩大样本期限:工作文件窗口Proc/Structure/Resize
Current Page, 修改end date
7. 模型的预测
静态预测
1951-1991
为拟合值 1992为预测值
7. 模型的预测
动态预测 (1991-2000)
只用到1991
的观测值 1992-2000为预测值
课堂练习
给定如下时间序列, 判断该序列的平稳性和纯随机性 选择适当的模型拟合该序列的发展 利用拟合模型,预测1999-2002年的储蓄金额。
1.1时间序列数据的创建
⑥
创建群(Group)。
在数据分析时,通常需要针对多个序列操作以观 察序列间的相互关系。
1. 2.
在工作文件窗口的工具栏点击Object/New Object/Group 在窗口中输入欲建立的群所包含的序列名称。
1.2绘制时间序列图
时序图可以帮助我们了解序列的一些基本性质, 如波动幅度,趋势,平稳性等。是我们在做时间 序列分析之前必不可少的步骤。 在工具栏点击Quick/Graph或双击需要作图的序列, 单击View/Graph。
时间序列分析实验1 Eviews的基本操作与平稳性检验

实验目的: 1. 熟悉 Eviews 的基本操作,重点是工作文件的创建、数据的录入(导入) 。 2. 掌握散点图、时序图以及自相关图的操作。 3. 掌握序列平稳性的检验。
, x100 ,将它们保存起来,命名为 aut,考察这个序
实验内容:
1. 随机产生 100 个标准正态分布的随机数(可在 Matlab 中进行) ,将结果导入 Eviews 中,命名为 rand_num,绘制时序图和自相关图。
2. 考察上述序列的平稳性。
3. 对于自回归过程 X t 0.5 X t 1 0.6 t ,其中 t ~ i.i.d . N (0, 1) ,从初值 X 0 1开 始,模拟生成序列 x1 , x2 , 列的平稳性。
eviews时间序列分析实验Word版

实验一ARMA 模型建模一、实验目的学会检验序列平稳性、随机性。
学会分析时序图与自相关图。
学会利用最小二乘法等方法对ARMA 模型进行估计,以及掌握利用ARMA 模型进行预测的方法。
学会运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。
二、基本概念 1 平稳时间序列:定义:时间序列{zt}是平稳的。
如果{zt}有有穷的二阶中心矩,而且满足:(a )ut= Ezt =c;(b )r(t,s) = E[(zt-c)(zs-c)] = r(t-s,0) 则称{zt}是平稳的。
2 AR 模型:AR 模型也称为自回归模型。
它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测。
具有如下结构的模型称为P 阶自回归模型,简记为AR(P)。
⎪⎪⎪⎪⎨⎧<∀=≠===≠+++++=---ts Ex t s E Var E x x x x t s s t t t p t p t p t t t ,0,0)(,)(,0)(0222110εεεσεεφεφφφφε3 MA 模型:MA 模型也称为滑动平均模型。
它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。
具有如下结构的模型称为Q 阶移动平均回归模型,简记为MA(q)。
4 ARMA 模型:ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA 。
具有如下结构的模型称为自回归移动平均回归模型,简记为ARMA(p,q)。
112220()0(),()0,t t t t q t q q t t t s x E Var E s t εμεθεθεθεθεεσεε---⎧=+----⎪≠⎨⎪===≠⎩,⎪⎪⎪⎪⎨⎧<∀=≠===≠≠---++++=----ts Ex t s E Var E x x x t s s t t t q p q t q t t p t p t t ,0,0)(,)(,0)(0,0211110εεεσεεθφεθεθεφφφε三、实验内容及要求 1 实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ;2 实验要求:(1)深刻理解平稳性的要求以及ARMA 模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测;(3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南财经政法大学应用时间序列分析实验手册应用时间序列分析实验手册目录目录 (2)第一章Eviews的基本操作 (3)第二章时间序列的预处理 (7)一、平稳性检验 (7)二、纯随机性检验 (15)第三章平稳时间序列建模实验教程 (16)一、模型识别 (16)二、模型参数估计 (20)三、模型的显著性检验 (23)四、模型优化 (25)第四章非平稳时间序列的确定性分析 (26)一、趋势分析 (26)二、季节效应分析 (41)三、综合分析 (46)第五章非平稳序列的随机分析 (52)一、差分法提取确定性信息 (52)二、ARIMA模型 (67)三、季节模型 (73)第一章Eviews的基本操作The Workfile(工作簿)Workfile 就像你的一个桌面,上面放有许多Objects,在使用Eviews 时首先应该打开该桌面,如果想永久保留Workfile及其中的容,关机时必须将该Workfile存到硬盘或软盘上,否则会丢失。
(一)、创建一个新的Workfile打开Eviews后,点击file/new/workfile,弹出一个workfile range对话框(图1)。
图1该对话框是定义workfile的频率,该频率规定了workfile中包含的所有objects频率。
也就是说,如果workfile的频率是年度数据,则其中的objects 也是年度数据,而且objects数据围小于等于workfile的围。
例如我们选择年度数据(Annual),在起始日(Start date)、终止日(End date)分别键入1970、1998,然后点击OK,一个新的workfile就建立了(图2)。
图2在workfile 窗口顶部,有一些主要的工具按钮,使用这些按钮可以存储workfile、改变样本围、存取object、生成新的变量等操作,稍后我们会详细介绍这些按钮的功能。
在新建的workfile中已经存在两个objects,即c和residual。
c是系数向量、residual是残差序列,当估计完一个模型后,该模型的系数、残差就分别保存在c和residual中。
workfile窗口中主要按钮的功能:1.PROCS(处理):Procs按钮包含sample(样本)、change workfile range(改变工作簿围)、generate series(生成序列)、sort series(对序列排序)、import(导入数据)、export(导出数据)六个功能,其中sample和generate已出现在workfile窗口顶部。
sample(样本)的功能是改变样本的围,但不能超过工作簿围(workfile range)。
如果样本围需要超过工作簿围,先修改工作簿围,然后再改变样本围。
例如点击proc/sample/OK,弹出一个对话框(图3),在上面空白处键入新的样本围1980至1990,注意中间要空格,点击OK,这样样本围改变了。
图3change workfile range(改变工作簿围)功能是改变当前workfile的围,其操作与样本围的改变相似。
一般是在模型建好后,外推预测时需要改变样本或工作薄围。
generate series功能是在现有变量的基础上,生成新的变量。
如点击proc /generate/OK或直接点击窗口顶部的GENR,弹出一个对话框。
sort series 功能是对序列排序。
Import 功能是从其他软件中(如EXCEL)导入数据。
Export功能与Import相反,是将Eviews数据输出到其他软件中,具体操作与Import相似。
2、OBJECTS(对象):该按钮功能主要是对Objects进行操作,包括新建、存取、删除、重新命名、复制等。
点击Objects,出现下拉菜单,菜单中包含很多功能,其中一些功能以按钮形式出现在workfile窗口顶部,如fetch(取出)、store(存储)、delete(删除)。
3、SAVE(保存):功能是将当前workfile保存在硬盘或软盘。
如果是新建的workfile,会弹出一个对话框,需要指明存放的位置及文件名。
如果是原有的workfile,不会出现对话框,点击SAVE,作用是随时保存该workfile。
建议在使用Eviews时,应经常点击SAVE按钮,避免电脑出现故障,而丢失未能保存的容。
这里需要提醒的是,SAVE按钮与STORE按钮的区别。
SAVE按钮保存的是整个workfile,而STORE存储的是个别Object。
(二)、打开已经存在的workfile双击Eviews图标,进入Eviews主画面。
点击File/New/Workfile/click,弹出对话框,给出要打开的workfile所在路径及文件名,点击OK,则所需的workfile就被打开。
(三)、workfile频率的设定各种频率的输入方法如下:1、Annual:直接输入年份,如1998;若是20世纪,则可只输入年份的后两个字,如98表示1998年。
2、Semi-Annual:格式与Annual一样。
3、Quarterly:年份全称或后两个字接冒号(或空格),再接季度,如1992:1(或1992 1),表示1992年第一季度。
4、Monthly:年份全称或后面两个字接冒号(或空格),再接月度序号,如1990:1(或1990 1)。
5、Daily:格式为“月度序号:日期:年份”,如9:2:2002表示2002年9月2日。
6、Weekly:格式与Daily相似,也是“月度序号:日期:年份”,但这里的日期是某个星期的某一天,当给定起始日时,系统会自动推算终止日期。
第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的围有界、无明显趋势及周期特征。
例2.1检验1949年——1998年北京市每年最高气温的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1:绘制散点图图2:年份和气温的散点图QW41403938373635343350556065707580859095图3:年份和气温的散点图(二)自相关图检验例2.2导入数据,方式同上;在Quick菜单下选择自相关图,对QW原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。
图1:序列的相关分析图2:输入序列名称图3:选择相关分析的对象图4:序列的相关分析结果:1. 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显著性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列。
) 有的题目平稳性描述可以模仿书本33页最后一段。
(三)平稳性检验还可以用:单位根检验:ADF,PP检验等;非参数检验:游程检验图1:序列的单位根检验图2:单位根检验的方法选择图3:ADF检验的结果:如图,单位根统计量ADF= -8.294675 小于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以不接受原假设,该序列是平稳的。
二、纯随机性检验计算Q统计量,根据其取值判定是否为纯随机序列。
例2.2的自相关图中有Q统计量,其P值在K=6、12的时候均比较大,不能拒绝原假设,认为该序列是白噪声序列。
另外,小样本情况下,LB统计量检验纯随机性更准确。
第三章平稳时间序列建模实验教程一、模型识别1.打开数据(某地区连续74年的谷物产量(单位:千吨))图1:打开数据2.绘制趋势图并大致判断序列的特征图2:绘制序列散点图图3:输入散点图的变量图4:序列的散点图3.绘制自相关和偏自相关图图1:在数据窗口下选择相关分析图2:选择变量图3:选择对象图4:序列相关图4.根据自相关图和偏自相关图的性质确定模型类型和阶数如果样本(偏)自相关系数在最初的d阶明显大于两倍标准差围,而后几乎95%的自相关系数都落在2倍标准差的围以,而且通常由非零自相关系数衰减为小值波动的过程非常突然。
这时,通常视为(偏)自相关系数截尾。
截尾阶数为d。
本例:⏹自相关图显示延迟6阶之后,自相关系数全部衰减到2倍标准差围波动,这表明序列明显地短期相关。
但序列由显著非零的相关系数衰减为小值波动的过程相当连续,相当缓慢,该自相关系数可视为不截尾⏹偏自相关图显示除了延迟1阶的偏自相关系数显著大于2倍标准差之外,其它的偏自相关系数都在2倍标准差围作小值随机波动,而且由非零相关系数衰减为小值波动的过程非常突然,所以该偏自相关系数可视为一阶截尾自相关系数偏相关系数模型定阶拖尾P阶截尾AR(p)模型q阶截尾拖尾MA(q)模型拖尾拖尾ARMA(p,q)模型就是常数项)。
表示的是求出来的系数(其中模型中的模型:)(模型:模型:μ⋯⋯ε⋯⋯---⋯⋯---+μ=ε⋯⋯---+μ=ε⋯⋯---+μ=)1(MA )1(ar B*)P (AR B *)2(AR B *)1(AR 1B*)q (MA B *)2(MA B *)1(MA 1ARMA B *)q (MA B *)2(MA B *)1(MA 1MA B *)P (AR B *)2(AR B *)1(AR 11AR tP2q2t X t q 2t X tP2t X二、模型参数估计根据相关图模型确定为AR(1),建立模型估计参数在ESTIMATE 中按顺序输入变量x c x(-1)或者x c AR(1) 选择LS 参数估计方法,查看输出结果,看参数显著性,该例中两个参数都显著。
细心的同学可能发现两个模型的c 取值不同,这是因为前一个模型的c 为截距项;后者的c 则为序列期望值,两个常数的含义不同。
图1:建立模型图2:输入模型中变量,选择参数估计方法图3:参数估计结果图4:建立模型图5:输入模型中变量,选择参数估计方法图6:参数估计结果t 372564.011845441.0tx εB AR -+=模型:三、模型的显著性检验检验容:整个模型对信息的提取是否充分;参数的显著性检验,模型结构是否最简。
图1:模型残差图2:残差的平稳性和纯随机性检验对残差序列进行白噪声检验,可以看出ACF 和PACF 都没有显著异于零,Q 统计量的P 值都远远大于0.05,因此可以认为残差序列为白噪声序列,模型信息提取比较充分。