山东省济南市2014年中考数学模拟试题

合集下载

精品解析:2024年济南市中考数学模拟预测题(一)(解析版)

精品解析:2024年济南市中考数学模拟预测题(一)(解析版)

2024年济南市中考数学模拟试题(一)满分:150分 时间:120分钟一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 倒数的相反数是( )A. B.C. D. 2023【答案】B 【解析】【分析】根据乘积为1的两个数互为倒数,只有符号不同的两个数互为相反数,进行求解即可.【详解】解:倒数的相反数是;故选B .2. 清明节期间某市共接待国内游客约721000人次,将721000用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】根据科学记数法的表示方法:为整数,进行表示即可,确定的值,是解题的关键.【详解】解:;故选C .3. 下列各式计算正确的是( )A. B. C. D. 【答案】A 【解析】【分析】此题考查了合并同类项,根据合并同类项法则判断即可.【详解】解:A .,故选项正确,符合题意;2023-2023-1202312023-2023-12023372110⨯472.110⨯57.2110⨯60.72110⨯10,110,na a n ⨯≤<,a n 572100072110.=⨯220m n nm -+=2242m m m +=22532m m -=2243m n m n mn-=220m n nm -+=B .,故选项错误,不符合题意;C .,故选项错误,不符合题意;D .,故选项错误,不符合题意.故选:A .4. 下列几何体中,其俯视图与左视图完全相同的是( )A. B. C. D.【答案】C 【解析】【分析】本题考查几何体的三视图.根据主视图、左视图、俯视图分别是从物体正面、左面、上面看所得的图形即可判断.【详解】A ,俯视图是带圆心的圆,左视图是等腰三角形,此选项不符合题意;B ,俯视图是矩形,左视图是圆,此选项不符合题意;C ,俯视图、左视图都是正方形,此选项符合题意;D ,俯视图是三角形,左视图是矩形,此选项不符合题意.故选:C .5. 如图,直线,,它的顶点分别在直线上,且,若,则的度数为( )A. B. C. D. 【答案】D 【解析】【分析】本题考查了平行线的性质,根据两直线平行,内错角相等得到,再结合已知即可求出的度数,再根据直角三角形两锐角互余即可求出的度数,解题的关键是熟练掌握平行线的性质:两直线平行,同位角相等; 两直线平行,内错角相等;两直线平行,同旁222m m 2m +=222532m m m -=22243m n m n m n -=a b ∥Rt ,90ABC ABC ∠=︒△A B 、,a b CAB BAE ∠=∠150∠=︒2∠75︒85︒60︒65︒150DAE ∠=∠=︒CAB BAE ∠=∠CAB ∠2∠内角互补.【详解】∵直线,∴,∵,∴,∵,∴故选:.6. 如图,直线与直线交于点,则方程组的解是( )A. B. C. D. 【答案】A 【解析】【分析】本题考查的是二元一次方程和一次函数的关系,两直线的交点就是两直线解析式所组成方程组的解.【详解】解:∵直线与直线交于点,∴方程组的解为.即:方程组的解为.故选:A .a b ∥150DAE ∠=∠=︒CAB BAE ∠=∠25CAB ∠=︒90ABC ∠=︒290902565CAB ∠=︒-∠=︒-︒=︒D 151:33l y x =-2:5l mx ny +=(1,2)A 5315x y mx ny -=⎧⎨+=⎩12x y =⎧⎨=⎩21x y =⎧⎨=⎩12x y =-⎧⎨=-⎩21x y =-⎧⎨=-⎩151:33l y x =-2:5l mx ny +=(1,2)A 51335y x mx ny ⎧=-⎪⎨⎪+=⎩12x y =⎧⎨=⎩5315x y mx ny -=⎧⎨+=⎩12x y =⎧⎨=⎩7. 现有一批苹果,从中抽取20个,测得它们的直径(单位:)如下表所示:直径/74757677787980个数1242632那么这20个苹果直径的众数和中位数分别是( )A. 77,80 B. 77,77C. 78,78D. 78,77【答案】C 【解析】【分析】本题考查了中位数和众数的定义,根据一组数据中出现次数最多的是众数,将一组数据从小到大(或从大到小)排列,处在最中间的数(或最中间两个数的平均数)是中位数,计算即可得出答案,熟练掌握中位数和众数的定义是解此题的关键.【详解】解:由表格可得:20个苹果的直径处在第和第个数据为,出现的次数最多,有次,故中位数为:,众数为,故选:C .8. 九章算术是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少天.已知快马的速度是慢马的倍,求规定时间.设规定时间为天,则可列方程为( )A. B.C.D.【答案】A 【解析】【分析】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.【详解】解:规定时间为天,慢马所需的时间为天,快马所需的时间为天,又快马速度是慢马的倍,可列出方程.故选:A .的mm mm 1011787867878782+=78《》90032x 900900213x x ⨯=+-900900213x x =⨯+-900900213x x =⨯-+900900213x x ⨯=-+ x ∴()1x +()3x - 2∴900900213x x ⨯=+-9. 在同一平面直角坐标系中,函数与(其中m ,n 是常数,)的大致图象可能是( )A. B.C. D.【答案】C 【解析】【分析】本题考查的知识点是一次函数及反比例函数图像与性质,解题关键是结合函数解析式及选项图像判断m ,n 的取值范围是否相符.先根据一次函数图像判断m ,n的取值范围,确定的取值范围后,即可判断反比例函数图像中的m ,n 的取值范围是否一致,从而判断选项是否正确.【详解】A 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,A 选项错误;B 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,B 选项错误;C 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像相符,C 选项正确;D 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像不符,D 选项错误.故选:C .10. 如图,四边形中,F 是上一点,E 是上一点,连接.若,,,平分,则下列结论中:①;②;③;④垂直平分,正确的个数有( )y mx n =+ny mx=0mn ≠nmy mx n =+0m <0n <0nm>ny mx=0k >y mx n =+0m >0n >0n m >ny mx =0k >y mx n =+0m <0n >0n m <n y mx =0k <y mx n =+0m >0n <0n m <n y mx=0k <ABCD CD BF AE AC DE 、、AB AC =AD AE =80BAC DAE ∠=∠=︒AE BAC ∠ABE ACD △△≌BE EF =100BFD ∠=︒AC DEA. 1个B. 2个C. 3个D. 4个【答案】C 【解析】【分析】本题主要考查的是全等三角形的性质和判定、等腰三角形的性质、四边形的内角和,熟练掌握相关知识是解题的关键.依据可证明,由全等三角形的性质可得到,则,然后依据四边形的内角和为可求得的度数,然后再证明,则依据等腰三角形的性质可得到与的关系.【详解】解:,即,,故①正确,,故③正确.平分,平分.又,平分,是的垂直平分线,故④正确.由已知条件无法证明,故②错误.故选:C.SAS ABE ACD ≌AEB ADC ∠=∠180AEF ADC ∠+∠=︒360︒BFD ∠40EAC DAC ==︒∠∠AC DE BAC DAE ∠=∠ ,BAE EAC DAC EAC∠+∠=∠+∠BAE DAC ∴∠=∠BAE DAC AB AC AE AD ∠==∠= ,,ABE ACD ∴ ≌ABE ACD≌AEB ADC ∴∠=∠180AEB AEF ∠+∠=︒ 180AEF ADC ∴∠+∠=︒180********BFD EAD ∴∠=︒-∠=︒-︒=︒AE BAC ∠40EAC ∴∠=︒80DAE =︒∠ AC ∴EAD ∠AE AD= AC DE ∴⊥AC DE AC ∴DE BE EF =二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.12. 若一个多边形的内角和比外角和大,则这个多边形的边数为______.【答案】【解析】【分析】本题考查了多边形的内角和公式与外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是是解题的关键,根据多边形的内角和公式,外角和等于列出方程求解即可.【详解】解:设多边形的边数是,根据题意得,,解得.故答案为:.13. 在平面直角坐标系中,已知点A 的坐标为,线段轴,且,那么点B 的坐标是__________________.【答案】或【解析】【分析】本题考查了点的坐标;先根据轴得到点B 的纵坐标为,再根据分情况求出点B 的横坐标即可.【详解】解:∵点A 的坐标为,线段轴,∴点B 的纵坐标为,24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-360︒6360︒()2180n -⋅︒360︒n ()2180360360n -⋅︒-︒=︒6n =6()2,8--AB x 6AB =()8,8--()4,8-AB x 8-6AB =()2,8--AB x 8-∵,∴点B 的横坐标为或,即点B 的坐标是或,故答案为:或.14. 关于x 的一元二次方程有两个实数根,则m 的取值范围是___________.【答案】且【解析】【分析】本题考查了一元二次方程根的判别式及一元二次方程的定义.根据一元二次方程的根与有如下关系:①当时,方程有两个不相等的两个实数根;②当时,方程有两个相等的两个实数根;③当时,方程无实数根.及一元二次方程的定义即可得出结果.【详解】解:由题意得:且,即且,解得:且,故答案为:且.15. 某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物,装卸货物共用,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为,两车之间的距离()与货车行驶时间()之间的函数图象如图所示,图中点的坐标为___________【答案】【解析】【分析】本题考查了函数图象;设快递车从甲地到乙地的速度为千米时,根据3小时相距120千米即可6AB =268--=-264-+=()8,8--()4,8-()8,8--()4,8-()()222120m x m x m -+++-=34m ≥2m ≠()200ax bx c a ++=≠24b ac ∆=-0∆>Δ0=Δ0<()()()2214220m m m ∆=+---≥20m -≠22441416160m m m m ++-+-≥20m -≠34m ≥2m ≠34m ≥2m ≠45min 60km /h y km x h B ()3.75,75x /列方程求解,根据条件段所用的时间是45分钟,利用甲和乙之间的距离减去货车行驶的距离即可求得点对应的纵坐标,即可求解.【详解】解:设快递车从甲地到乙地的速度为千米时,则,解得:.则甲、乙两地之间的距离是(千米);快递车返回时距离货车的距离是:(千米),即点的纵坐标为∵装卸货物共用,∴点的横坐标为故答案:.16. 如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,若点为抛物线上一点且横坐标为,点为轴上一点,点在以点为圆心,为半径的圆上,则的最小值______ .##【解析】【分析】先求出点,点,作点关于轴对称的点,则点,连接交与轴于,交于,过点作轴于,连接,当点与点重合,点与点重合时,为最小,最小值为线段的长,然后可在中由勾股定理求出,进而可得,据此可得出答案.【详解】解:对于,当时,,为AB B a /()360120a -=100a =3100300⨯=4530060(37560-+=B 7545min 450.7560=B 3.75()3.75,75234y x x =--+x A B A B y C D 3-E y F A 2DE EF +22-+()4,0A -()3,4D -D y T ()3,4T AE M A N T TH x ⊥H AF E M F N DE EF +TN Rt ATH TA TN 234y x x =--+0y =2340x x --+=解得:,,点的坐标为,对于,当时,,点的坐标为,作点关于轴对称的点,则点,连接交与y 轴于,交于,过点作轴于,连接,当点与点重合,点与点重合时,为最小,最小值为线段的长.理由如下:当点与点不重合,点与点不重合时,根据轴对称的性质可知:,,根据“两点之间线段最短”可知:,即:,,,即:,当点与点重合,点与点重合时,为最小.点,,,,,,在中,,,14x =-21x =∴A ()4,0-234y x x =--+3x =-4y =∴D ()3,4-D y T ()3,4T AE M A N T TH x ⊥H AF E M F N DE EF +TN E M F N DE TE =DE EF TE EF ∴+=+TE EF AF AT ++>TE EF AF TN AN ++>+2AF AN == TE EF TN ∴+>DE EF TN +>∴E M F N DE EF + ()3,4T()4,0A -3OH ∴=4TH =4OA =7AH OA OH ∴=+=Rt ATH 7AH =4TH =由勾股定理得:,.即..【点睛】此题主要考查了二次函数与轴的交点,利用轴对称求最短路线,圆的性质,勾股定理等,解答此题的关键是准确的求出二次函数与轴的交点坐标,难点是确定当为最小时,点,的位置.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤.)17. 计算:【答案】【解析】【分析】本题主要考查了实数的运算,求特殊角三角函数值,零指数幂,负整数指数幂,先计算特殊角三角函数值,,零指数幂,负整数指数幂,再根据实数的运算法则求解即可.【详解】解:.18. 解不等式组,并写出它的所有正整数解.【答案】;1,2,3.【解析】【分析】本题主要考查了解一元一次不等式组,求不等式组的整数解,正确求出每个不等式的解集是解题的关键.先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而求出不等式组的整数解即可.TA ==2TN TA AN ∴=-=-DE EF +2-2-xx DE EF +EF )201tan 6012-⎛⎫︒-+ ⎪⎝⎭3+)201tan 6012-⎛⎫︒-+ ⎪⎝⎭14=+-+3=6341213x x x x +≤+⎧⎪⎨+>-⎪⎩①②14x ≤<【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集为,∴不等式组的所有正整数解有1,2,3.19. 如图,在平行四边形中,的平分线交于点E ,的平分线交于点F .求证:.【答案】见解析【解析】【分析】本题考查了平行四边形的性质、全等三角形的判定与性质以及角平分线定义等知识,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.根据平行四边形性质得,,,则,再证明,然后证明,即可得出结论.【详解】证明:四边形是平行四边形,,,,.平分,平分,,.,在和中,,,6341213x x x x +≤+⎧⎪⎨+>-⎪⎩①②1x ≥4x <14x ≤<ABCD ABD ∠BE AD CDB ∠DF BC AE CF =AB CD =A C ∠=∠AB CD ∥ABD CDB ∠=∠ABE CDF ∠=∠()ASA ABE CDF ≌△△ ABCD AB CD ∴=A C ∠=∠AB CD ∥ABD CDB ∴∠=∠BE ABD ∠DF CDB ∠12ABE ABD ∴∠=∠12CDF CDB ∠=∠ABE CDF ∴∠=∠ABE CDF A C AB CDABE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ABE CDF ∴△△≌.20. 为进一步提升学生数学核心素养,某校拟开展初中数学实践作业成果展示活动,作业项目包括:测量、七巧板、调查活动、无字证明、数学园地设计(分别用字母A ,B ,C ,D ,E 依次表示这五项作业).为了解学生上交的作业项目,现随机调查了若干名学生(每位同学只上交一种作业),并将调查结果绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了______名学生;(2)请根据以上信息直接补全条形统计图;(3)扇形统计图中作业D “无字证明”的圆心角的度数是______度;(4)若参加成果展示活动的学生共有人,请你估计上交A “测量”作业的学生人数.【答案】(1)(2)件解析(3)(4)名【解析】【分析】(1)用项目B 的人数除以其人数占比即可得到答案;(2)先求出项目C 的人数,再补全统计图即可;(3)用乘以项目D 的人数占比即可得到答案;(4)用乘以样本中项目A 的人数占比即可得到答案.【小问1详解】解:名,∴本次共调查了名学生,故答案:;【小问2详解】为AE CF ∴=60012036150360︒6003630%120÷=120120解:项目C 的人数为名,∴补全统计图如下所示:【小问3详解】解:,∴扇形统计图中作业D “无字证明”的圆心角的度数是度,故答案为:;【小问4详解】解:名,∴估计上交A “测量”作业的学生人数为名.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,正确读懂统计图是解题的关键.21. 春节期间,白居寺长江大桥凭借其独特的造型、科幻的氛围、“星际穿越”的视感吸引众多游客纷纷前来打卡拍照.某校数学社团的同学们欲测量白居寺长江大桥桥塔的高度,如图2,他们在桥下地面上架设测角仪(测角仪垂直于地面放置),此时测得白居寺长江大桥桥塔最高点的仰角,然后将测角仪沿方向移动100.5米到达点处,并测出点的仰角,测角仪高度米.(点在同一水平线上,)(1)白居寺长江大桥桥塔的高度约为多少米?(结果保留到个位,参考数据:,1203036121824----=1236036120︒⨯=︒363630600150120⨯=150MB CM A 35ACE ∠=︒MB N A 45ADE ∠=︒1.6CM DN ==M N B ,,AB BM ⊥AB sin 350.57︒≈,)(2)如图3,在(1)问条件下,小明在某大楼处测得白居寺长江大桥桥塔最高点的仰角,最低点的俯角,则小明所在地处与的水平距离约为多少米?(结果保留到个位,参考数据:,,,,,)【答案】(1)2361 (2)141.66【解析】【分析】本题考查解直角三角形的应用,通过仰角俯角问题测量物体高度,熟练掌握锐角三角函数的定义是解答本题的关键.(1)延长,交于点,设, 则,在中, ,可得,在中,,,求出,再根据得出答案;(2)延长交于点,由题意可知,,根据题意可得,设,则,根据,,可得,解得,从而可得的值.【小问1详解】解:如图所示,延长,交于点,由题意得, , 设, 则在中,.cos350.82︒≈tan 350.70︒≈ 1.41≈Q A 18AQG ∠=︒B 53BQG ∠=︒Q AB sin 720.95︒≈cos 720.3︒≈tan 723︒≈sin 370.6︒≈cos370.8︒≈tan 370.75︒≈CD AB F DF x =100.5CF x =+Rt ADF 45ADF ∠=︒AF x =Rt ACF 35ACE ∠=︒tan 350.7100.5AF x CF x ︒==≈+x AB AF BF =+QG AB M QM AB ⊥236.1AB =72,37A B ∠=︒∠=︒AM x =236.1BM x =-tan tan 723QM A AM∠=︒=≈tan tan 370.75QM B BM ∠=∠︒=≈tan 370.75tan 72236.13AM x BM x ︒===︒-47.22x =QM CD AB F 100.5CD MN ==DF BN =90, 1.6AFD CM DN BF ∠=︒===DF x =100.5CF x =+Rt ADF 45ADF ∠=︒在中,, 经检验是原方程的解且符合题意米白居寺长江大桥桥塔的高度约为米;【小问2详解】解:延长交于点,由题意可知,,设,则解得故处与的水平距离约为米22. 如图,在中,,以为直径作交于点E ,连接,.AF x∴=Rt ACF 35ACE ∠=︒tan 350.7100.5AF x CF x ︒==≈+234.5x ∴≈234.5x ≈234.5 1.6236.1AB AF BF ∴=+=+=∴AB 236.1QG AB M QM AB ⊥236.1AB = 18AQG ∠=︒53BQG ∠=︒72,37A B ∴∠=︒∠=︒AM x =236.1BM x=-tan tan 723QM A AM∠=︒=≈ tan tan 370.75QM B BM ∠=∠︒=≈tan 370.75tan 72236.13AM x BM x ︒∴===︒-47.22x =∴tan 7247.223141.66QM AM =⋅︒=⨯=Q AB 141.66Rt ABC △90ACB ∠=︒AD O AB CE CE BC =(1)求证:是的切线;(2)若,,求的半径.【答案】(1)见解析(2)⊙O 的半径为3【解析】【分析】对于(1),连接,先说明,可得,再根据同角的余角相等得,然后根据“等边对等角”得,进而得出,即可得出答案;对于(2),设的半径为r ,根据勾股定理可得,再根据勾股定理用含有r 的式子表示,即可得出关于r 的方程,然后求出解即可.【小问1详解】证明:如图,连接,∵,∴.∵是的直径,∴,∴.∵,∴,∴.∵,∴.CE O 2CD=AB =O OE A B ∠∠=︒+9090DEC CEB ∠+∠=︒A DEC ∠=∠OED ODE ∠=∠90OEC ∠=︒O222(22)(r B C ++=2BC OE 90ACB ∠=︒A B ∠∠=︒+90AD O 90AED DEB ∠=∠=︒90DEC CEB ∠+∠=︒CE BC =B CEB ∠=∠A DEC ∠=∠OE OD =OED ODE ∠=∠∵,∴,即,∴.∵是的半径,∴是的切线;【小问2详解】解:在中,,,设的半径为r ,则,,∴,∴.在中,,∴,∴,∴,∴,解得,或(舍去).∴的半径为3.【点睛】本题主要考查了切线的判定,勾股定理,直径所对的圆周角是直角,等腰三角形的性质,同角的余角相等,勾股定理是求线段长的常用方法.23. 赣南脐橙,江西省赣州市特产,中国国家地理标志产品.某赣南橙种植基地11月20号开始采摘发售,果农根据果实的大小和甜度将赣南橙划分为A 级和B 级两个类别.采摘发售第一周,A 级累计销售19200元,B 级累计销售16000元.已知A 级每箱单价比B 级多,销量比B 级少40箱.(1)赣南橙A 级、B 级每箱售价分别是多少元?(2)某商店计划从该基地购进A 、B 两个等级的赣南橙共40箱,且A 级的数量不少于B 级的数量的.该商店如何购进才能使花费最小,并求出最小花费.【答案】(1)级每箱售价120元,级每箱售价80元(2)购进级10箱,级30箱,花费3600元,此时花费最小【解析】90A ADE ∠+∠=︒90DEC OED ∠+∠=︒90OEC ∠=︒OE CE ⊥OE O CE O Rt ABC △90ACB ∠=︒AB =O OD OE r ==22AC r =+222AC BC AB +=222(22)(r B C ++=Rt OEC △90OEC ∠=︒222OE CE OC +=222(2)r B C r +=+222(2)B C r r =+-2222(22)(2)(r r r +++-=3r =3r =-O 50%13A B A B【分析】本题考查了分式方程的应用以及一次函数的应用,理解题意,列方程及函数关系式是解决问题的关键.(1)设赣南橙级每箱售价元,则级每箱售价元,根据“A 级每箱单价比B 级多,销量比B 级少40箱”列方程即可求解;(2)设购进级箱,则购进级箱,根据“A 级的数量不少于B 级的数量的”列不等式求得的取值范围,再列出函数关系式,根据一次函数的性质即可求解.【小问1详解】解:设赣南橙级每箱售价元,则级每箱售价元,由题意,得:,解得:,经检验,是原方程的解且符合实际意义,则,即:赣南橙级每箱售价120元,级每箱售价80元;【小问2详解】设购进级箱,则购进级箱,则,可得,且为整数,商店购进的花费为,∵,∴随增大而减小,则当时,有最小值,最小值为,即:购进级10箱,级30箱,花费3600元,此时花费最小.24. 如图,一次函数的图象与反比例函数(为常数且)的图象交于,两点.B x A ()150%x +50%B a A ()40a -13a B x A ()150%x +()192001600040150%x x =-+80x =80x =()150%120x +=A B B a A ()40a -01403a a a ≥⎧⎪⎨-≥⎪⎩030a ≤≤a ()1204080404800w a a a =-+=-+400-<w a 30a =w 403048003600w =-⨯+=A B 4y x =+k y x=k 0k ≠()1,A a -B(1)求此反比例函数的表达式及点的坐标;(2)当反比例函数值大于一次函数值时,直接写出的取值范围;(3)在轴上存在点,使得的周长最小,求点的坐标并直接写出的周长.【答案】(1), (2)或 (3)点的坐标为,【解析】【分析】本题主要考查了一次函数与反比例函数综合,轴对称最短路径问题,灵活运用所学知识是解题的关键.(1)先把点坐标代入一次函数解析式求出点的坐标,再把点的坐标代入反比例函数解析式求出反比例函数解析式,再联立一次函数与反比例函数解析式即可求出点的坐标;(2)利用图象法求解即可;(3)如图所示,作点关于轴的对称点,连接交轴于点,此时的值最小,则的周长最小,再求出直线的解析式即可求出点的坐标,由,,,可求出、的值,最后根据的周长为.【小问1详解】解:点在一次函数的图象上,,点,点在反比例函数的图象上,,反比例函数的表达式为,B x y P APB △P APB △3y x=-()3,1B -10x -<<3x <-P 50,2⎛⎫ ⎪⎝⎭A A AB A y A 'BA 'y P PA PB +APB △BA 'P ()1,3A -()3,1B -()1,3A 'AB A B 'APB △PA PB AB A B AB '++=+ ()1,A a -4y x =+∴143a =-+=∴()1,3A - ()1,3A -k y x=∴133k =-⨯=-∴3y x =-联立,解得: 或,;【小问2详解】观察函数图象可知:当或时,一次函数的图象在的图象的下方,当反比例函数值大于一次函数值时,的取值范围为:或;【小问3详解】作点关于轴的对称点,连接交轴于点,此时的值最小,则的周长最小,如图所示.点,点,设直线的表达式为,则,解得:,直线表达式为, 在中,令,则,点,,,,,的周长为.的34y x y x ⎧=-⎪⎨⎪=+⎩13x y =-⎧⎨=⎩31x y =-⎧⎨=⎩∴()3,1B -10x -<<3x <-4y x =+3y x=-∴x 10x -<<3x <-A y A 'BA 'y P PA PB +APB △ ()1,3A -∴()1,3A 'BA '()0y mx n m =+≠331m n m n +=⎧⎨-+=⎩1252m n ⎧=⎪⎪⎨⎪=⎪⎩∴BA '1522y x =+1522y x =+0x =52y =∴50,2P ⎛⎫ ⎪⎝⎭ ()1,3A -()3,1B -()1,3A '∴AB ==A B =='∴APB △PA PB AB A B AB '++=+=+25. 如图1,在矩形中,,点分别是上的中点,过点分别作与交于点,连接.特例感知(1)以下结论中正确的序号有______;①四边形是矩形;②矩形与四边形位似;③以为边围成的三角形不是直角三角形;类比发现(2)如图2,将图1中的四边形绕着点旋转,连接,观察与之间的数量关系和位置关系,并证明你的发现;拓展应用(3)连接,当的长度最大时,①求的长度;②连接,若在内存在一点,使的值最小,求的最小值.【答案】(1)①②;(2)与的夹角是,见解析;(3)①;②【解析】【分析】(1)根据矩形的判定与性质、位似图形的性质以及直角三角形的判定逐个判断即可;(2),连接、,延长、,设交点为N,设、交于点M ,先根据矩形的性质和勾股定理求得,再利用锐角三角函数求得,进而得到,利用位似图形的性ABCD CD ==,E G ,AD AB ,E G ,,EF AD FG AB FG ⊥⊥EF F CF AGFE ABCD AGFE ,,ED CF BG AGFE A BG CF BG CE CE BG ,,AC AF CF ACF △P CP AP ++CP AP ++BG CF =CF BG 30︒AC AF CF BG AC BG 8AC =30BAC ∠=︒AB AC =质得到,进而证明,利用相似三角形的性质和三角形的内角和定理可求解;(3)先根据题意得到当点C 、A 、C 共线时取等号,此时的长度最大,①利用勾股定理求解即可;②将绕着点A 顺时针旋转,且使,连接.同理将绕着点A 顺时针旋转,得到,且使,连接.先证明,得到 ,利用的边角关系得到,然后根据两点之间线段最短得到当C 、P 、K 、L四点共线时,的长最小,过点L 作垂直的延长线于点Q ,可得,在中,根据勾股定理求解即可.【详解】解:(1)∵四边形是矩形,∴∵,∴,∴四边形是矩形,故①正确;∵点分别是上的中点,∴,,即,∴矩形与四边形位似,故②正确;延长交于H ,则四边形、四边形是矩形,∴,,,∴是直角三角形,则以为边围成的三角形是直角三角形,故③错误,故答案为:①②;(2)与的夹角.证明:如图,连接、,延长、,设交点为N ,设、交于点M ,AG AB AF AC ==ACF ABG △∽△CE AP 30︒AK =PK AF 30︒AL AL =LK APF AKL ∽KL =APK △PK AP =CL LO CA 30LAQ ∠=︒Rt CLQ △CL ABCD 90A B BCD D ∠=∠=∠=∠=︒,,EF AD FG AB ⊥⊥90A AGF AEF ∠=∠=∠=︒AGFE ,E G ,AD AB 12AG AB =12AE AD =12AG AE AB AD ==ABCD AGFE GF CD EFHD BCHG HF DE =CH BG =90CHF ∠=︒CHF ,,ED CF BG BG CF =CF BG 30︒AC AF CF BG AC BG∵四边形是矩形,∴,,∴,则,∴,∴由(1)知,矩形与四边形位似,∴,∴,∴,,又,∴;(3)∵,∴当点C 、A 、E 共线时取等号,此时的长度最大,①如图,由(2)知,,,,∵,∴;②如图,将绕着点A 顺时针旋转,且使,连接.同理将绕着点A顺时针旋ABCD AB CD ==4ADBC ==8AC ==1sin 2BC BAC AC ∠==30ACD BAC ∠=∠=︒AB AC ==ABCD AGFE AG AB AF AC ==CAF BAG ∠=∠ACF ABG △∽△BG AB CF AC ==ACF ABG ∠=∠CMN AMB ∠=∠30CNG BAC ∠=∠=︒AC AE CE +≥CE 90CEF ∠=︒10CE AC AE =+=EF =BG CF =CF ==BG ==AP 30︒AK =PK AF转,得到,且使,连接.根据旋转,可得,根据两边对应成比例且夹角相等可得,∴,过P 作于S ,则,,∴,则,∴,∴,∵,即,当C 、P 、K 、L 四点共线时,的长最小,由题意,,,,过点L 作垂直的延长线于点Q ,可得,∴,,则,在中,根据勾股定理得∴的最小值为【点睛】本题是一道压轴题,主要考查了矩形的判定与性质、位似图形的判定与性质、相似三角形的判定与性质、旋转的性质、解直角三角形、等腰三角形的判定、三角形的内角和定理、最短路径等知识,涉及知识点较多,综合性强,熟练掌握相关的知识与联系,适当添加辅助线是解答的关键.26. 如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点.30︒AL AL =LK 30PAF KAL FAK ∠=∠=︒-∠APF AKL ∽KL =PS AK ⊥12PS AP =AS AP =KS AK AS AP =-=tan PS PKS KS ∠==30PKS ∠=︒PK AP =CP PK KL CL ++≥CP AP CL ++≥CL 150LAC ∠=︒4AF =8AC =AL =LQ CA 30LAQ ∠=︒QL =6AQ =14CQ AC AQ =+=Rt CLQ △CL ==CP AP ++()240y ax bx a =++≠x ()1,0A -()4,0C y B(1)求该抛物线的解析式以及顶点坐标;(2)若点是抛物线上的一个动点,满足与的面积相等求出点的坐标;(3)若点在第一象限内抛物线上,过点作轴于点,交于点,且满足与相似,求出点的横坐标.【答案】(1), (2) (3)点的横坐标为【解析】【分析】(1)根据题意列方程组,解方程组得到该抛物线的解析式为,由于,于是得到抛物线的解析式的顶点坐标为,;(2)根据点是抛物线上的一个动点,与的面积相等,于是得到,求得点的纵坐标为4,解方程即可得到;(3)设直线的解析式为,解方程得到直线的解析式为,设,则,,根据已知条件得到是等腰直角三角形,是等腰直角三角形,求得,得到,①当时,②当时,根据相似三角形的性质解方程即可得到结论.【小问1详解】抛物线与轴交于、两点,,D ABD △BCD △.D E E EF x ⊥F BC P BFP △CEP △E 325(,24234y x x =-++()3,4D E 2234y x x =-++2232534()24y x x x =-++=--+3(225)4D ABD △BCD △BD AC ∥D (3,4)D BC y kx b =+BC 4y x =-+(,0)F m 2(,34)E m m m -++(,4)P m m -+BOC CPF )CP m =-)BP m =--=BPF CPE ∽BPF EPC ∽ ()240y ax bx a =++≠x ()1,0A -()4,0C 0401644a b a b =-+⎧∴⎨=++⎩解得,该抛物线的解析式为,,抛物线的解析式的顶点坐标为;【小问2详解】抛物线与轴交于点,,点是抛物线上的一个动点,与的面积相等,,点的纵坐标为,当时,即,解得,,;【小问3详解】设直线的解析式为,,解得,直线的解析式为,13a b =-⎧⎨=⎩∴234y x x =-++2232534()24y x x x =-++=--+ ∴325,24⎛⎫ ⎪⎝⎭ 234y x x =-++y B ()0,4B ∴ D ABD △BCD △BD AC ∴∥D ∴44y =2344x x -++=10x =23x =()3,4D ∴BC y kx b =+440b k b =⎧∴⎨+=⎩14k b =-⎧⎨=⎩∴BC 4y x =-+设,则,,,是等腰直角三角形,,,是等腰直角三角形,,,当时,则,,解得,且,当时,则,,解得或不合题意舍去,点的横坐标为.【点睛】本题是二次函数的综合题,考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,待定系数法求函数的解析式,三角形的面积公式,分类讨论是解题的关键.(),0F m ()2,34E m m m -++(),4P m m -+4OB OC == BOC ∴45BCO ∴∠=︒EF AC ⊥ CPF ∴△)4CP m ∴=-)4BP m ∴=-=①BPF CPE ∽PE PC PF PB=23444m m m m-+++-∴=-m =4m =0m > 4m ≠m ∴=②BPF EPC ∽PB PF PE PC==2m =0(m =)∴E 2。

山东省济南市2014年中考数学模拟试题

山东省济南市2014年中考数学模拟试题

最新中考数学全真模拟试题一、选择题:本大题共12个小题.每小题4分;共48分. 1.12-的绝对值是( ) A.2-B.12-C.2D.122.如图,AD BC ∥,点E 在BD 的延长线上,若155ADE ∠=,则DBC ∠的度数为( ) A.35B.50C.45D.253.点()53P -,关于原点对称的点的坐标是( ) A.()35-,B.()53--,C.()53-, D.()35-,4.同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是( )A.41B. 21C. 43D. 15.不等式组1340x x +>⎧⎨-⎩≥的解集用数轴表示为( )6.若分式2362x xx--的值为0,则x 的值为( A)A.0B.2C.2-D.0或27.与如图所示的三视图对应的几何体是( )8.如图,DE 与ABC △的边AB AC ,分别相交于D E ,两点,且DE BC ∥.若22cm 3cm cm 3DE BC EC ===,,,则AC 等于( ). ADECA B C DA B CDE A.B.C.D.A. 1B.34C. 35D. 29.如图,矩形OABC 的边OA 在x 轴上,O 与原点重合,OA =1,OC =2,点D 的坐标为(2,0),则直线BD 的函数表达式为( )A. 2+-=x yB. 42+-=x yC. 3+-=x yD. 42+=x y 10.如图,已知AD 是△ABC 的外接圆的直径,AD =13 cm ,5cos 13B =,则AC 的长等于( )A .5 cmB .6 cmC .10 cmD .12 c m11.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所 有格点三角形的个数是( )A. 1B. 2C. 3D. 412.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:①0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤)(b am m b a +>+,(1≠m 的实数)其中正确的结论有( ) A. 2个B. 3个C. 4个D. 5二、填空题:本大题共5个小题.每小题3分;共15分. 13.分解因式: 2x 2-18= . 14.已知反比例函数5m y x-=的图象在第二、四象限,则m 取值范围是__________. 15.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108.宇宙中一块陨石落在地球上,落在陆地的概率是_________0.316.若1m <-,则下列函数①()0my x x=>,②1y mx =-+,③y mx =,④()1y m x =+中,y 的值随x 的值增大而增大的函数是_______________(填上序号即可)17.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请 你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹). 三、解答题:7个小题,57分.ACB (第10题)D ABFE O(第17题)18.(本小题满分7分)(1)化简23111aa a a a a-⎛⎫- ⎪-+⎝⎭· (2)解方程:211x x x -=-.19.(7分)(1)如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B 为折断处最高点,树顶A 落在离树根C 的12米处,测得∠BAC=300,求BC 的长。

2014年山东省济南市中考数学模拟试卷及答案

2014年山东省济南市中考数学模拟试卷及答案

山东省济南市2014年中考数学模拟试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的).1.(3分)(2013•遵义)如果+30m表示向东走30m,那么向西走40m表示为() A. +40m B.﹣40m C. +30m D.﹣30m 2.(3分)(2010•资阳)若实数a、b满足a+b=5,a2b+ab2=﹣10,则ab的值是() A.﹣2 B. 2 C.﹣50 D.503.(3分)(2009•天水)如图所示的几何体的主视图是()A.B.C.D.4.(3分)(2013•湖北)英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B. 3.4×10﹣9C. 3.4×10﹣10D.3.4×10﹣11 5.(3分)(2013•义乌市)已知圆锥的底面半径为6cm,高为8cm,则这个圆锥的母线长为()A. 12cm B. 10cm C. 8cm D.6cm6.(3分)(2013•恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A.B.C.D.7.(3分)(2013•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A. 5种B. 4种C. 3种D.2种8.(3分)(2012•温州)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.B.C.D.9.(3分)(2013•武汉)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°10.(3分)(2013•怀化)如图,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,则其面积为()A. 4 B.C. 1 D.211.(3分)(2010•枣庄)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.﹣2﹣B.﹣1﹣C.﹣2+D.1+12.(3分)(2013•镇江)如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A. 4条B. 3条C. 2条D.1条13.(3分)(2013•大连)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为()A. 3.5元B. 6元C. 6.5元D.7元14.(3分)(2013•莒南县一模)已知关于x的不等式组,有且只有三个整数解,则a的取值范围是()A.﹣2≤a≤﹣1 B.﹣2≤a<﹣1 C.﹣2<a≤﹣1 D.﹣2<a<﹣115.(3分)(2013•莒南县一模)如图,直线l:y=﹣x﹣与坐标轴交于A,C 两点,过A,O,C三点作⊙O,点E为劣弧AO上一点,连接EC,EA,EO,当点1E在劣弧AO上运动时(不与A,O两点重合),的值是否发生变化?()A.B.C. 2 D.变化二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.(3分)(2013•潍坊)分解因式:(a+2)(a﹣2)+3a= _________ .17.(3分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则ab的值为_________ .18.(3分)(2013•孝感)如图,两建筑物的水平距离BC为18m,从A点测得D 点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为_________ m(结果不作近似计算).19.(3分)(2013•济宁)三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为_________ cm.20.(3分)(2009•黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_________ .21.(3分)(2013•自贡)如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是_________ .三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(7分)(1)化简:.(2)解方程:.23.(7分)(1)如图一,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.(2)如图二所示,已知在平行四边形ABCD中,BE=DF.求证:AE=CF.24.(8分)(2009•崇左)五一期间某校组织七、八年级的同学到某景点郊游,该景点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票.已知参加郊游的七年级同学少于50人、八年级同学少于100人.若七、八年级分别购票,两个年级共计应付门票费1575元,若合在一起购买折扣票,总计应付门票费1080元.(1)请你判断参加郊游的八年级同学是否也少于50人.(2)求参加郊游的七、八年级同学各为多少人?25.(8分)通辽市某校对九年级学生进行“综合素质”评价,评价的结果为A (优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14:9:6:1,评价结果为D等级的有2人,请你回答:(1)共抽测了多少人?(2)样本中B等级的频率是多少?C等级的频率是多少?(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?26.(9分)(2013•龙岗区模拟)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.(1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长;(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O的距离为5,则r的取值范围为_________ .27.(9分)(2013•莒南县一模)已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m),(1)求二次函数的解析式并写出D点坐标;(2)点Q是线段AB上的一动点,过点Q作QE∥AD交BD于E,连结DQ,当△DQE 的面积最大时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M 和点N的坐标.28.(9分)(2013•遂宁)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC 上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.参考答案与试题解析一、选择题.1.B.2.A.3.D.4.C.5.B.6.B.7.C.8.B.9.A.10.D.11.A.12.A.13.C.14.C.15.A.二、填空题16.(a﹣1)(a+4).17.﹣10.18.12.19.6.20.()n﹣1.21.三、解答题22.(1)原式=•=x;(2)原方程可化为3x+2=8+x,合并同类项得:2x=6,解得:x=3.23.(1)证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.在△ABC中和△AED中,∴△ABC≌△AED(AAS)(2)证明:∵BE=DF,∴BE﹣EF=DE﹣EF,∴DE=BF.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴AE=CF.24.解:(1)全票为15元,则八折票价为12元,六折票价为9元.∵100×15=1500<1575 ∴七、八年级的总人数必定超过100人,又∵七年级人数少于50人,∴八年级的人数必定多于50人.(2)设七、八年级参加郊游的同学分别有x人、y人,由(1)及已知可得,x<50,50<y<100依题意可得:则解得:.答:参加郊游的七、八年级同学分别为45人和75人.25.解:(1)2÷=2×30=60人,∴抽测了60人;(2)∵9÷30=0.3,∴样本中B等级的频率是0.3,∵6÷30=0.2,∴样本中C等级的频率是0.2;(3)A等级在扇形统计图中所占的圆心角为:×360°=168°,D等级在扇形统计图中所占的圆心角为:×360°=12°;(4)×300=230名,估计该校大约有230名学生可以报考示范性高中.26.(1)证明:如图,∵∠CBF=∠CFB,∴CB=CF.又∵AC=CF,∴CB=AF,∴△ABF是直角三角形,∴∠ABF=90°,即AB⊥BF.又∵AB是直径,∴直线BF是⊙O的切线.(2)解:如图,连接DO,EO,∵点D,点E分别是弧AB的三等分点,∴∠AOD=60°.又∵OA=OD,∴△AOD是等边三角形,∴OA=AD=OD=5,∠OAD=60°,∴AB=10.∴在Rt△ABF中,∠ABF=90°,BF=AB•tan60°=10,即BF=10;(3)<r<.27.解:(1)由题意有:,解得:a=﹣,b=1,c=4.所以,二次函数的解析式为:y=﹣x2+x+4,∵点D(2,m)在抛物线上,即m=﹣×2 2+2+4=4,所以点D的坐标为(2,4)(2)令y=0,即﹣x2+x+4=0,解得:x1=4,x2=﹣2∴A,B点的坐标分别是(﹣2,0),(4,0)过点E作EG⊥QB,垂足为G,设Q点坐标为(t,0),∵QE∥AD,∴△BEQ与△BDA相似∴=,即=,∴EG=,∴S△BEQ=×(4﹣t)×,∴S△DQE=S△BDQ﹣S△BEQ=×(4﹣t)×4﹣S△BEQ=2(4﹣t)﹣(4﹣t)2=﹣t2+t+后=﹣(t﹣1)2+3,∴当t=1时,S△DQE有最大值,所以此时Q点的坐标为(1,0);(3)如图,由A(﹣2,0),D(2,4),可求得直线AD的解析式为:y=x+2,即点F的坐标为:F(0,2),过点F作关于x轴的对称点F′,即F′(0,﹣2),再连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称则CF+F′N+M′N′+M′C=CF+DF′=2+2,则四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C即四边形CFNM的最短周长为:2+2.此时直线DF′的解析式为:y=3x﹣2,所以存在点N的坐标为N(,0),点M的坐标为M(1,1).28.(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO,在Rt△BCE中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF 是⊙O的切线;(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB﹣∠BCO=∠FCO﹣∠BCO,即∠3=∠1,∴∠3=∠2,∵∠4=∠D,∴△ACM∽△DCN;(3)解:∵⊙O的半径为4,即AO=CO=BO=4,在Rt△COE中,cos∠BOC=,∴OE=CO•cos∠BOC=4×=1,由此可得:BE=3,AE=5,由勾股定理可得:CE===,AC===2,BC===2,∵AB是⊙O直径,AB⊥CD,∴由垂径定理得:CD=2CE=2,∵△ACM∽△DCN,∴=,∵点M是CO的中点,CM=AO=×4=2,∴CN===,∴BN=BC﹣CN=2﹣=.。

2024山东省济南市中考一模押题预测卷数学试卷及答案

2024山东省济南市中考一模押题预测卷数学试卷及答案

2024年中考第一次模拟考试(山东济南卷)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B .C .D ..三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张上部图片放入一个布袋,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸取一张,则这两张小图片恰好合成一张完整图片的概率是(16B .C 19D 15.若点()(()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上,则23y y 、、的大小关系为()123y y y <<B .31y y <<C 213y y y <<D 312y y y <<中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(21)(32)++-=-的计算过程,则图2.(13)(23)10-++=B .(31)(32)1-++=.(13)(23)36+++=D .(13)(23)10++-=-C.3+(a,b是常数,且abx.下列结论:第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)()2213032-⎛⎫︒--+- ⎪⎝⎭.)10521x x -+><-在数轴上表示出它的解集,并求出它的正整数解.ABCD 中,BCD ∠的平分线交AD ,3EF =,求BC 的长.如图2,求遮阳棚前端B 到墙面AD 的距离;如图3,某一时刻,太阳光线与地面夹角60CFG ∠=︒,求遮阳棚在地面上的遮挡宽度的长(结果精确到1cm ).(参考数据:sin 720.951,cos 720.309,tan 72 3.078,3 1.732︒≈︒≈︒≈≈)分)近年来,网约车给人们的出行带来了便利,林林和数学兴趣小组的同学对“美团网约车司机收入频数分布表:月收入4千元5千元9千元10千元人数(个)3421根据以上信息,分析数据如表:思考问题:1,a a ⎫⎪⎭,1,R b b⎛⎫⎪⎝⎭,求直线OM 的函数解析式(用含a ,b 的代数式表示),并说明OM 上;证明:13MOB AOB ∠=∠.求c 的值及顶点M 的坐标,如图2,将矩形ABCD 沿x 轴正方向平移t 个单位()03t <<得到对应的矩形A B C ''知边C D '',A B ''分别与函数24y x x c =-+的图象交于点P ,Q ,连接PQ ,过点P 作PG 于点G .①当2t =时,求QG 的长;PGQ △1,调整菱形ABCD ,使90A ∠=︒,当点M 在菱形ABCD 外时,在射线BP 上取一点BN DM =,连接CN ,则BMC ∠=,MCMN=操作探究二2024年中考第一次模拟考试(山东济南卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .【答案】A【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【详解】解:从上面看,是一个矩形,矩形的中间有一条纵向的实线,两条纵向的虚线.故选:A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯【答案】C【分析】本题考查了科学记数法:把一个绝对值大于等于10的数表示成10n a ⨯的形式(a 大于或等于1且小于10,n 是正整数);n 的值为小数点向左移动的位数.根据科学记数法的定义,即可求解.【详解】解:972亿10972000000009.7210⨯=,故选:C .3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B.C..【答案】B【分析】本题考查了轴对称图形和中心对称图形的识别.根据轴对称图形和中心对称图形的定义判断即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、是轴对称图形,不是中心对称图形,本选项不符合题意;、是轴对称图形,也是中心对称图形,本选项符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;.三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)【答案】2或3/3或2【分析】过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点,过点M 作MD x ⊥轴于点D ,设直线l 的解析式为y x b =-+,由直线l 与直线y x =-平行可得45OPA ∠=︒,即可证明MDE 与OEF 均为等腰直角三角形,进而可求出点E 、F 的坐标,根据中点坐标公式可求出MF 和ME 的中点坐标,代入y x b =-+可求出b 值,即可得点P 坐标,即可求解.【详解】如图,过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点.直线l 与直线y x =-平行,∴设直线l 解析式为y x b =-+,过点M 作MD x ⊥轴于点D ,则3OD =,2MD =,直线l 的解析式为y x b =-+,45OPD ∴∠=︒,45OFE OEF ∴∠=∠=︒,MDE ∴ 与OEF 均为等腰直角三角形,2DE MD ∴==,1OE OF ==,三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),“滴滴”网约车司机收入频数分布表:月收入4千元5千元9千元人数(个)342根据以上信息,分析数据如表:,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.2024年中考第一次模拟考试(山东济南卷)数学·参考答案第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)12345678910A C C CB BC A C B第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.(12分)【详解】(1)解: 四边形ABCD 是正方形,CD ,90BCD ∠=︒,。

2014年山东省济南市中考数学试卷详解版

2014年山东省济南市中考数学试卷详解版

2014年山东省济南市中考数学试卷一、选择题(共15小题,每小题3分,共45分)1.(3分)(2014•济南)4的算术平方根是()A.2 B.﹣2 C.±2 D.16考点:M117算术平方根难易度:容易题分析:∵22=4,∴=2解答:A点评:本题是中考的常考题型,本题考查了算术平方根的知识,乘方运算是解题关键。

2.(3分)(2014•济南)如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A.50°B.60°C.140°D.150°考点:M317补角难易度:容易题分析:根据互补两角之和为180°,求解即可.∵∠1=40°,∴∠2=180°﹣∠1=140°。

解答:C点评:本题难度不大,主要考查了补角的知识,关键是掌握互补两角之和为180°。

3.(3分)(2014•济南)下列运算中,结果是a5的是()A.a2•a3B.a10÷a2C.(a2)3D.(﹣a)5考点:M11N幂的运算难易度:容易题分析:根据同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.A、a2•a3=a5,故A选项正确;B、a10÷a2=a8,故B选项错误;C、(a2)3=a6,故C选项错误;D、(﹣a)5=﹣a5,故D选项错误。

解答:A点评:本题是中考的常考题型,考查了同底数幂的乘法与除法以及幂的乘方等知识,解题要细心。

4.(3分)(2014•济南)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为()A.3.7×102B.3.7×103C.37×102D.0.37×104考点:M11A科学计数法难易度:容易题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数。

山东省济南市2014年中考数学模拟试题二

山东省济南市2014年中考数学模拟试题二

2013年济南市中考数学模拟试题二一、选择题:本大题共12个小题.每小题4分;共48分. 1.34相反数是( ) A.43 B.43- C.34 D. 34-2.下列运算正确的是( )A.632a a a =⋅ B.()236aa =C.55a a a ÷= D.33y y x x ⎛⎫= ⎪⎝⎭3.如图,Rt ABC △中,90ACB ∠=°,DE 过点C 且平行于AB ,若35BCE ∠=°,则A ∠的度数为( ) A .35°B .45°C .55°D .65°4.估算219+的值是在( )。

A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间5.小华把自己一周的支出情况用如图所示的统计图表示出来,下列说法中,正确的是( )A.从图中可以直接看出具体的消费数额B.从图中可以直接看出总消费数额C.从图中可以直接看出各项消费数额占总消费数额的百分比D.从图中可以直接看出各项消费数额在一周中的具体变化情况小 6.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(-2,-1)在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减7.若二元一次联立方程式⎩⎨⎧=-=+4233y x y x 的解为x =a ,y =b ,则a -b 的值为( )A. 1B. 3C. -51 D. 5178.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量对角线是否相等D .测量其中三个角是否都为直角9.二次函数12)3(2-+++-=k x k x y 的图像与y 轴的交点位于(0,5)上方,则k 的范围是( )A. 3=kB. 3<kC. 3>kD. 以上都不对10.如图,平行四边形ABCD 中,AB 3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是( ) A. 6 B. 8 C. 9 D. 1011.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1 C .2 D .312.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( ).A.6cmB.10cmC.32cmD.52cm二、填空题:本大题共5个小题.每小题3分;共15分.把答案填在题中横线上. 13.若点M (1,12-a )在第四象限内,则a 的取值范围是 。

济南市槐荫区中考数学一模试卷含答案解析

济南市槐荫区中考数学一模试卷含答案解析

山东省济南市槐荫区中考数学一模试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.方程x﹣2=0的解是()A. B.C.2 D.﹣22.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A.B.C.D.3.是“十二五”规划收官之年,济南市政府围绕“打造四个中心,建设现代泉城”中心任务,统筹推进稳增长,实现生产总值6200亿元,6200亿元用科学记数法表示为()A.6.2×1010元B.6.2×1011元C.6.2×1012元D.0.62×1012元4.下列计算正确的是()A. =3 B.﹣(﹣3)2=9 C.﹣(﹣2)0=1 D.|﹣3|=﹣35.下列运算正确的是()A.a2•a4=a8B.2a+3a=5a C.(x﹣2)2=x2﹣4 D.(x﹣2)(x+3)=x2﹣66.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形7.已知一次函数y=ax+b(a、b为常数且a≠0)经过(1,3)和(0,﹣2),求a﹣b的值()A.﹣1 B.﹣3 C.3 D.78.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A.100只B.150只C.180只D.200只9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30° B.60°C.80°D.120°10.下列说法错误的是()A.抛物线y=﹣x2+x的开口向下B.角平分线上的点到角两边的距离相等C.一次函数y=﹣x+1的函数值随自变量的增大而增大D.两点之间线段最短11.如图,矩形ABCD中,AD=10,点P为BC上任意一点,分别连接AP、DP,E、F、G、H分别为AB、AP、DP、DC的中点,则EF+GH的值为()A.10 B.5 C.2.5 D.无法确定12.已知二次函数y=﹣x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥﹣1 B.b≤﹣1 C.b≥1 D.b≤113.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+14.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④15.如图,直线y=﹣2x与抛物线y=﹣x2+mx+6交于A、B两点,过A、B两点的双曲线的解析式分别为、,则k1k2的值为()A.﹣6 B.36 C.72 D.144二、填空题(本大题共6个小题,每小题3分,共18分.)16.﹣6的相反数是.17.分解因式:3m2﹣27=.18.方程的解是x=.19.在的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是.20.如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG、PC.若∠ABC=∠BEF=60°,则的值为.21.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号[n,m]表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转度;第3次从第2次停止的位置向相同的方向再次旋转度;第4次从第3次停止的位置向相同的方向再次旋转度;…依此类推.例如[2,90]=,则[,180]=.三、解答题(共7小题,满分57分)22.(1)解不等式组:.(2)先化简,再求值:,其中x可取任何一个你喜欢的数值.23.(1)如图,在△ABC和△BAD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.求证:AC=BD.(2)如图,▱ABCD中,AB=3,AD=5,∠BAD的平分线交BC于点E.求EC的长.24.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?25.一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一球,请直接写出球上的汉字恰好是“美”的概率;(2)若从袋中任取一球,记下汉字后放回袋中,然后再从中任取一球,再次记下球上的汉字,求两次的汉字恰好组成“美丽”或“槐荫”这两个词的概率.26.如图,直线y1=x+2与双曲线y2=交于A(m,4),B(﹣4,n).(1)求k值;(2)当y1>y2时请直接写出x的取值范围;(3)P为x轴上任意一点,当△ABP为直角三角形时,求P点坐标.27.如图1所示,过点M作⊙N的切线MA、MB,切点分别为A、B,连接MN(1)求证:∠AMN=∠BMN.(2)如图2所示,在图1的基础上作⊙M,过⊙N的圆心N作⊙M的切线NC、ND,切点分别为C、D,MA、MB分别与⊙M交于点E、F,NC、ND分别与⊙N交于点G、H,MA与ND交于点P.求证:sin∠DPM=.(3)求证:四边形EFGH是矩形.28.如图,抛物线y=﹣x+4与y轴交于点A、与x轴分别交于B、C两点.(1)求A、B两点坐标;(2)将Rt△AOB绕点A逆时针旋转90°得到△ADE,求点E的坐标;(3)求出第一象限内的抛物线上与直线AE距离最远的点的坐标.山东省济南市槐荫区中考数学一模试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.方程x﹣2=0的解是()A. B.C.2 D.﹣2【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程移项即可求出解.【解答】解:方程x﹣2=0,解得:x=2,故选C【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.2.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】从正面看得到从左往右3列正方形的个数依次为1,1,2,依此判断即可.【解答】解:从正面看得到从左往右3列正方形的个数依次为1,1,2,故选A【点评】此题考查三视图,关键是根据三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.3.是“十二五”规划收官之年,济南市政府围绕“打造四个中心,建设现代泉城”中心任务,统筹推进稳增长,实现生产总值6200亿元,6200亿元用科学记数法表示为()A.6.2×1010元B.6.2×1011元C.6.2×1012元D.0.62×1012元【考点】科学记数法—表示较大的数.【分析】数据>10时科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答】解:6200亿=6.2×1011.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列计算正确的是()A. =3 B.﹣(﹣3)2=9 C.﹣(﹣2)0=1 D.|﹣3|=﹣3【考点】立方根;绝对值;有理数的乘方;零指数幂.【分析】根据立方根、有理数的乘方、0次幂、绝对值,逐一判断即可解答.【解答】解:A、=3,正确;B、﹣(﹣3)2=﹣9,故错误;C、﹣(﹣2)0=﹣1,故错误;D、|﹣3|=3,故错误;故选:A.【点评】本题考查了立方根、有理数的乘方、0次幂、绝对值,解决本题的关键是熟记立方根的定义.5.下列运算正确的是()A.a2•a4=a8B.2a+3a=5a C.(x﹣2)2=x2﹣4 D.(x﹣2)(x+3)=x2﹣6【考点】完全平方公式;合并同类项;同底数幂的乘法;多项式乘多项式.【分析】根据同底数幂的乘法、合并同类项、完全平方公式、多项式乘以多项式,即可解答.【解答】解:A、a2•a4=a6,故错误;B、2a+3a=5a,故正确;C、(x﹣2)2=x2﹣4x+4,故错误;D、(x﹣2)(x+3)=x2+x﹣6,故错误;故选:B.【点评】本题考查了同底数幂的乘法、合并同类项、完全平方公式、多项式乘以多项式,解决本题的关键是熟记同底数幂的乘法、合并同类项、完全平方公式、多项式乘以多项式.6.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n﹣2)•180°.7.已知一次函数y=ax+b(a、b为常数且a≠0)经过(1,3)和(0,﹣2),求a﹣b的值()A.﹣1 B.﹣3 C.3 D.7【考点】一次函数图象上点的坐标特征.【分析】先把(1,3)和(0,﹣2)代入一次函数y=ax+b,求出a、b的值,进而可得出结论.【解答】解:∵一次函数y=ax+b(a、b为常数且a≠0)经过(1,3)和(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A.100只B.150只C.180只D.200只【考点】用样本估计总体.【分析】从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,即在样本中有标记的所占比例为,而在整体中有标记的共有20只,根据所占比例即可解答.【解答】解:∵从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,∴在样本中有标记的所占比例为,∴池塘里青蛙的总数为20÷=200.故选:D.【点评】此题主要考查了用样本去估计总体,统计的思想就是用样本的信息来估计总体的信息.9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30° B.60°C.80°D.120°【考点】平行线的性质;角平分线的性质.【分析】根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°.故选:A.【点评】本题考查了平行线的性质,角平分线的定义,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.下列说法错误的是()A.抛物线y=﹣x2+x的开口向下B.角平分线上的点到角两边的距离相等C.一次函数y=﹣x+1的函数值随自变量的增大而增大D.两点之间线段最短【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】A.抛物线y=﹣x2+x的开口向下,正确,B.角平分线上的点到角两边的距离相等,正确,C.一次函数y=﹣x+1的函数值随自变量的增大而减小,原命题错误,D.两点之间线段最短,正确,故选:C.【点评】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.如图,矩形ABCD中,AD=10,点P为BC上任意一点,分别连接AP、DP,E、F、G、H分别为AB、AP、DP、DC的中点,则EF+GH的值为()A.10 B.5 C.2.5 D.无法确定【考点】三角形中位线定理;矩形的性质.【分析】E、F、G、H分别是AB、AP、DP、DC的中点,则EF,GH分别是△ABP,△DCP的中位线,得到EF+GH=BC.【解答】解:在矩形ABCD中,BC=AD=10.∵E、F、G、H分别为AB、AP、DP、DC的中点,∴EF是△ABP的中位线,GH是△DPC的中位线,∴EF+GH=BP+PC=BC=5.故选:B.【点评】本题主要考查了三角形的中位线定理.三角形的中位线平行于第三边,并且等于第三边的一半.12.已知二次函数y=﹣x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥﹣1 B.b≤﹣1 C.b≥1 D.b≤1【考点】二次函数的性质.【专题】数形结合.【分析】先根据抛物线的性质得到其对称轴为直线x=b,且当x>b时,y随x的增大而减小,由于已知当x>1时,y的值随x值的增大而减小,则可得判断b≤1.【解答】解:∵抛物线y=﹣x2+2bx+c的对称轴为直线x=﹣=b,而a<0,∴当x>b时,y随x的增大而减小,∵当x>1时,y的值随x值的增大而减小,∴b≤1.故选:D.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x+)2+,的顶点坐标是(﹣,),对称轴直线x=﹣b/2a,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小,13.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】由点A(0,4)、B(3,0),可求得AB的长,然后由折叠的性质,求得OA′的长,且△A′OC∽△AOB,再由相似三角形的性质,求得OC的长,继而利用待定系数法求得直线BC的解析式.【解答】解:∵点A(0,4)、B(3,0),∴OA=4,OB=3,∴AB==5,由折叠的性质可得:A′B=AB=5,∠OA′C=∠OAB,∴OA′=A′B﹣OB=2,∵∠A′OC=∠AOB=90°,∴△A′OC∽△AOB,∴,即,解得:OC=,∴点C的坐标为:(0,),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+.故选C.【点评】此题考查了折叠的性质、勾股定理、相似三角形的判定与性质以及待定系数法求一次函数的解析式.注意求得点C的坐标是解此题的关键.14.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④【考点】圆周角定理.【专题】几何图形问题.【分析】①AB为直径,所以∠ACB=90°,就是AC垂直BF,但不能得出AC平分BF,故错,②只有当FP通过圆心时,才平分,所以FP不通过圆心时,不能证得AC平分∠BAF,③先证出D、P、C、F四点共圆,再利用△AMP∽△FCP,得出结论.④直径所对的圆周角是直角.【解答】证明:①∵AB为直径,∴∠ACB=90°,∴AC垂直BF,但不能得出AC平分BF,故①错误,②如图1,连结CD,∵AB为直径,∴∠ADB=90°,∴∠BDF=90°,假设AC平分∠BAF成立,则有DC=BC,∴在RT△FDB中,DC=BC=FC,∴AC⊥BF,且平分BF,∴AC垂直BF,但不能得出AC平分BF,与①中的AC垂直BF,但不能得出AC平分BF相矛盾,故②错误,③如图2:∵AB为直径,∴∠ACB=90°,∠ADB=90°,∴D、P、C、F四点共圆,∴∠CFP和∠CDB都对应,∴∠CFP=∠CDB,∵∠CDB=∠CAB,∴∠CFP=∠CAB,又∵∠FPC=∠APM,∴△AMP∽△FCP,∠ACF=90°,∴∠AMP=90°,∴FP⊥AB,故③正确,④∵AB为直径,∴∠ADB=90°,∴BD⊥AF.故④正确,综上所述只有③④正确.故选:D.【点评】本题主要考查了圆周角的知识,解题的关键是明确直径所对的圆周角是直角.15.如图,直线y=﹣2x与抛物线y=﹣x2+mx+6交于A、B两点,过A、B两点的双曲线的解析式分别为、,则k1k2的值为()A.﹣6 B.36 C.72 D.144【考点】二次函数的性质.【分析】根据反比例函数的性质和一次函数的性质得出k1=﹣2x12,k2=﹣2x22,根据题意x1、x2是方程﹣2x=﹣x2+mx+6的两个根,根据根与系数的关系得出x1•x2=﹣6,从而求得k1k2的值.【解答】解:由直线y=﹣2x和双曲线、交于A、B两点,∴k1=﹣2x12,k2=﹣2x22,∵直线y=﹣2x与抛物线y=﹣x2+mx+6交于A、B两点,∴x1、x2是方程﹣2x=﹣x2+mx+6的两个根,整理方程得x2﹣(m+2)x﹣6=0,∴x1•x2=﹣6,∴k1k2=(﹣2x12)×(﹣2x22)=4×(﹣6)2=144,故选D.【点评】本题考查了一次函数的性质,反比例函数的性质以及二次函数的性质,函数和方程的关系,求得x1•x2=﹣6是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分.)16.﹣6的相反数是6.【考点】相反数.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:根据相反数的概念,得﹣6的相反数是﹣(﹣6)=6.【点评】此题考查了相反数的定义,互为相反数的两个数分别在原点两旁且到原点的距离相等.17.分解因式:3m2﹣27=3(m+3)(m﹣3).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3m2﹣27,=3(m2﹣9),=3(m2﹣32),=3(m+3)(m﹣3).故答案为:3(m+3)(m﹣3).【点评】本题考查了提公因式法和平方差公式分解因式,需要进行二次分解因式,分解因式要彻底.18.方程的解是x=6.【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是x(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘x(x﹣2),得3(x﹣2)=2x,解得x=6.检验:当x=6时,x(x﹣2)≠0.∴x=6是原方程的解.【点评】解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解,解分式方程一定注意要代入最简公分母验根.19.在的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是26.【考点】中位数;折线统计图.【分析】根据中位数的定义,即可解答.【解答】解:把这组数据从小到大排列,最中间两个数的平均数是(26+26)÷2=26,则中位数是26.故答案为:26.【点评】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).20.如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG、PC.若∠ABC=∠BEF=60°,则的值为.【考点】菱形的性质.【分析】可通过构建全等三角形求解.延长GP交DC于H,可证三角形DHP和PGF全等,已知的有DC∥GF,根据平行线间的内错角相等可得出两三角形中两组对应的角相等,又有DP=PF,因此构成了全等三角形判定条件中的(ASA),于是两三角形全等,那么HP=PG,可根据三角函数来得出PG、CG的比例关系.【解答】解:如图,延长GP交DC于点H,∵P是线段DF的中点,∴FP=DP,由题意可知DC∥GF,∴∠GFP=∠HDP,在△GFP和△HDP中,∴△GFP≌△HDP(ASA),∴GP=HP,GF=HD,∵四边形ABCD是菱形,∴CD=CB,∴CG=CH,∴△CHG是等腰三角形,∴PG⊥PC,(三线合一)又∵∠ABC=∠BEF=60°,∴∠GCP=60°,∴=sin60°=;故答案为:.【点评】本题主要考查了菱形的性质,以及全等三角形的判定等知识点,根据已知和所求的条件正确的构建出相关的全等三角形是解题的关键.21.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号[n,m]表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转度;第3次从第2次停止的位置向相同的方向再次旋转度;第4次从第3次停止的位置向相同的方向再次旋转度;…依此类推.例如[2,90]=,则[,180]=.【考点】扇形面积的计算.【专题】规律型.【分析】主要是读懂[2,90]=,它反应的是开始第一次以90°旋转,第二次以旋转,旋转两次.【解答】解:由题意可得:[,180]=.故答案为.【点评】本题是扇形面积的计算,解决本题的关键是读懂这个新定义.三、解答题(共7小题,满分57分)22.(1)解不等式组:.(2)先化简,再求值:,其中x可取任何一个你喜欢的数值.【考点】分式的化简求值;解一元一次不等式组.【分析】(1)分别求出各不等式的解集,再求出其公共解集即可;(2)先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:(1),解不等式①得x≤2;解不等式②得x>﹣1,所以不等式的解集为﹣1<x≤2.(2)原式=(1﹣)÷=•=,当x=2时,原式=2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(1)如图,在△ABC和△BAD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.求证:AC=BD.(2)如图,▱ABCD中,AB=3,AD=5,∠BAD的平分线交BC于点E.求EC的长.【考点】全等三角形的判定与性质;平行四边形的性质.【分析】(1)根据SAS证出△ABC≌△BAD,可直接得出AC=BD.(2)根据平行四边形的性质得出AD=BC,∠DAE=∠BEA,再根据角平分线的性质得出∠BAE=∠DAE,从而得出∠BAE=∠BEA,即可得出BE=BA,再根据EC=BC﹣BE,求出EC的长.【解答】解:(1)在△ABC和△ABD中,∵,∴△ABC≌△BAD (SAS),∴AC=BD.(2)∵四边形ABCD是平行四边形,AB=3,BC=5,∴AD∥BC,AD=BC=5,∴∠DAE=∠BEA,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=BA=3,∴EC=BC﹣BE=2.【点评】此题考查了全等三角形的判定与性质和平行四边的性质,用到的知识点是全等三角形的判定与性质、平行四边的性质、角平分线的定义、等边对等角、平行线的性质等,熟练掌握有关知识是本题的关键.24.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设该品牌电动自行车销售量的月均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.【解答】解:(1)设该品牌电动自行车销售量的月均增长率为x,根据题意列方程:150(1+x)2=216,解得x1=﹣220%(不合题意,舍去),x2=20%.答:该品牌电动自行车销售量的月均增长率20%.(2)二月份的销量是:150×(1+20%)=180(辆).所以该经销商1至3月共盈利:(2800﹣2300)×(150+180+216)=500×546=273000(元).【点评】本题考主要查了一元二次方程的应用.判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.25.一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一球,请直接写出球上的汉字恰好是“美”的概率;(2)若从袋中任取一球,记下汉字后放回袋中,然后再从中任取一球,再次记下球上的汉字,求两次的汉字恰好组成“美丽”或“槐荫”这两个词的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与两次的汉字恰好组成“美丽”或“槐荫”这两个词的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,∴P(美)=;(2)列表得:美丽槐荫二一美美美美丽美槐美荫丽丽美丽丽丽槐丽荫槐槐美槐丽槐槐槐荫荫荫美荫丽荫槐荫荫∵所有可能有16种,满足条件的有2种,∴P(美丽或槐荫)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.26.如图,直线y1=x+2与双曲线y2=交于A(m,4),B(﹣4,n).(1)求k值;(2)当y1>y2时请直接写出x的取值范围;(3)P为x轴上任意一点,当△ABP为直角三角形时,求P点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A、B坐标代入直线y1=x+2可得m、n的值,将A或B坐标代入双曲线y2=可求得k的值;(2)由A、B坐标根据函数图象可得x的取值范围;(3)设P坐标为(a,0),根据A、B坐标分别表示出PA2、PB2、AB2,分∠BAP=90°、∠ABP=90°、∠APB=90°三种情况根据勾股定理列出关于a的方程,解方程可得a的值,即可得点P的坐标.【解答】解:(1)根据题意可将点A(m,4),B(﹣4,n)代入直线y1=x+2,得:m+2=4,﹣4+2=n,解得:m=2,n=﹣2,故点A坐标为(2,4),点B坐标为(﹣4,﹣2),将点A(2,4)代入双曲线y2=,可得k=8;(2)观察图象可得,y1>y2时,﹣4<x<0或x>2;(3)设x轴上的点P坐标为(a,0),∵点A坐标为(2,4),点B坐标为(﹣4,﹣2),∴PA2=(2﹣a)2+42=(a﹣2)2+16,PB2=(﹣4﹣a)2+(﹣2)2=(a+4)2+4,AB2=(﹣4﹣2)2+(﹣2﹣4)2=72,①当∠BAP=90°时,AB2+AP2=PB2,即(a﹣2)2+16+72=(a+4)2+4,解得:a=6,则点P坐标为(6,0);②当∠ABP=90°时,AB2+PB2=AP2,即72+(a+4)2+4=(a﹣2)2+16,解得:a=﹣6,则点P坐标为(﹣6,0);③当∠APB=90°,PA2+PB2=AB2,即(a﹣2)2+16+(a+4)2+4=72,解得:a=﹣1+或a=﹣1﹣,则点P的坐标为(﹣1+,0)或(﹣1﹣);综上,点P的坐标为:(6,0),(﹣6,0),(﹣1+,0),(﹣1﹣).【点评】本题主要考查一次函数与反比例函数交点问题,根据直线与双曲线相交求得点A、B坐标是解题根本,由△ABP为直角三角形根据勾股定理分类讨论是解题的关键.27.如图1所示,过点M作⊙N的切线MA、MB,切点分别为A、B,连接MN(1)求证:∠AMN=∠BMN.(2)如图2所示,在图1的基础上作⊙M,过⊙N的圆心N作⊙M的切线NC、ND,切点分别为C、D,MA、MB分别与⊙M交于点E、F,NC、ND分别与⊙N交于点G、H,MA与ND交于点P.求证:sin∠DPM=.(3)求证:四边形EFGH是矩形.【考点】圆的综合题.【分析】(1)首先连接NA,NB,由MA、MB是⊙N的切线,利用HL易证得Rt△AMN和Rt△BMN,继而证得结论;(2)首先连接MD,由ND是⊙M的切线,可求得sin∠DPM=,继而证得sin∠DPM=;(3)易证得EH∥MN,继而证得∠FEH=90°,∠EFG=∠FGH=90°,则可证得结论.【解答】证明:(1)如图,连接NA、NB,∵MA、MB是⊙N的切线,∴∠MAN=∠MBN=90°,在Rt△AMN和Rt△BMN中,,∴Rt△AMN和Rt△BMN(HL),∴∠AMN=∠BMN;(2)如图2,连接MD,∵ND是⊙M的切线,∴∠MDP=90°,∴sin∠DPM=,∵MD=ME,∴sin∠DPM=;(3)由(2)可得sin∠APN=,∴=,∴EH∥MN,∵ME=MF,∠AMN=∠BMN,∴MN⊥EF,∴EH⊥EF,∴∠FEH=90°,同理可证∠EFG=∠FGH=90°,∴四边形EFGH是矩形.【点评】此题属于圆的综合题,考查了切线的性质、全等三角形的判定与性质、矩形的判定以及三角函数等知识.注意准确作出辅助线是解此题的关键.28.如图,抛物线y=﹣x+4与y轴交于点A、与x轴分别交于B、C两点.(1)求A、B两点坐标;(2)将Rt△AOB绕点A逆时针旋转90°得到△ADE,求点E的坐标;(3)求出第一象限内的抛物线上与直线AE距离最远的点的坐标.【考点】二次函数综合题.【分析】(1)分别令x=0,y=0可求得点A、B的坐标;(2)由点A、B的坐标可求得OA、OB的长,然后由旋转的性质可得到点E的坐标;(3)延长AE交抛物线与点M,过点P作PN⊥x轴,交直线AE与点N,过点P作PW⊥AE垂足为W.先求得直线AE的解析式,然后求得点M的坐标,设点P(t,﹣ t2+t+4),则N(t,﹣t+4),可求得PN=﹣t2+t.从而得到△APM的面积与t的函数关系式,利用配方法可求得△APM的最大值,以及此时点P的坐标.【解答】解:(1)∵当x=0时,y=4,∴A(0,4).∵当y=0时,﹣ x+4=0,∴x1=﹣4,x2=8.∴B(﹣4,0).(2)由(1)得OA=OB=4,∵将△ABO逆时针绕A旋转90°得到△ADE,∴∠ADE=90°,DE=AD=4.∴点D(4,4).∴E(4,0).(3)如图所示:延长AE交抛物线与点M,过点P作PN⊥x轴,交直线AE与点N,过点P作PW⊥AE垂足为W.设直线AE的解析式为y=kx+b.∵将A(0,4),B(,0)代入得:,解得:,∴直线AE的解析式为y=﹣x+4.∵将y=﹣x+4与y=﹣x+4联立解得:,,∴M(12,﹣8).设点P(t,﹣ t2+t+4),则N(t,﹣t+4),PN=﹣t2+t+4﹣(﹣t+4)=﹣t2+t.S△APM=PN•x M=×12×(﹣t2+t)=﹣t2+9t=﹣(t﹣6)2+27.∴当t=6时,△APM的面积最大.∴当t=6时,y=﹣×62+×6+4=.∴P(6,).∵当△APM面积最大时,PW最大,∴直线AE最远的点的坐标为P(6,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了函数解析式与点的坐标的关系、待定系数法求一次函数的解析式、一次函数与二次函数的交点、配方法求二次函数的最值、三角形的面积公式、旋转的性质,列出三角形APM的面积与点P的横坐标t之间的函数关系式是解题的关键.。

2014年济南市中考数学试卷 有答案

2014年济南市中考数学试卷 有答案
若关于 的一元二次方程 ( 为实数)
在 的范围内有解,则 的取值范围是
A. B.
C. D.
【解析】由对称轴为 ,得 ,
再由一元二次方程 在 的范围内有解,得 ,
即 ,故选C.
第Ⅱ卷(非选择题共75分)
二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上)
16. ________.
点D,E在圆上,四边形 为矩形,这个矩形的面积是
A.2B. C. D.
【解析】 ,知 ,所以矩形的面积是 .
14.现定义一种变换:对于一个由有限个数组成的序列 ,将其中的每个数换成该数在 中出现的次数,可得到一个新序列.例如序列 :(4,2,3,4,2),通过变换可得到新序列 :(2,2,1,2,2).若 可以为任意序列,则下面的序列可以作为 的是
A. B. C. D.
【解析】3700用科学计数法表示为 ,可知B正确.
5.下列图案既是轴对称图形又是中心对称图形的是
A.B.C.D.
【解析】图A为轴对称图但不是中心对称图形;图B为中心对称图但不是轴对称图形;
图C既不是轴对称图也不是中心对称图形;
图D既是轴对称图形又是中心对称图形.
6.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,
A. B. C. D.
【解析】用H,C,N分别表示航模、彩绘、泥塑三个社团,
用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.
于是可得到(H,H),(H,C),(H,N),
(C,H),(C,C),(C,N),
(N,H),(N,C),(N,N),共9中不同的选择结果,
而征征和舟舟选到同一社团的只有(H,H),(C,C),(N,N)三种,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新中考数学全真模拟试题一、选择题:本大题共12个小题.每小题4分;共48分. 1.34相反数是( ) A.43 B.43- C.34 D. 34-2.下列运算正确的是( ) A.632a a a =⋅ B.()236aa =C.55a a a ÷= D.33y y x x ⎛⎫= ⎪⎝⎭3.如图,Rt ABC △中,90ACB ∠=°,DE 过点C 且平行于AB ,若35BCE ∠=°,则A ∠的度数为( ) A .35°B .45°C .55°D .65°4.估算219+的值是在( )。

A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间5.小华把自己一周的支出情况用如图所示的统计图表示出来,下列说法中,正确的是( )A.从图中可以直接看出具体的消费数额B.从图中可以直接看出总消费数额C.从图中可以直接看出各项消费数额占总消费数额的百分比D.从图中可以直接看出各项消费数额在一周中的具体变化情况小 6.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(-2,-1)在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减7.若二元一次联立方程式⎩⎨⎧=-=+4233y x y x 的解为x =a ,y =b ,则a -b 的值为( )A. 1B. 3C. -51 D. 5178.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量对角线是否相等D .测量其中三个角是否都为直角9.二次函数12)3(2-+++-=k x k x y 的图像与y 轴的交点位于(0,5)上方,则k 的范围是( )A. 3=kB. 3<kC. 3>kD. 以上都不对10.如图,平行四边形ABCD 中,AB 3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是( ) A. 6 B. 8 C. 9 D. 1011.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1 C .2 D .312.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( ).A.6cmB.10cmC.32cmD.52cm二、填空题:本大题共5个小题.每小题3分;共15分.把答案填在题中横线上. 13.若点M (1,12-a )在第四象限内,则a 的取值范围是 。

14.某种感冒病毒的直径是0.00000012米,用科学记数法表示为__________米. 15.一元二次方程(2x -1)2=(3-x)2的解是_____________.16.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为___________.17.下图是一个几何体的三视图,则这个几何体的体积为____________.(结果保留π)图视正图视左图视俯(第16题图)ab +第11题(第12题图)AD三、解答题:本大题共7个小题.共57分.18.(本小题满分7分) (2)给出三个多项式:2221111,31,,222x x x x x x +-++- (1021)(1);+- 选择其中两个进行加法运算,把结果因式分解。

19.(本小题满分7分)如图,AB 是⊙O 的切线,A 为切点,AC 是⊙O 的弦,过O 作OH AC ⊥于点H .若2OH =,12AB =,13BO =.求:(1)⊙O 的半径;(2)sin OAC ∠的值;(3)弦AC 的长(结果保留两个有效数字).20.(8分)某班同学分三组,对七年级400名同学最喜欢喝的饮料情况、八年级300名同学零花钱的最主要用途情况、九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.七年级同学最喜欢喝的饮料种类情况统计图 八年级同学零花钱最主要用途情况统计图零花钱用途学习资料零食文具它九年级同学完成家庭作业时间情况统计表时间 1小时左右1.5小时左右2小时左右2.5小时左右 人数 5080120 50 根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少? (2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时(结果保留一位小数)?21.(9分)如图,等腰梯形ABCD 中,AD BC ∥,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点.(1)求证:四边形MENF 是菱形;(2)若四边形MENF 是正方形,请探索等腰梯形ABCD 的高和底边BC 的数量关系,并证明你的结论.22.(9分)某工厂根据市场需求,计划生产A 、B 两种型号挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,所生产两型号挖掘机可全部售出,两型号挖掘机生产成本和售价如下表:(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B 型挖掘机的售价不会改变,每台A 型挖掘机的售价将会提高m 万元(m >0),该厂应该如何生产可以获得最大利润?(注:利润=售价-成本)ABEMNFCD23.(9分)矩形OABC 在直角坐标系中的位置如图所示,A 、C 两点的坐标分别为(60)A ,、(03)C ,,直线34y x =与BC 边相交于点D .(1)求点D 的坐标;(2)若抛物线2y ax bx =+经过D 、A 两点,试确定此抛物线的表达式;(3)设(2)中抛物线的对称轴与直线OD 交于点M ,点Q 为对称轴上一动点,以Q 、O 、M 为顶点的三角形与△OCD 相似,求符合条件的Q 点的坐标.24.(9分)如图,在直角坐标系中,O 是原点,AB C ,,三点的坐标分别为(180)(186)(86)A B C ,,,,,,四边形OABC 是梯形,点P Q ,同时从原点出发,分别作匀速运动,其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC CB ,向终点B 运动,当这两点有一点到达自己的终点时,另一点也停止运动.(1)求直线OC 的解析式.(2)设从出发起,运动了t 秒.如果点Q 的速度为每秒2个单位,试写出点Q 的坐标,并写出此时t 的取值范围.(3)设从出发起,运动了t 秒.当P ,Q 两点运动的路程之和恰好等于梯形OABC 的周长的一半,这时,直线PQ 能否把梯形的面积也分成相等的两部分,如有可能,请求出t 的值;如不可能,请说明理由.答案 一、选择题:1. D2. B3. C4. B5. C6. C7. A8. D9. C 10. B 11. B 12. B 二、填空题: 13. 21<a 14. 71.210-⨯ 15. x 1=-2,x 2=34 16. π93 17. 250 三、解答题:18.(1)解:原式=11+= (2)解:如选择多项式:22111,3122x x x x +-++ 则:22211(1)(31)4(4)22x x x x x x x x +-+++=+=+19.解:(1) AB 是⊙O 的切线,∴90OAB ∠= ,222AO OB AB ∴=-,5OA ∴=. (2)OH AC ⊥,90OHA ∴∠=,2sin 5OH OAC OA ∴∠==. (3)OH AC ⊥ ,222AH AO OH ∴=-,AH CH =,225421AH ∴=-=,AH ∴=,29.2AC AH ∴==.20.解:(1)125251040---=%%%%,40040160⨯=%(人).答:七年级同学最喜欢喝“冰红茶”的人数是160人. (2)补全频数分布直方图如右图所示. (3)150 1.5802120 2.5501.8508012050⨯+⨯+⨯+⨯≈+++(小时).答:九年级300名同学完成家庭作业的平均时间约为1.8小时. 21.证明: 四边形ABCD 为等腰梯形,AB CD A D ∴=∠=∠,.M 为AD 中点,AM DM ∴=..ABM DCM ∴△≌△BM CM ∴=. E 、F 、N 分别为MB 、CM 、BC 中点,1111.2222EN MC FN BM ME MB MF MC ∴====,,, EN FN FM EM ∴===.∴四边形ENFM 是菱形.(2)结论:等腰梯形ABCD 的高是底边BC 的一半. 理由:连结MN ,ABEMNFCD零花钱用途学习资料零食文具它八年级同学零花钱最主要用途情况统计图BM CM BN NC == ,,MN BC ∴⊥.AD BC ∥,MN AD ∴⊥,MN ∴是梯形ABCD 的高.又已知四边形MENF 是正方形,BMC ∴△为直角三角形. 又N 是BC 的中点,12MN BC ∴=. 22.(1)设生产A 型挖掘机x 台,则B 型挖掘机可生产(100-x )台,由题意知22400≤200x+2240(100-x )≤22500,解得37.5≤x≤40. ∵x 取非负整数,∴x 为38,39,40.所以有生产三种方案:A 型38台,B 型62台;A 型39台,B 型61台;A 型40台,B 型60台; (2)设获得利润W (万元),由题意知W =50x +60(100-x )=6000-10x ,∴当x =38时,W 最大=5620(万元), 即生产A 型38台,B 型62台时,获得利润最大。

(3)由题意知W =(50+m )x +60(100-x )=6000+(m -10)x , ∴当0<m <10,则x =38时,W 最大。

即A 型挖掘机生产38台,B 型挖掘机生产62台; 当m =10时,m -10=0,三种生产方案获得利润相等; 当m >10时,则x =40时,W 最大。

即A 型挖掘机生产40台,B 型挖掘机生产60台; 23.解:(1)由题知,直线34y x =与BC 交于点(3)D x ,. 把3y =代入34y x =中得,4x = (43)D ∴, (2)∵抛物线2y ax bx =+经过(43)D ,、(60)A ,两点,把4x =,3y =;6x =,0y =.分别代入2y ax bx =+中得,16433660a b a b +=⎧⎨+=⎩,解之得389.4a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为:23984y x x =-+. (3)抛物线的对称轴与x 轴的交点1Q ,符合条件,∵ CB OA ∥ 1QOM CDO ∠=∠,∴ Rt△1Q OM ∽Rt△CDO . 32bx a=-=,该点坐标为1(30)Q ,.过点O 作OD 的垂线交抛物线的对称轴于点2Q , ∵对称轴平行于y 轴,2Q MO DOC ∠=∠∴, ∴Rt△2Q MO ∽Rt△DOC . 在Rt△21Q Q O 和Rt△DCO 中,13QO CO -=,2Q ODC ∠=∠,∴Rt△21Q QO ≌Rt△DCO .∴124CD QQ ==,∵点2Q 位于第四象限,2(34)Q -∴,.因此,符合条件的点有两个,分别是1(30)Q ,,2(34)Q -,.24.解:(1)O C ,∵两点的坐标分别为(00)(86)O C ,,,,设OC 的解析式为y kx b =+, 将两点坐标代入得:34k =,0b =.34y x =∴. (2)当Q 在OC 上运动时,可设3()4Q m m ,,依题意有:2223()(2)4m m t +=,85m t =∴.86()55Q t t ,∴ (05)t ≤≤.当Q 在CB 上运动时,Q 点所走过的路程为2t .10210OC CQ t ==-,∵∴. Q ∴点的横坐标为210822t t -+=-.(226)(510)Q t t -<,∴ ≤.(3)∵梯形OABC 的周长为44,当Q 点在OC 上运动时,P 运动的路程为t ,则Q 运动的路程为(22)t -.OPQ △中,OP 边上的高为:3(22)5t -⨯.13(22)25OPQ S t t =-⨯∴△,1(1810)6842OABC S =+⨯=梯形.依题意有:131(22)84252t t -⨯=⨯.整理得:2221400t t -+=.22241400∆=-⨯<∵,∴这样的t 不存在.当Q 在BC 上运动时,Q 走过的路程为(22)t -,CQ ∴的长为:221012t t --=-.116(2210)368422OCQP S t t =⨯--+=≠⨯梯形∴.∴这样的t 值也不存在.综上所述,不存在这样的t 值,使得P ,Q 两点同时平分梯形的周长和面积.。

相关文档
最新文档