2020年河北省唐山一中高考数学冲刺试卷(三)(5月份)(有答案解析)
高考数学模拟试题与解析-唐山高三三模数学试卷

唐山市2023年普通高等学校招生统一考试第三次模拟演练数 学注意事项:1、答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2、回答选择题时,选出每小题答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3、考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <-1或x >1},B ={x |-3<x <2},则A ∩B = A .(1,2) B .(-3,-1) C .(-3,1) D .(-3,-1)∪(1,2) 2.已知i 为虚数单位,复数z =1-3i ,则4z=A .1-3iB .1+3iC .-1-3iD .-1+3i3.(x -1x )6的展开式中的常数项为A .-20B .-15C .15D .204.正方形ABCD 边长为4,M 为CD 中点,点N 在AD 上,BM →·BN →=20,则|BN →|= A . 5 B .2 5 C .5D .105.把边长为2的正方形ABCD 沿对角线AC 折成直二面角D -AC -B ,则三棱锥D -ABC 的外接球的球心到平面BCD 的距离为 A .33 B .22 C .63D .126.已知椭圆C :x 22+y 2=1的两个焦点分别为F 1,F 2,点M 为C 上异于长轴端点的任意一点,∠F 1MF 2的角平分线交线段F 1F 2于点N ,则|MF 2||F 2N |=A .15B .105C .22D . 27.假设有两箱零件,第一箱内装有5件,其中有2件次品;第二箱内装有10件,其中有3件次品.现从两箱中随机挑选1箱,然后从该箱中随机取1个零件,若取到的是次品,则这件次品是从第一箱中取出的概率为 A .13B .37C .720D .478.已知3m =e 且a =cos m ,b =1-12m 2,c =sin mm,e 是自然对数的底数,则A .a >b >cB .c >a >bC .c >b >aD .b >a >c二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求。
【ks5u发布】河北省唐山一中2020-2021学年高二下学期第三次月考理科数学试题Word版含答案

唐山一中2022-2021学年度其次学期高二班级第一次月考数学试卷(理科) 命题人:李鹏涛 审核人:乔家焕试卷Ⅰ(共60分)一、选择题(本题共12个小题,每题只有一个正确答案,每题5分,共60分。
请把答案涂在答题卡上)1.设1z i =+(i 是虚数单位),则22z z+= ( ) A .1i -- B .1i -+ C .1i - D . 1i +2、用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设正确的是 ( ) A .假设三内角都不大于60° B .假设三内角都大于60°C .假设三内角至多有一个大于60°D .假设三内角至多有两个大于60°3.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC ,则点O 是ΔABC ( )A.内心B.外心C.重心D.垂心4. 设函数()f x ,()g x 在[,]a b 上均可导,且'()'()f x g x <,则当a x b <<时,有 ( )A. ()()f x g x >B. ()()f x g x <C. ()()()()f x g a g x f a +<+D. ()()()()f x g b g x f b +<+5.函数1,(10)()cos ,(0)2x x f x x x π+-≤<⎧⎪=⎨≤≤⎪⎩的图象与x 轴所围成的封闭图形的面积为 ( ) A.32 B. 1 C. 2 D.126. 6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为 ( )A .144B .120C .72D .24 7.在同一坐标系中,方程)0(0122222>>=+=+b a by ax b y a x 与的曲线大致是 ( )8、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是 ( )A. ①和②B.②和③C.③和④D.①和④9.已知0||2||≠=b a ,且关于x 的函数x b a x a x x f ⋅++=23||2131)(在R 上有极值,则a 与b 的夹角范围为 ( )A .)6,0[πB .],6(ππC .],3(ππD .2[,]33ππ10.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为 ( )A .163B .83C .316D .3811.函数)(x f 在定义域R 内可导,若)2()(x f x f -=,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设).3(),21(),0(f c f b f a ===则 ( )A .c b a <<B .b a c <<C .a b c <<D .a c b <<12.已知椭圆1532222=+n y m x 和双曲线1322222=-ny m x 有公共的焦点,那么双曲线的渐近线方程是 ( )A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±= 试卷Ⅱ(共计90分)二、填空题(本题共4个小题,每题5分,共计20分,请将答案写在答题纸上)13.36的全部正约数之和可按如下方法得到:由于2236=23⨯,所以36的全部正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的全部正约数之和为_______________14.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,假如分给同一人的2张参观券连号,那么不同的分法种数是_________.15. 1121lim (1)n n n n nn →∞-++++写成定积分是_________.16.如图是y =f (x )的导函数的图象,现有以下四种说法:(1)f (x )在(-3,1)上是增函数;(2)x =-1是f (x )的微小值点;(3)f (x )在(2,4)上是减函数,在(-1,2)上是增函数; (4)x =2是f (x )的微小值点; 以上正确的序号为________.三、解答题(本题共6小题,其中17题10分,其余各题12分,共计70分。
2020届河北省唐山市高三第一次模拟考试数学(理)模拟试题有答案(精品)

唐山市高三年级第一次模拟考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2(1)i i-=( ) A .22i -+B .22i + C .22i -- D .22i -2.设集合2{|0}M x x x =->,1|1N x x ⎧⎫=<⎨⎬⎩⎭,则( ) A .M N ØB .N M ØC .M N =D .M N R =U 3.已知1tan 2α=-,且(0,)απ∈,则sin 2α=( ) A .45B .45-C .35D .35- 4.两个单位向量a r ,b r 的夹角为120o,则2a b +=r r ( )A .2B .3C .2D .35.用两个1,一个2,一个0,可组成不同四位数的个数是( ) A .18 B .16 C .12 D .96.已知233a -=,432b -=,ln3c =,则( )A .a c b <<B .a b c <<C .b c a <<D .b a c <<7. 如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是( )A .求135...(21)n ++++-B .求135...(21)n +++++C .求2222123n +++⋅⋅⋅+D .求2222123(1)n +++⋅⋅⋅++8.为了得到函数5sin 6y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象( ) A .向左平移6π个单位长度 B .向右平移3π个单位长度 C .向右平移6π个单位长度 D .向左平移3π个单位长度 9. 某几何体的三视图如图所示,则该几何体的表面积是( )A .542+.9C .652+D .5310.已知F 为双曲线C :22221x y a b-=(0,0)a b >>的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B .若OF FB =,则C 的离心率是( ) A 632C 2.2 11. 已知函数2()2cos f x x x x =-,则下列关于()f x 的表述正确的是( ) A .()f x 的图象关于y 轴对称 B .0x R ∃∈,()f x 的最小值为1- C .()f x 有4个零点 D .()f x 有无数个极值点12.已知P ,A ,B ,C 是半径为2的球面上的点,2PA PB PC ===,90ABC ∠=o,点B 在AC 上的射影为D ,则三棱锥P ABD -体积的最大值是( ) A 3333C .12D 3二、填空题:本题共4小题,每小题5分,共20分.13. 设x,y 满足约束条件0230210x y x y x y -≥⎧⎪+-≤⎨⎪--≤⎩,则23z x y =+的最小值是.14.6(21)x -的展开式中,二项式系数最大的项的系数是.(用数字作答)15. 已知P 为抛物线2y x =上异于原点O 的点,PQ x ⊥轴,垂足为Q ,过PQ 的中点作x 轴的平行线交抛物线于点M ,直线QM 交y 轴于点N ,则PQNO=. 16.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,AB 边上的高为h ,若2c h =,则a bb a+的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知数列{}n a 为单调递增数列,n S 为其前n 项和,22n n S a n =+.(1)求{}n a 的通项公式; (2)若2112n n n n n a b a a +++=⋅⋅,n T 为数列{}n b 的前n 项和,证明:12nT <. 18.某水产品经销商销售某种鲜鱼,售价为每公斤20元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失3元.根据以往的销售情况,按[50,150),[150,250),[250,350),[350,450),[450,550]进行分组,得到如图所示的频率分布直方图.(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率;(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值. (i )求日需求量X 的分布列;(ii )该经销商计划每日进货300公斤或400公斤,以每日利润Y 的数学期望值为决策依据,他应该选择每日进货300公斤还是400公斤?19.如图,在三棱柱111ABC A B C -中,平面11A B C ⊥平面11AAC C ,90BAC ∠=o.(1)证明:1AC CA ⊥;(2)若11A B C ∆是正三角形,22AB AC ==,求二面角1A AB C --的大小.20.已知椭圆Γ:22221x y a b+=(0)a b >>的左焦点为F ,上顶点为A ,长轴长为26B 为直线l :3x =-上的动点,(,0)M m ,AM BM ⊥.当AB l ⊥时,M 与F 重合. (1)若椭圆Γ的方程;(2)若直线BM 交椭圆Γ于P ,Q 两点,若AP AQ ⊥,求m 的值. 21.已知函数1()x f x e-=,()ln g x x a =+.(1)设()()F x xf x =,求()F x 的最小值;(2)证明:当1a <时,总存在两条直线与曲线()y f x =与()y g x =都相切.(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆1C :22(1)1x y -+=,圆2C :22(3)9x y -+=.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)设曲线3C :cos sin x t y t αα=⎧⎨=⎩(t 为参数且0t ≠),3C 与圆1C ,2C 分别交于A ,B ,求2ABC S ∆的最大值.23.选修4-5:不等式选讲设函数()1f x x x =+-的最大值为m . (1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.唐山市高三年级第一次模拟考试理科数学参考答案一.选择题:A 卷:DCBDA DCCAB DB B 卷:ACBDD DCAAB DB 二.填空题: (13)-5 (14)-160(15)32(16)[2,22]三.解答题: (17)解:(Ⅰ)当n =1时,2S 1=2a 1=a 21+1,所以(a 1-1)2=0,即a 1=1, 又{a n }为单调递增数列,所以a n ≥1.…2分由2S n =a 2n +n 得2S n +1=a 2n +1+n +1,所以2S n +1-2S n =a 2n +1-a 2n +1, 整理得2a n +1=a 2n +1-a 2n +1,所以a 2n =(a n +1-1)2. 所以a n =a n +1-1,即a n +1-a n =1,所以{a n }是以1为首项,1为公差的等差数列,所以a n =n .…6分(Ⅱ)b n =a n +22n +1·a n ·a n +1=n +22n +1·n ·(n +1)=12n ·n -12n +1·(n +1)…9分所以T n =(121·1-122·2)+(122·2-123·3)+…+[12n ·n -12n +1·(n +1)]=121·1-12n +1·(n +1)<12.…12分(18)解:(Ⅰ)由频率分布直方图可知,日销售量不低于350公斤的概率为(0.0025+0.0015)×100=0.4,则未来连续三天内,有连续两天的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率P =0.4×0.4×(1-0.4)+(1-0.4)×0.4×0.4=0.192. …3分 (Ⅱ)(ⅰ)X 可取100,200,300,400,500,P (X =100)=0.0010×10=0.1; P (X =200)=0.0020×10=0.2; P (X =300)=0.0030×10=0.3; P (X =400)=0.0025×10=0.25; P (X =500)=0.0015×10=0.15;所以X 的分布列为:…6分(ⅱ)当每日进货300公斤时,利润Y 1可取-100,700,1500, 此时Y 1的分布列为:Y 1 -100 700 1500 P0.10.20.7此时利润的期望值E (Y 1)=-100×0.1+700×0.2+1500×0.7=1180; …8分 当每日进货400公斤时,利润Y 2可取-400,400,1200,2000, 此时Y 2的分布列为:Y 2 -400 400 1200 2000 P0.10.20.30.4此时利润的期望值E (Y 2)=-400×0.1+400×0.2+1200×0.3+2000×0.4 =1200;…10分因为E (Y 1)<E (Y 2),所以该经销商应该选择每日进货400公斤.…12分(19)解:(Ⅰ)过点B 1作A 1C 的垂线,垂足为O ,由平面A 1B 1C ⊥平面AA 1C 1C ,平面A 1B 1C ∩平面AA 1C 1C =A 1C , 得B 1O ⊥平面AA 1C 1C ,又AC 平面AA 1C 1C ,得B 1O ⊥AC . 由∠BAC =90°,AB ∥A 1B 1,得A 1B 1⊥AC . 又B 1O ∩A 1B 1=B 1,得AC ⊥平面A 1B 1C . 又CA 1平面A 1B 1C ,得AC ⊥CA 1.…4分(Ⅱ)以C 为坐标原点,CA →的方向为x 轴正方向,|CA →|为单位长,建立空间直角坐标系C -xyz . 由已知可得A (1,0,0),A 1(0,2,0),B 1(0,1,3).所以CA →=(1,0,0),AA 1→=(-1,2,0),AB →=A 1B 1→=(0,-1,3). …6分 设n =(x ,y ,z )是平面A 1AB 的法向量,则⎩⎨⎧n ·AA 1→=0,n ·AB →=0,即⎩⎨⎧-x +2y =0,-y +3z =0. 可取n =(23,3,1). …8分 设m =(x ,y ,z )是平面ABC 的法向量,则⎩⎨⎧m ·AB →=0,m ·CA →=0,即⎩⎨⎧-y +3z =0,x =0. 可取m =(0,3,1).…10分则cosn ,m =n ·m |n ||m |=12.AA 1BC1B 1xyzO又因为二面角A 1-AB -C 为锐二面角, 所以二面角A 1-AB -C 的大小为3.…12分(20)解:(Ⅰ)依题意得A (0,b ),F (-c ,0),当AB ⊥l 时,B (-3,b ), 由AF ⊥BF 得k AF ·k BF = b c · b -3+c =-1,又b 2+c 2=6.解得c =2,b =2.所以,椭圆Γ的方程为x 26+y 22=1.…4分(Ⅱ)由(Ⅰ)得A (0,2),依题意,显然m ≠0,所以k AM =-2m,又AM ⊥BM ,所以k BM =m2,所以直线BM 的方程为y =m2(x -m ), 设P (x 1,y 1),Q (x 2,y 2).y =m2(x -m )与x 26+y 22=1联立得(2+3m 2)x 2-6m 3x +3m 4-12=0,x 1+x 2=6m 32+3m 2,x 1x 2=3m 4-122+3m2.…7分|PM |·|QM |=(1+m 22)|(x 1-m )(x 2-m )|=(1+m 22)|x 1x 2-m (x 1+x 2)+m 2|=(1+m 22)·|2m 2-12|2+3m 2=(2+m 2)|m 2-6|2+3m2, |AM |2=2+m 2,…9分由AP ⊥AQ 得,|AM |2=|PM |·|QM |, 所以|m 2-6|2+3m 2=1,解得m =±1.…12分(21)解:(Ⅰ)F(x )=(x +1)ex -1,当x <-1时,F (x )<0,F (x )单调递减; 当x >-1时,F(x )>0,F (x )单调递增,故x =-1时,F (x )取得最小值F (-1)=-1e 2.…4分(Ⅱ)因为f(x )=ex -1,所以f (x )=e x -1在点(t ,et -1)处的切线为y =et -1x +(1-t )e t -1;…5分因为g(x )=1x,所以g (x )=ln x +a 在点(m ,ln m +a )处的切线为y =1mx +ln m +a -1, …6分由题意可得⎩⎪⎨⎪⎧e t -1=1m ,(1-t )e t -1=ln m +a -1,则(t -1)e t -1-t +a =0.…7分令h (t )=(t -1)et -1-t +a ,则h (t )=t et -1-1 由(Ⅰ)得t <-1时,h (t )单调递减,且h(t )<0;当t >-1时,h(t )单调递增,又h (1)=0,t <1时,h(t )<0,所以,当t <1时,h (t )<0,h (t )单调递减;当t >1时,h(t )>0,h (t )单调递增.…9分由(Ⅰ)得h (a -1)=(a -2)e a -2+1≥-1e+1>0,…10分又h (3-a )=(2-a )e2-a+2a -3>(2-a )(3-a )+2a -3=(a -32)2+34>0, …11分h (1)=a -1<0,所以函数y =h (t )在(a -1,1)和(1,3-a )内各有一个零点,故当a <1时,存在两条直线与曲线f (x )与g (x )都相切.…12分(22)解:(Ⅰ)由x =ρcos θ,y =ρsin θ可得,C 1:ρ2cos 2θ+ρ2sin 2θ-2ρcos θ+1=1,所以ρ=2cos θ; C 2:ρ2cos 2θ+ρ2sin 2θ-6ρcos θ+9=9,所以ρ=6cos θ.…4分(Ⅱ)依题意得|AB |=6cos α-2cos α=4cos α,-2<α<2, C 2(3,0)到直线AB 的距离d =3|sin α|,所以S △ABC 2=12×d ×|AB |=3|sin 2α|,故当α=±4时,S △ABC 2取得最大值3.…10分(23)解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1,x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1. 所以m =1.…4分(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)]=13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1] ≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2 =13. 当且仅当a =b =12时取等号.即a 2b +1+b 2a +1的最小值为13. …10分。
河北省唐山市2024高三冲刺(高考数学)部编版模拟(自测卷)完整试卷

河北省唐山市2024高三冲刺(高考数学)部编版模拟(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题下列函数中是同一个函数的是()A.与B .与C.与D.与第(2)题已知集合,则()A.B.C.D.第(3)题已知,则的值为()A.B.C.D.第(4)题已知平面向量,,满足,,且.若,则()A.B.C.D.第(5)题设,则的大小关系为()A.B.C.D.第(6)题已知是自然对数的底数,函数,若整数m满足,则所有满足条件的m的和为()A.0B.13C.21D.30第(7)题已知,,,则()A.B.C.D.第(8)题设,分别是两个等差数列,的前n项和.若对一切正整数n,恒成立,()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则( )A.,,成等差数列B.,,成等差数列C.,,成等比数列D.,,成等比数列第(2)题已知函数的定义域为,则()A.B.C.是奇函数D.是偶函数第(3)题下列说法中,正确的是()A.设有一个经验回归方程为,变量增加1个单位时,平均增加2个单位B.已知随机变量,若,则C.两组样本数据和.若已知且,则D.已知一系列样本点的经验回归方程为,若样本点与的残差相等,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设复数,其中为虚数单位,则__________.第(2)题设随机变量服从正态分布,且,则_____________.第(3)题已知椭圆的左、右焦点分别为F1,F2,O为坐标原点,椭圆上一点P满足|OP|=3,则△F1PF2的面积为________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在密码学领域,欧拉函数是非常重要的,其中最著名的应用就是在RSA加密算法中的应用.设p,q是两个正整数,若p,q的最大公约数是1,则称p,q互素.对于任意正整数n,欧拉函数是不超过n且与n互素的正整数的个数,记为.(1)试求,,,的值;(2)设n是一个正整数,p,q是两个不同的素数.试求,与φ(p)和φ(q)的关系;(3)RSA算法是一种非对称加密算法,它使用了两个不同的密钥:公钥和私钥.具体而言:①准备两个不同的、足够大的素数p,q;②计算,欧拉函数;③求正整数k,使得kq除以的余数是1;④其中称为公钥,称为私钥.已知计算机工程师在某RSA加密算法中公布的公钥是.若满足题意的正整数k从小到大排列得到一列数记为数列,数列满足,求数列的前n项和.第(2)题如图,在三棱锥中,平面平面是的中点.(1)求证:平面;(2)设点N是的中点,求三棱锥的体积.第(3)题定义函数,为型函数,共中.(1)若是型函数,求函数的值域;(2)若是型函数,求函数极值点个数;(3)若是型函数,在上有三点、、横坐标分别为、、,其中,试判断直线的斜率与直线的斜率的大小并说明理由.第(4)题随着互联网的飞速发展,我国智能手机用户不断增加,手机在人们日常生活中也占据着越来越重要的地位.某机构做了一项调查,对某市使用智能手机人群的年龄、日使用时长情况做了统计,将18~40岁的人群称为“青年人”(引用青年联合会对青年人的界定),其余人群称为“非青年人”.根据调查发现“青年人”使用智能手机占比为,“非青年人”使用智能手机占比为;日均使用时长情况如下表:时长2小时以内2~3小时3小时以上频率0.40.30.3将日均使用时长在2小时以上称为“频繁使用人群”,使用时长在2小时以内称为“非频繁使用人群”.已知“频繁使用人群”中有是“青年人”.现对该市“日均使用智能手机时长与年龄的关系”进行调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据上面提供的数据.(Ⅰ)补全下列列联表;青年人非青年人合计频繁使用人群非频繁使用人群合计(Ⅱ)根据列联表的独立性检验,判断有多大把握认为“日均使用智能手机时长与年龄有关”?附:,其中.以参考数据:独立性检验界值表0.150.100.0500.0250.0102.072 2.7063.841 5.024 6.635第(5)题已知函数,且在处的切线方程为.(1)求的解析式,并讨论其单调性.(2)若函数,证明:.。
精品解析:【全国百强校】河北省衡水中学2023届高三高考押题卷三理数试题(解析版)

2023年普通高等学校招生全国统一考试模拟试卷理科数学(Ⅲ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出地四个选项中,只有一项是符合题目要求地.1. 已知复数,则=()A. B. C. D.【解析】C【解析】由题意可得: ,则= .本题选择C选项.2. 集合,,则=()A. B.C. D.【解析】A【解析】由题意可得: ,则= .本题选择A选项.3. 已知函数地最小正周期为,则函数地图象()A. 可由函数地图象向左平移个单位而得B. 可由函数地图象向右平移个单位而得C. 可由函数地图象向左平移个单位而得D. 可由函数地图象向右平移个单位而得【解析】D【解析】由已知得,则地图象可由函数地图象向右平移个单位而得,故选D.4. 已知实数,满足约束条件则地最大值为()A. 2B. 3C. 4D. 5【解析】B【解析】绘制目标函数表示地可行域,结合目标函数可得,目标函数在点处取得最大值 .本题选择B选项.5. 一直线与平行四边形中地两边,分别交于、,且交其对角线于,若,,,则=()学,科,网...A. B. 1 C. D. -3【解析】A【解析】由几何关系可得: ,则: ,即: ,则= .本题选择A选项.点睛:(1)应用平面向量基本定理表示向量地实质是利用平行四边形法则或三角形法则进行向量地加、减或数乘运算.(2)用向量基本定理解决问题地一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量地形式,再通过向量地运算来解决.6. 在如下图所示地正方向中随机投掷10000个点,则落入阴影部分(曲线为正态分布地密度曲线)地点地个数地估计值为(附:若,则,.()A. 906B. 1359C. 2718D. 3413【解析】B【解析】由正态分布地性质可得,图中阴影部分地面积 ,则落入阴影部分(曲线为正态分布地密度曲线)地点地个数地估计值为.本题选择B选项.点睛:关于正态曲线在某个区间内取值地概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)地值.②充分利用正态曲线地对称性和曲线与x轴之间面积为1.7. 某几何体地三视图如下图所示,其中俯视图下半部分是半径为2地半圆,则该几何体地表面积是()A. B. C. D.【解析】B【解析】根据三视图可知几何体是棱长为4地正方体挖掉半个圆柱所得地组合体,且圆柱底面圆地半径是2、母线长是4,∴该几何体地表面积 ,本题选择B选项.8. 已知数列中,,.若如下图所示地程序框图是用来计算该数列地第2018项,则判断框内地条件是()A. B. C. D.【解析】B学,科,网...【解析】阅读流程图结合题意可得,该流程图逐项计算数列各项值,当时推出循环,则判断框内地条件是.本题选择B选项.9. 已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测地次数为,则=()A. 3B.C.D. 4【解析】B【解析】由题意知,地可能取值为2,3,4,其概率分别为,,,所以,故选B.10. 已知抛物线:地焦点为,点是抛物线上一点,圆与线段相交于点,且被直线截得地弦长为,若=2,则=()A. B. 1 C. 2 D. 3【解析】B【解析】由题意:M(x0,2√2)在抛物线上,则8=2px,则px=4,①由抛物线地性质可知,, ,则,∵被直线截得地弦长为√3|MA|,则,由,在Rt△MDE中,丨DE丨2+丨DM丨2=丨ME丨2,即,代入整理得:②,=2,p=2,由①②,解得:x∴ ,故选:B.【点睛】本题考查抛物线地简单几何性质,考查了抛物线地定义,考查勾股定理在抛物线地中地应用,考查数形结合思想,转化思想,属于中档题,将点A到焦点地距离转化为点A到其准线地距离是关键.11. 若定义在上地可导函数满足,且,则当时,不等式地解集为()A. B. C. D.【解析】D【解析】不妨令 ,该函数满足题中地条件,则不等式转化为: ,整理可得: ,结合函数地定义域可得不等式地解集为.本题选择D选项.12. 已知是方程地实根,则关于实数地判断正确地是()A. B. C. D.【解析】C【解析】令 ,则 ,函数在定义域内单调递增,方程即: ,即 ,结合函数地单调性有: .本题选择C选项.点睛:(1)利用导数研究函数地单调性地关键在于准确判定导数地符号.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试卷考生都必须作答.第22题和第23题为选考题,考生根据要求作答.学,科,网...二、填空题:本大题共4小题,每小题5分,共20分.13. 若地展开式中项地系数为20,则地最小值为_________.【解析】2【解析】试卷分析:展开后第项为,其中项为,即第项,系数为,即,,当且仅当时取得最小值.考点:二项式公式,重要不等式.14. 已知中,内角,,地对边分别为,,,若,,则地面积为__________.【解析】【解析】由题意有: ,则地面积为 .【解析】【解析】由题意可得,为正三角形,则,所以双曲线地离心率 .16. 已知下列命题:①命题","地否定是",";②已知,为两个命题,若""为假命题,则"为真命题";③""是""地充分不必要条件;④"若,则且"地逆否命题为真命题其中,所有真命题地序号是__________.【解析】②【解析】逐一考查所给地命题:①命题","地否定是",";②已知,为两个命题,若""为假命题,则"为真命题";③""是""地必要不充分条件;④"若,则且"是假命题,则它地逆否命题为假命题其中,所有真命题地序号是②.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 设为数列地前项和,且,,.(1)证明:数列为等比数列;(2)求.【解析】(1)见解析;(2).学,科,网...【解析】试卷分析:(1)利用题意结合等比数列地定义可得数列为首先为2,公比为2地等比数列;(2)利用(1)地结论首先求得数列地通项公式,然后错位相减可得.试卷解析:(1)因为,所以,即,则,所以,又,故数列为等比数列.(2)由(1)知,所以,故.设,则,所以,所以,所以.点睛:证明数列{a n }是等比数列常用地方法:一是定义法,证明 =q (n ≥2,q 为常数);二是等比中项法,证明=a n -1·a n +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.18. 如下图所示,四棱锥,已知平面平面,,,,.(1)求证:;(2)若二面角为,求直线与平面所成角地正弦值.【解析】(1)见解析;(2).【解析】试卷分析:(1)利用题意首先证得平面,结合线面垂直地定义有.(2)结合(1)地结论首先找到二面角地平面角,然后可求得直线与平面所成角地正弦值为.试卷解析:(1)中,应用余弦定理得,解得,所以,所以.因为平面平面,平面平面,,所以平面,又因为平面,学,科,网...所以.(2)由(1)平面,平面,所以.又因为,平面平面,所以是平面与平面所成地二面角地平面角,即.因为,,所以平面.所以是与平面所成地角.因为在中,,所以在中,.19. 某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:)频数分布表如表1、表2.表1:男生身高频数分布表表2:女生身高频数分布表(1)求该校高一女生地人数;(2)估计该校学生身高在地概率;(3)以样本频率为概率,现从高一年级地男生和女生中分别选出1人,设表示身高在学生地人数,求地分布列及数学期望.【解析】(1)300;(2);(3)见解析.【解析】试卷分析:(1)利用题意得到关于人数地方程,解方程可得该校高一女生地人数为300;(2)用频率近似概率值可得该校学生身高在地概率为.(3) 由题意可得地可能取值为0,1,2.据此写出分布列,计算可得数学期望为 .试卷解析:(1)设高一女学生人数为,由表1和表2可得样本中男、女生人数分别为40,30,则,解得.即高一女学生人数为300.(2)由表1和表2可得样本中男女生身高在地人数为,样本容量为70.所以样本中该校学生身高在地概率为.因此,可估计该校学生身高在地概率为.(3)由题意可得地可能取值为0,1,2.学,科,网...由表格可知,女生身高在地概率为,男生身高在地概率为.所以,,.所以地分布列为:所以.20. 中,是地中点,,其周长为,若点在线段上,且.(1)建立合适地平面直角坐标系,求点地轨迹地方程;(2)若,是射线上不同地两点,,过点地直线与交于,,直线与交于另一点,证明:是等腰三角形.【解析】(1);(2)见解析.【解析】试卷分析:(1)由题意得,以为坐标原点,以地方向为轴地正方向,建立平面直角坐标系,得地轨迹方程为,再将相应地点代入即可得到点地轨迹地方程;(2)由(1)中地轨迹方程得到轴,从而得到,即可证明是等腰三角形.试卷解析:解法一:(1)以为坐标原点,以地方向为轴地正方向,建立平面直角坐标系.依题意得.由,得,因为故,所以点地轨迹是以为焦点,长轴长为6地椭圆(除去长轴端点),所以地轨迹方程为.设,依题意,所以,即,代入地轨迹方程得,,所以点地轨迹地方程为.(2)设.由题意得直线不与坐标轴平行,因为,所以直线为,与联立得,,由韦达定理,同理,所以或,当时,轴,当时,由,得,学,科,网...同理,轴.因此,故是等腰三角形.解法二:(1)以为坐标原点,以地方向为轴地正方向,建立平面直角坐标系.依题意得.在轴上取,因为点在线段上,且,所以,则,故地轨迹是以为焦点,长轴长为2地椭圆(除去长轴端点),所以点地轨迹地方程为.(2)设,,由题意得,直线斜率不为0,且,故设直线地方程为:,其中,与椭圆方程联立得,,由韦达定理可知,,其中,因为满足椭圆方程,故有,所以.设直线地方程为:,其中,同理,故,所以,即轴,因此,故是等腰三角形.21. 已知函数,,曲线地图象在点处地切线方程为.(1)求函数地解析式;(2)当时,求证:;(3)若对任意地恒成立,求实数地取值范围.【解析】(1);(2)见解析;(3).学,科,网...【解析】试卷分析:(1)利用导函数研究函数切线地方法可得函数地解析式为.(2)构造新函数.结合函数地最值和单调性可得.(3)分离系数,构造新函数,,结合新函数地性质可得实数地取值范围为.试卷解析:(1)根据题意,得,则.由切线方程可得切点坐标为,将其代入,得,故.(2)令.由,得,当,,单调递减;当,,单调递增.所以,所以.(3)对任意地恒成立等价于对任意地恒成立.令,,得.由(2)可知,当时,恒成立,令,得;令,得.所以地单调增区间为,单调减区间为,故,所以.所以实数地取值范围为.请考生在第22、23题中任选一题作答,如果多做,则按所做地第一题计分,作答时请写清题号.22. 选修4-4:坐标系与参数方程在极坐标系中,曲线:,曲线:.以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线地参数方程为(为参数).(1)求,地直角坐标方程;(2)与,交于不同四点,这四点在上地排列顺次为,,,,求地值.【解析】(1);(2).【解析】(1)因为,由,得,所以曲线地直角坐标方程为;由,得,所以曲线地极坐标方程为.(2) 不妨设四点在上地排列顺次至上而下为,它们对应地参数分别为,如图,连接,则为正三角形 ,所以,,把代入,得:,即,故,所以.【点睛】本题为极坐标与参数方程,是选修内容,把极坐标方程化为直角坐标方程,需要利用公式,第二步利用直线地参数方程地几何意义,联立方程组求出,利用直线地参数方程地几何意义,进而求值.学,科,网...23. 选修4-5:不等式选讲.已知,为任意实数.(1)求证:;(2)求函数地最小值.【解析】(1)见解析;(2).【解析】试卷分析:(1)利用不等式地性质两边做差即可证得结论;(2)利用题意结合不等式地性质可得.试卷解析:(1),因为,所以.(2).即.点睛:本题难以想到利用绝对值三角不等式进行放缩是失分地主要原因;对于需求最值地情况,可利用绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当地添、拆项来放缩求解.。
河北省唐山市2019-2020学年高考数学五月模拟试卷含解析

河北省唐山市2019-2020学年高考数学五月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义两种运算“★”与“◆”,对任意N n *∈,满足下列运算性质:①2★2018=1,2018◆11=;②(2n )★2018=[2(22)n +★]2018 ,2018◆(1)2(2018n +=◆)n ,则(2018◆2020)(2020★2018)的值为( ) A .10112 B .10102C .10092D .10082【答案】B 【解析】 【分析】根据新运算的定义分别得出2018◆2020和2020★2018的值,可得选项. 【详解】 由(2n )★2018=[2(22)n +★]2018 ,得(2n +2)★2018=(122n ★)2018, 又2★2018=1,所以4★12018=2,6★212018=2⎛⎫ ⎪⎝⎭,8★312018=2⎛⎫ ⎪⎝⎭,L ,以此类推,2020★2018()21010=⨯★20181010110091122-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,又2018◆(1)2(2018n +=◆)n ,2018◆11=,所以2018◆22=,2018◆232=,2018◆342=,L ,以此类推,2018◆202020192=,所以(2018◆2020)(2020★2018)10092019101012=22⎛⎫=⨯ ⎪⎝⎭,故选:B. 【点睛】本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题.2.已知数列{}n a 中,112,()1,n n n a n a a a n N *+=-=+∈ ,若对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立,则实数t 的取值范围为( ) A .(][),21,-∞-⋃+∞ B .(][),22,-∞-⋃+∞ C .(][),12,-∞-⋃+∞ D .[]2,2-【答案】B 【解析】【分析】先根据题意,对原式进行化简可得()1111111n n a a n n n n n n +-==-+++,然后利用累加法求得11=3-11n a n n +++,然后不等式21211n at at n +<+-+恒成立转化为2213t at +-≥恒成立,再利用函数性质解不等式即可得出答案. 【详解】由题,()()11111n n n n n n a a a na n a ++-=+⇒=++ 即()1111111n n a a n n n n n n +-==-+++ 由累加法可得:11121111121n n nn n a a a a a a a a n n n n n ++-⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪++-⎝⎭⎝⎭⎝⎭L 即1111111123311121n a n n n n n n +⎛⎫⎛⎫⎛⎫=-+-++-+=-< ⎪ ⎪ ⎪++-+⎝⎭⎝⎭⎝⎭L 对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立 即22213240t at t at +-≥⇒+-≥令()[]()222424,2,2f a t at at t a =+-=+-∈-可得()20f ≥且()20f -≥即2212202120t t t t t t t t ⎧≥≤-⎧+-≥⇒⎨⎨≥≤---≥⎩⎩或或 可得2t ≥或2t ≤- 故选B 【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.3.若函数()()222cos 137f x x x m x m m =+-+++-有且仅有一个零点,则实数m 的值为( )ABC .4-D .2【答案】D 【解析】 【分析】推导出函数()y f x =的图象关于直线1x =-对称,由题意得出()10f -=,进而可求得实数m 的值,并对m 的值进行检验,即可得出结果. 【详解】()()()221cos 138f x x m x m m =+-+++-Q ,则()()()2222111cos 1138cos 38f x x m x m m x m x m m -+=-++--++++-=-++-,()()()2222111cos 1138cos 38f x x m x m m x m x m m --=--+---+++-=-++-,()()11f x f x ∴-+=--,所以,函数()y f x =的图象关于直线1x =-对称.若函数()y f x =的零点不为1x =-,则该函数的零点必成对出现,不合题意. 所以,()10f -=,即2280m m +-=,解得4m =-或2.①当4m =-时,令()()()214cos 140f x x x =+-+-=,得()()24cos 141x x +=-+,作出函数()4cos 1y x =+与函数()241y x =-+的图象如下图所示:此时,函数()4cos 1y x =+与函数()241y x =-+的图象有三个交点,不合乎题意;②当2m =时,()cos 11x +≤Q ,()()()212cos 120f x x x ∴=+-++≥,当且仅当1x =-时,等号成立,则函数()y f x =有且只有一个零点. 综上所述,2m =. 故选:D. 【点睛】本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出()10f -=,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题.4.已知函数f(x)=223,1ln,1x x xx x⎧--+≤⎨>⎩,若关于x的方程f(x)=kx-12恰有4个不相等的实数根,则实数k的取值范围是()A.1,e2⎛⎫⎪⎝⎭B.1,2e⎡⎫⎪⎢⎣⎭C.1,2ee⎛⎤⎥⎝⎦D.1,2e⎛⎫⎪⎝⎭【答案】D 【解析】【分析】由已知可将问题转化为:y=f(x)的图象和直线y=kx-12有4个交点,作出图象,由图可得:点(1,0)必须在直线y=kx-12的下方,即可求得:k>12;再求得直线y=kx-12和y=ln x相切时,k=ee;结合图象即可得解. 【详解】若关于x的方程f(x)=kx-12恰有4个不相等的实数根,则y=f(x)的图象和直线y=kx-12有4个交点.作出函数y=f(x)的图象,如图,故点(1,0)在直线y=kx-12的下方.∴k×1-12>0,解得k>12.当直线y=kx-12和y=ln x相切时,设切点横坐标为m,则k=1ln2mm+=1m,∴m e此时,k=1mef(x)的图象和直线y=kx-12有3个交点,不满足条件,故所求k的取值范围是1,2ee⎛⎝⎭,本题主要考查了函数与方程思想及转化能力,还考查了导数的几何意义及计算能力、观察能力,属于难题. 5.某几何体的三视图如图所示,则该几何体的最长棱的长为( )A .25B .4C .2D .22【答案】D 【解析】 【分析】先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度. 【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:2AD = ,3,2,CE SD ==所以2SC DC ==, 所以222222,22SA SDADSB SCBC=+==+=所以该几何体的最长棱的长为22本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题. 6.已知集合{}15{|},|2M x x N x x =-≤<=<,则M N =I ( ) A .{|12}x x -≤< B .{}|25x x -<< C .{|15}x x -≤< D .{}|02x x <<【答案】A 【解析】 【分析】考虑既属于M 又属于N 的集合,即得. 【详解】{}2|{2,1|2}N x x M N x x =-<<∴⋂=-≤<Q .故选:A 【点睛】本题考查集合的交运算,属于基础题.7.我国古代数学名著《九章算术》有一问题:“今有鳖臑(biē naò),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为( )A .90π平方尺B .180π平方尺C .360π平方尺D .13510π平方尺【答案】A 【解析】 【分析】根据三视图得出原几何体的立体图是一个三棱锥,将三棱锥补充成一个长方体,此长方体的外接球就是该三棱锥的外接球,由球的表面积公式计算可得选项. 【详解】由三视图可得,该几何体是一个如图所示的三棱锥P ABC -,O 为三棱锥外接球的球心,此三棱锥的外接球也是此三棱锥所在的长方体的外接球,所以O 为PC 的中点, 设球半径为R ,则()()22222222145+45744211++2R PC AB BC PA ⎛⎫+==⎪⎝⎭==,所以外接球的表面积24544902R S πππ==⨯=, 故选:A .【点睛】本题考查求几何体的外接球的表面积,关键在于由几何体的三视图得出几何体的立体图,找出外接球的球心位置和半径,属于中档题. 8.已知集合(){}*,|4,M x y x y x y N =+<∈、,则集合M 的非空子集个数是( )A .2B .3C .7D .8【答案】C 【解析】 【分析】先确定集合M 中元素,可得非空子集个数. 【详解】由题意{(1,1),(1,2),(2,1)}M =,共3个元素,其子集个数为328=,非空子集有7个. 故选:C . 【点睛】本题考查集合的概念,考查子集的概念,含有n 个元素的集合其子集个数为2n ,非空子集有21n -个.9.已知函数()23sin 22cos 1f x x x =-+,将()f x 的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数()y g x =的图象,若()()129g x g x ⋅=,则12x x -的值可能为( ) A .54π B .34π C .2π D .3π 【答案】C 【解析】 【分析】利用二倍角公式与辅助角公式将函数()y f x =的解析式化简,然后利用图象变换规律得出函数()y g x =的解析式为()2sin 416g x x π⎛⎫=-+ ⎪⎝⎭,可得函数()y g x =的值域为[]1,3-,结合条件()()129g x g x ⋅=,可得出()1g x 、()2g x 均为函数()y g x =的最大值,于是得出12x x -为函数()y g x =最小正周期的整数倍,由此可得出正确选项. 【详解】函数()222cos 12cos 22sin 26f x x x x x x π⎛⎫=-+=-=-⎪⎝⎭, 将函数()y f x =的图象上的所有点的横坐标缩短到原来的12倍,得2sin 46y x π⎛⎫=- ⎪⎝⎭的图象;再把所得图象向上平移1个单位,得函数()2sin 416y g x x π⎛⎫==-+ ⎪⎝⎭的图象,易知函数()y g x =的值域为[]1,3-.若()()129g x g x ⋅=,则()13g x =且()23g x =,均为函数()y g x =的最大值, 由()4262x k k Z πππ-=+∈,解得()62k x k Z ππ=+∈; 其中1x 、2x 是三角函数()y g x =最高点的横坐标,12x x ∴-的值为函数()y g x =的最小正周期T 的整数倍,且242T ππ==.故选C . 【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定()1g x 、()2g x 均为函数()y g x =的最大值,考查分析问题和解决问题的能力,属于中等题.10.已知n S 是等差数列{}n a 的前n 项和,1252a a +=,234+=a a ,则10S =( ) A .85 B .852C .35D .352【答案】B 【解析】 【分析】将已知条件转化为1,a d 的形式,求得1,a d ,由此求得10S . 【详解】设公差为d ,则11522234a d a d ⎧+=⎪⎨⎪+=⎩,所以322d =,34d =,178a =,101138510109242S a =+⨯⨯⨯=. 故选:B【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前n 项和的计算,属于基础题.11.对于定义在R 上的函数()y f x =,若下列说法中有且仅有一个是错误的,则错误..的一个是( ) A .()f x 在(],0-∞上是减函数 B .()f x 在()0,∞+上是增函数C .()f x 不是函数的最小值D .对于x ∈R ,都有()()11f x f x +=-【答案】B 【解析】 【分析】根据函数对称性和单调性的关系,进行判断即可. 【详解】由(1)(1)f x f x +=-得()f x 关于1x =对称,若关于1x =对称,则函数()f x 在(0,)+∞上不可能是单调的, 故错误的可能是B 或者是D , 若D 错误,则()f x 在(-∞,0]上是减函数,在()f x 在(0,)+∞上是增函数,则(0)f 为函数的最小值,与C 矛盾,此时C 也错误,不满足条件. 故错误的是B , 故选:B . 【点睛】本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.12.对于任意x ∈R ,函数()f x 满足(2)()f x f x -=-,且当1x …时,函数()f x =若111,,223⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭a fb fc f ,则,,a b c 大小关系是( )A .b c a <<B .b a c <<C .c a b <<D .c b a <<【答案】A 【解析】 【分析】由已知可得[1,)+∞的单调性,再由(2)()f x f x -=-可得()f x 对称性,可求出()f x 在(,1)-∞单调性,即可求出结论. 【详解】对于任意x ∈R ,函数()f x 满足(2)()f x f x -=-, 因为函数()f x 关于点(1,0)对称, 当1x ≥时,()f x =所以()f x 在定义域R 上是单调增函数. 因为111232-<-<,所以111232⎛⎫⎛⎫⎛⎫-<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f , b c a <<.故选:A. 【点睛】本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题.. 二、填空题:本题共4小题,每小题5分,共20分。
2020届河北省唐山市高考第三次模拟考试理科数学模拟试卷有答案
唐山市高三年级第三次模拟考试理科数学试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}13,0M x x N x x =-≤<=<,则集合{}03x x ≤<=( ) A .M N ⋂ B .M N ⋃ C.()R M C N ⋂ D .()R C M N ⋂2.复数z 满足()234i z i --=+(i 为虚数单位),则z =( ) A .2i -+ B .2i - C. 2i -- D .2i +3.已知tan 16πα⎛⎫+= ⎪⎝⎭,则tan 6πα⎛⎫-= ⎪⎝⎭( )A .23-B .23+ C. 23-- D .23-+4.已知命题:p 在ABC ∆中,若sin sin A B =,则A B =;命题():0,q x π∀∈,1sin 2sin x x+>.则下列命题为真命题的是( )A .p q ∧B .()p q ∨⌝ C.()()p q ⌝∧⌝ D .()p q ⌝∨5.已知双曲线()2222:10,0x y E a b a b-=>>的两条渐近线分别为12,l l ,若E 的一个焦点F 关于1l 的对称点F '在2l 上,则E 的离心率为( )A .5B .2 C.23 D .56.某几何体的三视图如图所示,则该几何体的体积为( )A .6B .7 C.152 D .2337.已知函数()()sin 203f x x πωωω⎛⎫=+-> ⎪⎝⎭的图象与x 轴相切,则()f π=( )A .32-B .12-31 D .31-8.已知P 是抛物线24y x =上任意一点,Q 是圆()2241x y -+=上任意一点,则PQ 的最小值为( ) A .52B .3 C. 31+ D .231- 9.利用随机模拟的方法可以估计圆周率π的值,为此设计如图所示的程序框图,其中()rand 表示产生区间[]0,1上的均匀随机数(实数),若输出的结果为786,则由此可估计π的近似值为( )A .3.134B .3.141 C.3.144 D .3.14710.在ABC ∆中,点G 满足0GA GB GC ++=u u u r u u u r u u u r .若存在点O ,使得16OG BC =u u u r u u u r,且OA mOB nOC =+u u u r u u u r u u u r ,则m n -=( )A .2B .2- C. 1 D .1- 11.若异面直线,m n 所成的角是60︒,则以下三个命题: ①存在直线l ,满足l 与,m n 的夹角都是60︒; ②存在平面α,满足m α⊂,n 与α所成角为60︒;③存在平面,αβ,满足,m n αβ⊂⊂,α与β所成锐二面角为60︒. 其中正确命题的个数为( )A .0B .1 C. 2 D .312.已知()0,xx xe a f x e a>=+,若()f x 的最小值为1-,则a =( )A .21e B .1eC. e D .2e 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.设变量,x y 满足约束条件10,1,250,x y y x y -+≥⎧⎪≥⎨⎪+-≤⎩则z x y =+的最大值为.14.某种袋装大米的质量X (单位:kg )服从正态分布()50,0.01N ,任意选一袋这种大米,质量在49.850.1kg :的概率为.15.设函数()2,0,,0,x x f x x x ⎧<⎪=⎨≥⎪⎩则使得()()f x f x >-成立的x 得取值范围是.16.ABC ∆的内角,,A B C 的对边分别为,,a b c ,角A 的内角平分线交BC 于点D ,若111,2a b c=+=,则AD 的取值范围是.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 是等差数列,{}n b 是等比数列,111,2a b ==,22337,13a b a b +=+=. (1)求{}n a 和{}n b 的通项公式;(2)若,,n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前2n 项和2n S .18. 某球迷为了解,A B 两支球队的攻击能力,从本赛季常规赛中随机调查了20场与这两支球队有关的比赛.两队所得分数分别如下:A 球队:122 110 105 105 109 101 107 129 115 100114 118 118 104 93 120 96 102 105 83B 球队:114 114 110 108 103 117 93 124 75 10691 81 107 112 107 101 106 120 107 79(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图比较两支球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);(2)根据球队所得分数,将球队的攻击能力从低到高分为三个等级:球队所得分数 低于100分 100分到119分不低于120分攻击能力等级较弱较强很强据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,90BAC PAD PCD ∠=∠=∠=︒.(1)求证:平面PAB ⊥平面ABCD ;(2)若3AB AC PA ===,E 为BC 的中点,F 为棱PB 上的点,//PD 平面AEF ,求二面角A DF E --的余弦值.20.已知点()2,0A -,点()1,0B -,点()1,0C ,动圆O '与x 轴相切于点A ,过点B 的直线1l 与圆O '相切于点D ,过点C 的直线2l 与圆O '相切于点E (,D E 均不同于点A ),且1l 与2l 交于点P ,设点P 的轨迹为曲线Γ.(1)证明:PB PC +为定值,并求Γ的方程;(2)设直线1l 与Γ的另一个交点为Q ,直线CD 与Γ交于,M N 两点,当,,O D C '三点共线时,求四边形MPNQ 的面积.21.已知0a >,函数()24ln 2af x x x a =+-+. (1)记()()2g a f a =,求()g a 的最小值;(2)若()y f x =有三个不同的零点,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知点A 在椭圆22:24C x y +=上,将射线OA 绕原点O 逆时针旋转2π,所得射线OB 交直线:2l y =于点B . 以O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求椭圆C 和直线l 的极坐标方程;(2)证明::Rt OAB ∆中,斜边AB 上的高h 为定值,并求该定值. 23.选修4-5:不等式选讲 已知函数()123f x x x =---. (1)求不等式()0f x ≥的解集;(2)设()()()g x f x f x =+-,求()g x 的最大值.试卷答案一、选择题1-5: CADBB 6-10: BBDCD 11、12:DA 二、填空题13. 4 14.0.8185 15.()(),10,1?∞-⋃- 16.⎫⎪⎪⎣⎭三、解答题 17.解:(1)设数列{a n }的公差为d ,数列{b n }的公比为q , 依题意有,⎩⎨⎧1+d +2q =7,1+2d +2q 2=13,解得d =2,q =2, 故a n =2n -1,b n =2n,(2)由已知c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n, 所以数列{c n }的前2n 项和为S 2n =(a 1+a 3+…a 2n -1)+(b 2+b 4+…b 2n )=n(1+4n -3)2+4(1-4n)1-4=2n 2-n + 4 3(4n -1).18.解:(1)两队所得分数的茎叶图如下A 球队所得分数比较集中,B 球队所得分数比较分散.(2)记C A1表示事件:“A 球队攻击能力等级为较强”, C A2表示事件:“A 球队攻击能力等级为很强”; C B1表示事件:“B 球队攻击能力等级为较弱”, C B2表示事件:“B 球队攻击能力等级为较弱或较强”,则C A1与C B1独立,C A2与C B2独立,C A1与C A2互斥,C =(C A1C B1)∪(C A2C B2). P (C)=P (C A1C B1)+ P (C A2C B2)=P (C A1)P (C B1)+P (C A2)P (C B2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1420,320,520,1820,故P (C A1)=1420,P (C A2)=320,P (C B1)=520,P (C B2)=1820,P (C)=1420×520+320×1820=0.31.19.解:(1)∵AB ∥CD ,PC ⊥CD ,∴AB ⊥PC , ∵AB ⊥AC ,AC ∩PC =C ,∴AB ⊥平面PAC , ∴AB ⊥PA ,又∵PA ⊥AD ,AB ∩AD =A , ∴PA ⊥平面ABCD ,PA 平面PAB , ∴平面PAB ⊥平面ABCD . (2)连接BD 交AE 于点O ,连接OF , ∵E 为BC 的中点,BC ∥AD , ∴BO OD = BE AD = 12, ∵PD ∥平面AEF ,PD 平面PBD , 平面AEF ∩平面PBD =OF , ∴PD ∥OF , ∴BF FP = BO OD = 12,以AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz ,则A(0,0,0),B(3,0,0),C(0,3,0),D(-3,3,0),P(0,0,3),E ( 3 2, 32,0),F(2,0,1),设平面ADF 的法向量m =(x 1,y 1,z 1), ∵AF →=(2,0,1),AD →=(-3,3,0),由AF →·m =0,AD →·m =0得⎩⎨⎧2x 1+z 1=0,-3x 1+3y 1=0,取m =(1,1,-2).设平面DEF 的法向量n =(x 2,y 2,z 2),∵DE →=( 9 2,- 3 2,0),EF →=( 1 2,- 32,1),由DE →·n =0,EF →·n =0得⎩⎨⎧ 9 2x 2- 32y 2=0, 1 2x 2- 32y 2+z 2=0,取n =(1,3,4).cos m ,n =m ·n |m ||n |=-23939,∵二面角A-DF-E 为钝二面角,∴二面角A-DF-E 的余弦值为-23939.20.解:(1)由已知可得|PD|=|PE|,|BA|=|BD|,|CE|=|CA|, 所以|PB|+|PC|=|PD|+|DB|+|PC| =|PE|+|PC|+|AB| =|CE|+|AB|=|AC|+|AB|=4>|BC| 所以点P 的轨迹是以B ,C 为焦点的椭圆(去掉与x 轴的交点),可求的方程为x 24+y23=1(y ≠0).(2)由O ,D ,C 三点共线及圆的几何性质,可知PB ⊥CD , 又由直线CE ,CA 为圆O 的切线,可知CE =CA ,O A =O E , 所以△O AC ≌△O EC ,进而有∠ACO =∠ECO ,所以|PC|=|BC|=2,又由椭圆的定义,|PB|+|PC|=4,得|PB|=2, 所以△PBC 为等边三角形,即点P 在y 轴上,点P 的坐标为(0,±3) (i)当点P 的坐标为(0,3)时,∠PBC =60,∠BCD =30, 此时直线l 1的方程为y =3(x +1),直线CD 的方程为y =-33(x -1), 由⎩⎪⎨⎪⎧x 24+y 23=1,y =3(x +1)整理得5x 2+8x =0,得Q (- 8 5,-335),所以|PQ|=165,由⎩⎪⎨⎪⎧x 24+y23=1,y =-33(x -1)整理得13x 2-8x -32=0,设M(x 1,y 1),N(x 2,y 2),x 1+x 2=813,x 1x 2=-3213,|MN|=1+ 1 3|x 1-x 2|=4813,所以四边形MPNQ 的面积S =1 2|PQ|·|MN|=38465.(ii)当点P 的坐标为(0,-3)时,由椭圆的对称性,四边形MPNQ 的面积为38465.综上,四边形MPNQ 的面积为38465.21.解:(1)g (a)=ln a 2+4a a 2+a 2-2=2(ln a +1a -1),g(a)=2(1a -1a 2)=2(a -1)a2,所以0<a <1时,g (a)<0,g (a)单调递减;a >1时,g(a)>0,g (a)单调递增,所以g (a)的最小值为g (1)=0.(2)f(x)=1x -4a (x +a 2)2=x 2+(2a 2-4a)x +a 4x(x +a 2)2,x >0. 因为y =f (x)有三个不同的零点,所以f (x)至少有三个单调区间, 而方程x 2+(2a 2-4a)x +a 4=0至多有两个不同正根,所以,有⎩⎨⎧2a 2-4a <0,Δ=16a 2(1-a)>0,解得,0<a <1.由(1)得,当x ≠1时,g (x)>0,即ln x +1x -1>0,所以ln x >-1x,则x >e -1x (x >0),令x =a 22,得a 22>e -2a 2.因为f (e -2a 2)<-2a 2+4a -2=-2(a -1)2a2<0,f (a 2)>0, f (1)=4a 1+a 2-2=-2(a -1)21+a 2<0,f (e 2)=4a e 2+a2>0,所以y =f (x)在(e -2a 2,a 2),(a 2,1),(1,e 2)内各有一个零点,故所求a 的范围是0<a <1.22.解:(1)由x =ρcos θ,y =ρsin θ得椭圆C 极坐标方程为ρ2(cos 2θ+2sin 2θ)=4,即ρ2=41+sin 2θ; 直线l 的极坐标方程为ρsin θ=2,即ρ= 2sin θ.(2)证明:设A(ρA ,θ),B (ρB ,θ+ 2),- 2<θ<2.由(1)得|OA|2=ρ=41+sin 2θ,|OB|2=ρ= 4 sin 2(θ+ 2)=4cos 2θ,由S △OAB = 1 2×|OA|×|OB|= 12×|AB|×h 可得,h 2=|OA|2×|OB|2|AB|2=|OA|2×|OB|2|OA|2+|OB|2=2.故h 为定值,且h =2.23.解:(1)由题意得|x -1|≥|2x -3|, 所以|x -1|2≥|2x -3|2整理可得3x 2-10x +8≤0,解得 4 3≤x ≤2,故原不等式的解集为{x | 43≤x ≤2}.(2)显然g (x)=f (x)+f (-x)为偶函数, 所以只研究x≥0时g (x)的最大值.g (x)=f (x)+f (-x)=|x -1|-|2x -3|+|x +1|-|2x +3|, 所以x≥0时,g (x)=|x -1|-|2x -3|-x -2 =⎩⎪⎨⎪⎧-4,0≤x ≤1,2x -6,1<x < 32,-2x ,x ≥ 32,所以当x = 32时,g (x)取得最大值-3,故x =± 32时,g (x)取得最大值-3.。
〖含高考模拟卷17套〗河北省唐山一中2020-2021学年高考冲刺(3)数学试卷含解析
河北省唐山一中2020-2021学年高考冲刺(3)数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知三点A(1,0),B(0,3 ),C(2,3),则△ABC 外接圆的圆心到原点的距离为( ) A .53 B .21 C .25D .432.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用22()4⨯⨯+=⨯+=勾股股勾朱实黄实弦实-,化简,得222+=勾股弦.设勾股形中勾股比为1:3,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A .134B .866C .300D .5003.已知集合{}1,2,3,,M n =(*n N ∈),若集合{}12,A a a M =⊆,且对任意的b M ∈,存在{},1,0,1λμ∈-使得i j b a a λμ=+,其中,i j a a A ∈,12i j ≤≤≤,则称集合A 为集合M 的基底.下列集合中能作为集合{}1,2,3,4,5,6M =的基底的是( ) A .{}1,5B .{}3,5C .{}2,3D .{}2,44.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .13B .23C .33D .235.已知正三角形ABC 的边长为2,D 为边BC 的中点,E 、F 分别为边AB 、AC 上的动点,并满足2AE CF =,则DE DF ⋅的取值范围是( )A .11[,]216- B .1(,]16-∞ C .1[,0]2-D .(,0]-∞6.()()()()()*121311x x x nx n N +++⋅⋅⋅+∈的展开式中x 的一次项系数为( )A .3n CB .21n C +C .1n n C -D .3112n C + 7.已知函数()ln(1)f x x ax =+-,若曲线()y f x =在点(0,(0))f 处的切线方程为2y x =,则实数a 的取值为( ) A .-2B .-1C .1D .28.已知函数1()cos 22f x x x π⎛⎫=++ ⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则()f x 的极大值点为( ) A .3π-B .6π-C .6π D .3π 9.已知3log 5a =,0.50.4b =,2log 5c =,则a ,b ,c 的大小关系为( ) A .c b a >>B .b c a >>C .a b c >>D .c a b >>10.四人并排坐在连号的四个座位上,其中A 与B 不相邻的所有不同的坐法种数是( ) A .12B .16C .20D .811.如图,四边形ABCD 为平行四边形,E 为AB 中点,F 为CD 的三等分点(靠近D )若AF x AC yDE =+,则y x -的值为( )A .12-B .23-C .13-D .1-12.如图,在ABC ∆中,点M ,N 分别为CA ,CB 的中点,若5AB =,1CB =,且满足223AG MB CA CB ⋅=+,则AG AC ⋅等于( )A .2B .5C .23D .83二、填空题:本题共4小题,每小题5分,共20分。
河北省唐山市2019-2020学年高考数学考前模拟卷(3)含解析
河北省唐山市2019-2020学年高考数学考前模拟卷(3)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设m u r ,n r 为非零向量,则“存在正数λ,使得λ=u r r m n ”是“0m n ⋅>u r r”的( )A .既不充分也不必要条件B .必要不充分条件C .充分必要条件D .充分不必要条件【答案】D 【解析】 【分析】充分性中,由向量数乘的几何意义得,0m n ou r r =,再由数量积运算即可说明成立;必要性中,由数量积运算可得),0,90m n o ou r r ⎡∈⎣,不一定有正数λ,使得λ=u r r m n ,所以不成立,即可得答案. 【详解】充分性:若存在正数λ,使得λ=u r r m n ,则,0m n o u r r =,cos00m n m n m n ou r r u r r u r r ⋅==>,得证; 必要性:若0m n ⋅>u r r ,则),0,90m n o ou r r ⎡∈⎣,不一定有正数λ,使得λ=u r r m n ,故不成立; 所以是充分不必要条件 故选:D 【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题. 2.已知a R ∈若(1-ai )( 3+2i )为纯虚数,则a 的值为 ( ) A .32-B .32C .23-D .23【答案】A 【解析】 【分析】根据复数的乘法运算法则化简可得()3+223a a i +-,根据纯虚数的概念可得结果. 【详解】由题可知原式为()3+223a a i +-,该复数为纯虚数,所以3+2032302a a a =⎧⇒=-⎨-≠⎩. 故选:A 【点睛】本题考查复数的运算和复数的分类,属基础题.3.双曲线﹣y 2=1的渐近线方程是( )A .x±2y=0B .2x±y=0C .4x±y=0D .x±4y=0【答案】A 【解析】试题分析:渐近线方程是﹣y 2=1,整理后就得到双曲线的渐近线.解:双曲线 其渐近线方程是﹣y 2=1整理得x±2y=1. 故选A .点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.4.已知函数()ln ln(3)f x x x =+-,则( ) A .函数()f x 在()0,3上单调递增 B .函数()f x 在()0,3上单调递减 C .函数()f x 图像关于32x =对称 D .函数()f x 图像关于3,02⎛⎫⎪⎝⎭对称 【答案】C 【解析】 【分析】依题意可得(3)()f x f x -=,即函数图像关于32x =对称,再求出函数的导函数,即可判断函数的单调性; 【详解】解:由(3)ln(3)ln[3(3)]ln(3)ln ()f x x x x x f x -=-+--=-+=,(3)()f x f x ∴-=,所以函数图像关于32x =对称, 又1123()3(3)x f x x x x x -'=-=--,()f x 在()0,3上不单调. 故正确的只有C , 故选:C 【点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题. 5.已知函数()f x 的图象如图所示,则()f x 可以为( )A .3()3x f x x=-B .e e ()x xf x x --= C .2()f x x x =-D .||e ()xf x x=【答案】A 【解析】 【分析】根据图象可知,函数()f x 为奇函数,以及函数在()0,∞+上单调递增,且有一个零点,即可对选项逐个验证即可得出. 【详解】首先对4个选项进行奇偶性判断,可知,e e ()x xf x x--=为偶函数,不符合题意,排除B ;其次,在剩下的3个选项,对其在()0,∞+上的零点个数进行判断, ||e ()xf x x=在()0,∞+上无零点, 不符合题意,排除D ;然后,对剩下的2个选项,进行单调性判断, 2()f x x x=-在()0,∞+上单调递减, 不符合题意,排除C. 故选:A . 【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.6.己知函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点()()()()11123344,,,,.,,,A x y B x y C x y D x y ,其中1234x x x x <<<,则()442tan x x +=( ) A .1- B .0C .1D .222+ 【答案】A 【解析】 【分析】先将函数解析式化简为|cos |y x =,结合题意可求得切点4x 及其范围4,2x ππ⎛⎫∈⎪⎝⎭,根据导数几何意义,即可求得()442tan x x +的值. 【详解】函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩即|cos |y x =直线(2)(0)y m x m =+>与函数|cos |y x =图象恰有四个公共点,结合图象知直线(2)(0)y m x m =+>与函数cos y x =-相切于4x ,4,2x ππ⎛⎫∈ ⎪⎝⎭, 因为sin y x '=, 故444cos sin 2x k x x -==+,所以()()()()4444444sin 1221c 2tan os 2x x x x x x x -+⨯=+⨯=-++=.故选:A. 【点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题. 7.复数()1z i i -=(i 为虚数单位),则z 的共轭复数在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C 【解析】 【分析】由复数除法求出z ,写出共轭复数,写出共轭复数对应点坐标即得 【详解】 解析:()()()1111111222i i i i z i i i i +-+====-+--+Q ,1122z i ∴=--, 对应点为11(,)22--,在第三象限. 故选:C . 【点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键.8.已知复数为纯虚数(为虚数单位),则实数( ) A .-1 B .1C .0D .2【答案】B 【解析】 【分析】 化简得到,根据纯虚数概念计算得到答案.【详解】为纯虚数,故且,即.故选:. 【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.9.已知数列{}n a 中,112,()1,n n n a n a a a n N *+=-=+∈ ,若对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立,则实数t 的取值范围为( ) A .(][),21,-∞-⋃+∞ B .(][),22,-∞-⋃+∞ C .(][),12,-∞-⋃+∞ D .[]2,2-【答案】B 【解析】 【分析】先根据题意,对原式进行化简可得()1111111n n a a n n n n n n +-==-+++,然后利用累加法求得11=3-11n a n n +++,然后不等式21211n at at n +<+-+恒成立转化为2213t at +-≥恒成立,再利用函数性质解不等式即可得出答案. 【详解】由题,()()11111n n n n n n a a a na n a ++-=+⇒=++即()1111111n n a a n n n n n n +-==-+++ 由累加法可得:11121111121n n nn n a a a a a a a a n n n n n ++-⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪++-⎝⎭⎝⎭⎝⎭L即1111111123311121n a n n n n n n +⎛⎫⎛⎫⎛⎫=-+-++-+=-< ⎪ ⎪ ⎪++-+⎝⎭⎝⎭⎝⎭L 对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立 即22213240t at t at +-≥⇒+-≥令()[]()222424,2,2f a t at at t a =+-=+-∈-可得()20f ≥且()20f -≥即2212202120t t t t t t t t ⎧≥≤-⎧+-≥⇒⎨⎨≥≤---≥⎩⎩或或 可得2t ≥或2t ≤- 故选B 【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.10.已知抛物线y 2= 4x 的焦点为F ,抛物线上任意一点P ,且PQ ⊥y 轴交y 轴于点Q ,则 PQ PF ⋅u u u r u u u r的最小值为( ) A .-14B .-12C .-lD .1【答案】A 【解析】 【分析】设点2,4y P y ⎛⎫⎪⎝⎭,则点()0,Q y ,()1,0F ,利用向量数量积的坐标运算可得()22112164PQ PF y =⋅--u u u r u u u r ,利用二次函数的性质可得最值. 【详解】解:设点2,4y P y ⎛⎫⎪⎝⎭,则点()0,Q y ,()1,0F , 22,0,1,44PQ P y F y y ⎛⎫⎛⎫∴=-=-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,()22422211,01,244164164PQ P y y y y y F y ⎛⎫⎛⎫∴=-⋅--=-=-- ⎪ ⎪⎝⎭⎝⎭⋅u u u r u u u r ,当22y =时,PQ PF ⋅u u u r u u u r 取最小值,最小值为14-.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.11.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A.1 B.43C.3 D.4【答案】A【解析】【分析】采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果. 【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥A BCD-,长度如上图所以111121,11222 MBD DEC BCNS S S∆∆∆==⨯⨯==⨯⨯=所以3 222 BCD MBD DEC BCNS S S S∆∆∆∆=⨯---=所以113A BCD BCDV S AN -∆=⋅⋅=故选:A【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题. 12.曲线24x y =在点()2,t 处的切线方程为( ) A .1y x =- B .23y x =-C .3y x =-+D .25y x =-+【答案】A 【解析】 【分析】将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程. 【详解】曲线24x y =,即214y x =, 当2x =时,代入可得21124t =⨯=,所以切点坐标为()2,1,求得导函数可得12y x '=, 由导数几何意义可知1212k y ='=⨯=, 由点斜式可得切线方程为12y x -=-,即1y x =-, 故选:A. 【点睛】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
河北省唐山市2019-2020学年第三次高考模拟考试数学试卷含解析
河北省唐山市2019-2020学年第三次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =I ( ) A .{2} B .{1,0}-C .{}1-D .{1,0,1}-【答案】B 【解析】 【分析】求出集合B ,利用集合的基本运算即可得到结论. 【详解】由10x ->,得1x <,则集合{}|1B x x =<, 所以,{}1,0A B ⋂=-. 故选:B. 【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合B 是解决本题的关键,属于基础题.2.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B I =( )A .[12]-, B .[1-C .(1-D .⎡⎣【答案】C 【解析】 【分析】计算A ⎡=⎣,(]1,2B =-,再计算交集得到答案.【详解】{|A x y ⎡==⎣=,(]2{|},1012x x B x -=-+=≤,故1(A B -=I . 故选:C . 【点睛】本题考查了交集运算,意在考查学生的计算能力.3.已知(1)n x λ+展开式中第三项的二项式系数与第四项的二项式系数相等,2012(1)n n n x a a x a x a x λ+=++++L ,若12242n a a a ++⋅⋅⋅=,则012(1)n n a a a a -+-⋅⋅⋅+-的值为( ) A .1B .-1C .8lD .-81【答案】B 【解析】 【分析】根据二项式系数的性质,可求得n ,再通过赋值求得0a 以及结果即可. 【详解】因为(1)nx λ+展开式中第三项的二项式系数与第四项的二项式系数相等,故可得5n =,令0x =,故可得01a =, 又因为125242a a a +++=L ,令1x =,则()501251243a a a a λ+=++++=L , 解得2λ=令1x =-,则()()5501251211a a a a -=-+-+-=-L . 故选:B. 【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.4.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )A .2B .3C .3.5D .4【答案】C 【解析】 【分析】根据表中数据,即可容易求得中位数. 【详解】由图表可知,种子发芽天数的中位数为343.52+=, 故选:C. 【点睛】本题考查中位数的计算,属基础题. 5.将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,若()g x 为奇函数,则m 的最小值为( ) A .9πB .29π C .18π D .24π【答案】C 【解析】 【分析】根据三角函数的变换规则表示出()g x ,根据()g x 是奇函数,可得m 的取值,再求其最小值. 【详解】解:由题意知,将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,得()sin 36y x m π⎡⎤=-+⎢⎥⎣⎦,再将sin 336y x m π⎡⎤=-+⎢⎥⎣⎦图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,1()sin(3)26g x x m π∴=-+,因为()g x 是奇函数, 所以3,6m k k Z ππ-+=∈,解得,183k m k Z ππ=-∈, 因为0m >,所以m 的最小值为18π. 故选:C 【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题. 6.若0,0x y >>,则“222x y xy +=”的一个充分不必要条件是 A .x y = B .2x y = C .2x =且1y = D .x y =或1y =【答案】C 【解析】0,0x y >>,∴222x y xy +≥2x y = 时取等号.故“2,x =且1y = ”是“222x y xy +=的充分不必要条件.选C .7.已知向量()0,2=r a ,()23,b x =r ,且a r 与b r 的夹角为3π,则x=( )A .-2B .2C .1D .-1【答案】B【解析】 【分析】由题意cos 3a b a bπ⋅=r r r r ,代入解方程即可得解. 【详解】由题意1cos 32a b a b π⋅===r r r r ,所以0x >,且2x =2x =.故选:B. 【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.8.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,其中焦点2F 与抛物线22y px =的焦点重合,且椭圆与抛物线的两个交点连线正好过点2F ,则椭圆的离心率为( ) A.2B1 C.3- D1【答案】B 【解析】 【分析】根据题意可得易知2p c =,且222222222444p a b p b p a a b ⎧-=⎪⎨⎪+=⎩,解方程可得22223412a p b p ⎧=⎪⎪⎨⎪=⎪⎩,再利用222c e a =即可求解. 【详解】易知2p c =,且22222222222223441442a p p a b p b p a a b b p ⎧⎧=⎪⎪-=⎪⎪⇒⎨⎨⎪⎪+==⎪⎪⎩⎩故有2223c e a==-1e ==故选:B 【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题9.已知复数z 满足(1)43z i i +=-,其中i 是虚数单位,则复数z 在复平面中对应的点到原点的距离为( ) A .5 B .522C .52D .54【答案】B 【解析】 【分析】利用复数的除法运算化简z, 复数z 在复平面中对应的点到原点的距离为||,z 利用模长公式即得解. 【详解】由题意知复数z 在复平面中对应的点到原点的距离为||,z43(43)(1)1717,1222214952||442i i i i z i i z ----====-+∴=+=故选:B 【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.10.已知二次函数2()f x x bx a =-+的部分图象如图所示,则函数()'()x g x e f x =+的零点所在区间为( )A .(1,0)-B .(0,1)C .(1,2)D .(2,3)【答案】B 【解析】由函数f(x)的图象可知,0<f(0)=a <1,f(1)=1-b +a =0,所以1<b <2.又f′(x)=2x -b ,所以g(x)=e x +2x -b ,所以g′(x)=e x +2>0,所以g(x)在R 上单调递增, 又g(0)=1-b <0,g(1)=e +2-b >0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1), 故选B.11.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )A .()85424πB .()85824πC .()854216πD .()858216π【答案】C 【解析】 【分析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积. 【详解】最上面圆锥的母线长为2,底面周长为2π24π⨯=,侧面积为1224π42π2⨯=,下面圆锥的母线长为252π48π⨯=,侧面积为1258π85π2⨯=,没被挡住的部分面积为22π4π212π⨯-⨯=,中间圆柱的侧面积为2π214π⨯⨯=.故表面积为()854216π,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题. 12.已知,a b ∈R ,3(21)ai b a i +=--,则|3|a bi +=( ) A 10 B .3C .3D .4【答案】A 【解析】 【分析】根据复数相等的特征,求出3a 和b ,再利用复数的模公式,即可得出结果. 【详解】因为3(21)ai b a i +=--,所以3,(21),b a a =⎧⎨--=⎩,解得3,31,b a =⎧⎨=⎩则|3|13a bi i +=+==故选:A. 【点睛】本题考查相等复数的特征和复数的模,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年河北省唐山一中高考数学冲刺试卷(三)(5月份)一、选择题(本大题共12小题,共60.0分)1.已知i为虚数单位,复数的共扼复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.等比数列{a n}的前n项和为S n,已知,,则()A. B. C. 14 D. 153.若sin(α-β)cosα-cos(α-β)sinα=m,且β为第三象限角,则cosβ的值为()A. B. - C. D. -4.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系()A. a<b<cB. a<c<bC. b<a<cD. b<c<a5.以下命题为真命题的个数为()①若命题P的否命题是真命题,则命题P的逆命题是真命题②若a+b≠5,则a≠2或b≠3③若p∨q为真命题,¬p为真命题,则p∨(¬q)是真命题④若∃x∈[1,4],x2+2x+m>0,则m的取值范围是A. 1B. 2C. 3D. 46.“勾股圆方图”是我国古代数学家赵爽设计的一幅用来证明勾股定理的图案,如图所示在“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形.若直角三角形中较小的锐角α满足cosα=,则从图中随机取一点,则此点落在阴影部分的概率是()A. B. C. D.7.若圆C:x2+y2-4x-4y-10=0上至少有三个不同的点到直线l:x-y+c=0的距离为,则c的取值范围是()A. B. C. D.8.为了计算,设计如图所示的程序框图,则在空白框中应填入()A.B.C.D.9.在封闭的正三棱柱ABC-A1B1C1内有一个体积为V的球.若AB=6,AA1=4,则V的最大值是()A. 16πB.C. 12πD. 4π10.将函数f(x)=sin2x-cos2x的图象向左平移t(t>0)个单位后,得到函数g(x)的图象,若,则实数t的最小值为()A. B. C. D.11.已知椭圆C:的左右焦点分别为F1,F2,O为坐标原点,A为椭圆上一点,∠F1AF2=,连接AF2交y轴于M点,若3|OM|=|OF2|,则该椭圆的离心率为()A. B. C. D.12.已知函数,若方程有四个不同的解,,,,且,则的取值范围为( )A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知实数x,y满足不等式,则函数z=2x+3y的最大值为______.14.如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进50m到达B处,又测得∠DBC=45°,根据以上数据可得cosθ=______.15.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为______.16.在△ABC中,A=,BC=3,D是BC的一个三等分点,则AD的最大值是______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,角A、B、C的对边分别为a、b、c,且.(I)求角A的大小;(II)已知△ABC外接圆半径,,求△ABC的周长.18.某餐厅通过查阅了最近5次食品交易会参会人数x(万人)与餐厅所用原材料数量第一次第二次第三次第四次第五次参会人数x(万人)13981012原材料y(袋)3223182428(1)根据所给5组数据,求出y关于x的线性回归方程.(2)已知购买原材料的费用C(元)与数量t(袋)的关系为,投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L=销售收入-原材料费用).参考公式:,.参考数据:,,.19.在四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,BC⊥AB,PD=PA=CD=BC=AB,PB=PC.(1)求证:平面PAD⊥平面PBD;(2)若三棱锥B-PCD的体积为,求PC的长.20.已知F1(-1,0),F2(1,0)是椭圆C:=1(a>b>0)的左、右焦点,椭圆C过点(2,).(1)求椭圆C的方程;(2)过点F2的直线l(不过坐标原点)与椭圆C交于A,B两点,且点A在x轴上方,点B在x轴下方,若=2,求直线l的斜率.21.设函数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)记函数f(x)的最小值为g(a),证明:g(a)<1.22.在平面直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线M的参数方程为(φ为参数),过原点O且倾斜角为α的直线l交M于A,B两点.(Ⅰ)求l和M的极坐标方程;(Ⅱ)当α∈(0,]时,求|OA|+|OB|的取值范围.23.若a>0,b>0,且.(1)求的最小值;(2)是否存在a,b,使得的值为?并说明理由.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础的计算题.利用复数代数形式的乘除运算化简,再由共轭复数的概念求其共轭复数得答案.【解答】解:∵=,∴复数的共扼复数为,在复平面内对应的点的坐标为(),位于第二象限.故选:B.2.答案:D解析:【解答】解:∵等比数列{a n}的前n项和为S n,S2=a1+2a3,a4=1,∴,解得,∴S4===15.故选:D.【分析】利用等比数列前n项和公式和通项公式列出方程组,求出首项和公比,由此能求出S4.本题考查等比数列的前4项和的求法,考查等比数列的性质等基础知识,考查推运算求解能力,考查函数与方程思想,是基础题.3.答案:B解析:【分析】本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属中档题.由两角和与差的三角函数公式可得sinβ=-m,结合角β的象限,再由同角三角函数的基本关系可得.【解答】解:∵sin(α-β)cosα-cos(α-β)sinα=m,∴sin[(α-β)-α]=-sinβ=m,即sinβ=-m,又β为第三象限角,∴cosβ<0,由同角三角函数的基本关系可得:cosβ=-=-故选:B.4.答案:C解析:解:函数y=0.6x为减函数;故a=0.60.6>b=0.61.5,函数y=x0.6在(0,+∞)上为增函数;故a=0.60.6<c=1.50.6,故b<a<c,故选:C.利用指数函数和幂函数的单调性,可判断三个式子的大小.本题考查的知识点是指数函数和幂函数的单调性,难度中档.5.答案:C解析:【分析】利用复合命题的真假;命题的真假;命题的否定;利用四种命题的真假判断即可.本题以命题的真假判断为载体,考查了复合命题,四种命题,函数图象和性质,难度中档【解答】解:对于①若命题P的否命题是真命题,则命题P的逆命题是真命题,满足互为逆否关系命题真假,①正确;对于②若a+b≠5,则a≠2或b≠3,因为逆否命题:若a=2且b=3则a+b=5是真命题,所以②正确;对于③若p∨q为真命题,¬p为真命题,命题p为假命题,命题q为真命题,则命题“p∨(¬q)”是假命题.所以③不正确;对于④函数f(x)=x2+2x+m在[-1,+∞)上为增函数,则24+m>0,则m的取值范围是,故④正确.故选:C.6.答案:D解析:解:设大正方形边长为5,由cosα=知α对边等于3,邻边等于4,∴小正方形的边长为1,面积等于S=1,则对应的概率P=.故选:D.设出大正方形的边长,结合cosα=,分别求出小直角三角形的边长,得到小正方形的面积,结合几何概型的概率公式进行求解即可.本题主要考查几何概型与数学文化的考查,根据几何概型的概率公式求出对应区域的面积是解决本题的关键.7.答案:C解析:【分析】先求出圆心和半径,比较半径和2,要求圆上至少有三个不同的点到直线l:x-y+c=0的距离为2,则圆心到直线的距离应小于等于用圆心到直线的距离公式,可求得结果.本题考查直线和圆的位置关系,圆心到直线的距离等知识,是中档题.【解答】解:圆x2+y2-4x-4y-10=0整理为(x-2)2+(y-2)2=18,∴圆心坐标为(2,2),半径为3,要求圆上至少有三个不同的点到直线l:x-y+c=0的距离为2,则圆心到直线的距离d,≤,∴-2≤c≤2,故选:C.8.答案:B解析:【解答】解:S=1-=1+++…+-(++…+)=N-T,即N=1+++…+,T=++…+,则每次循环,i增加2,即i=i+2,故选:B.【分析】利用S=1-=1+++…+-(++…+)=N-T,得到N,T相邻两个数的关系即可得到结论.本题主要考查程序框图的应用,根据循环条件,进行分类是解决本题的关键.9.答案:D解析:【分析】本题考查球的体积的求法,考查数形结合的解题思想方法,是中档题.作出过球心且平行于底面的平面截几何体的截面图,求得球的最大半径,则答案可求.【解答】解:如图,是过球心且平行于底面的平面截几何体的截面图,设△EFG内切圆的半径为r,则,解得r=<2,∴球的最大半径r=,则球的最大体积V=.故选:D.10.答案:B解析:解:函数f(x)=sin2x-cos2x=2sin(2x-),f(x)的图象向左平移t(t>0)个单位后,得函数g(x)=2sin(2x+2t-)的图象,若,则函数g(x)的图象关于直线x=对称,∴-+2t=kπ+,k∈Z;t=(+)π,k∈Z,又∵t>0,∴实数t的最小值为t min=.故选:B.化函数f(x)为正弦型函数,根据图象平移写出g(x)的解析式,根据函数g(x)的图象关于直线x=对称,求出实数t的最小值.本题考查了三角函数的图象与性质的应用问题,是基础题.11.答案:D解析:【分析】本题考查了椭圆的标准方程及其性质、方程的解法、相似三角形的判定与性质,考查了推理能力与计算能力,属于中档题.设AF1=m,AF2=n.如图所示,Rt△AF1F2∽Rt△OMF2,可得==.可得m+n=2a,m2+n2=4c2,n=3m.化简解出即可得出.【解答】解:设AF1=m,AF2=n.如图所示,由题意可得:Rt△AF1F2∽Rt△OMF2,∴==.则m+n=2a,m2+n2=4c2,n=3m,则m2=,n2=9m2=6b2.∴+6b2=4c2.∴=c2,∴=.故选D.12.答案:B解析:解:作函数f(x)的图象如右,∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2关于x=-1对称,即x1+x2=-2,0<x3<1<x4,则|log2x3|=|log2x4|,即-log2x3=log2x4,则log2x3+log2x4=0即log2x3x4=0则x3x4=1;当|log2x|=1得x=2或,则1<x4≤2;≤x3<1;故=-2x3+,≤x3<1;则函数y=-2x3+,在≤x3<1上为减函数,则故x3=取得最大值,为y=1,当x3=1时,函数值为-1.即函数取值范围是(-1,1].故选:B.作出函数f(x),得到x1,x2关于x=-1对称,x3x4=1;化简条件,利用数形结合进行求解即可.本题考查分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键.13.答案:11解析:【分析】本题考查简单线性规划,考查推理能力和计算能力,属于基础题.画出可行域,分析z的几何意义,然后平移直线求解即可.【解答】解: 作出实数x,y满足不等式对应的平面区域(阴影部分),由z=2x+3y,得y=-x+,即z为斜率是-的直线在y轴上的截距的3倍,平移直线y=-x,由图象可知当直线经过点A时,直线在y轴上的截距最大,此时z最大.由,解得A(1,3).此时z的最大值为z=2×1+3×3=11,故答案为11.14.答案:-1解析:解:∵∠DAC=15°,∠DBC=45°,∴∠ADB=30°,在△ADB中,由正弦定理得:=,∴BD=═25(-),在△DBC中,CD=25,∠DBC=45°,BD=25(-),由正弦定理=,∴sin∠DCB==,∴sin(θ+)=,∴cosθ=.故答案为:.先在△ADB中用正弦定理求得BD,再在△DBC中用正弦定理求得sin∠DCB,然后根据∠DCB=θ+可求得.本题考查了正弦定理以及诱导公式,属中档题.15.答案:解析:解:如图,连接AE,则AE⊥BC;∴;∴=;∴====.故答案为:.可作出图形,并连接AE,得到AE⊥BC,根据条件可得出,从而,这样带入进行数量积的运算即可求出该数量积的值.考查等边三角形的中线也是高线,向量垂直的充要条件,向量数乘和加法的几何意义,向量数量积的运算.16.答案:1+解析:解:如图建立坐标系,∴△ABC的外接圆满足2R=,∴R=,∵若AD取最大值,∴A,M,D在同一直线上,设M点坐标为(x,y),∵MB=MC,∴(x+)2+y2=y2+(x-)2=3,解得x=0,y=∴△ABC的外接圆的圆心M(0,),∵D(-,0)∴|AD|max=|MD|+R=+=1+,故答案为:1+根据正弦定理得到三角形的外接圆的半径,即可求出AD的最大值.本题考查了正弦定理和圆的方程的应用,属于中档题17.答案:(本小题满分12分)解:(I)∵,即:,…………(2分)∴,…………(4分)又0<A<π,………(5分)∴.…………(6分)(II)∵,…………(7分)∴,…………(8分)∵,∴由a2=b2+c2-2bc cos A,…………(9分)∴,…………(10分)∵c>0,所以得:………(11分)∴周长a+b+c=3+.…………(12分)解析:(I)利用三角函数恒等变换的应用化简已知等式可得,结合范围0<A <π,可求A的值.(II)由正弦定理可求a,利用余弦定理可得,解得c的值,可求周长.本题主要考查了三角函数恒等变换的应用,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于中档题.18.答案:解:(1)由所给数据可得:,,,,所以y关于x的线性回归方程为;(2)由(1)中求出的线性回归方程知,当x=15时,y=2.5×15-1=36.5,即预计需要原材料36.5袋;因为,所以当t<36时,利润L=700t-(400t-20)=300t+20,当t=35时,L max=300×35-20=10480;当t≥36时,利润L=700×36.5+380t,当t=36时,L max=700×36.5-380×36=11870.综上所述,餐厅应该购买36袋原材料,才能使利润获得最大,最大利润为11870元.解析:(1)由所给数据计算平均数和回归系数,即可写出y关于x的线性回归方程;(2)由(1)中求出的线性回归方程计算x=15时y的值,再根据题意计算对应的利润值,比较大小即可.本题考查了线性回归方程的求法与应用问题,也考查了利润计算问题,是中档题.19.答案:证明:(1)取AD的中点O,BC的中点F,连接PO,OF,PF.∵底面ABCD是直角梯形,AB∥CD,BC⊥AB,∴OF∥AB,OF⊥BC.又∵PB=PC,∴PF⊥BC,且PF∩OF=F,PF, OF平面POF, ∴BC⊥面POF.∵面POF,∴BC⊥PO,又PA=PD,∴PO⊥AD,又直线AD与BC相交,且AD、BC在平面ABCD内,∴PO⊥面ABCD.∵BD面ABCD,∴PO⊥BD.∵BC=CD,BC⊥CD∴BD=,,又AB=2BC,∴AD⊥BD,∵PO,面PAD,∴BD⊥面PAD,且DB⊂面PDB,∴平面PAD⊥平面PBD;解:(2)设BC=a,则PO=,∵V B-PCD=V P-BCD==.∴a=2,从而,,,故PC=2.解析:本题考查面面垂直的判定定理的应用,直线与平面垂直判断定理的应用,几何体的体积的求法,考查空间想象能力,计算能力,属于一般题.(1)易证PO⊥面ABCD,又BD=,AB=2BC,可得AD⊥BD,即可证明面PAD⊥平面PBD;(2)利用棱锥B-PCD的体积为,求得BC,再求PC.20.答案:解:(1)由条件可知,解得a2=6,b2=5,故椭圆C的方程为+=1,(2)设A(x1,y1),B(x2,y2),则y1>0,y2<0,设直线l的方程为x=my+1,代入椭圆C的方程消x可得(5m2+6)y2+10my-25=0,则y1+y2=,y1y2=,由=2,可知y1+2y2=0,即y1=-2y2,代入上式可得y1=,2y12=,∴2()2=,解得m=±,结合图形可知m=,故直线的斜率为.解析:(1)由条件可知,解得a2=6,b2=5,即可求出椭圆方程,(2)设A(x1,y1),B(x2,y2),则y1>0,y2<0,设直线l的方程为x=my+1,根据韦达定理,结合=2,即可求出m的值,可得直线的斜率.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、考查了推理能力和计算能力,属于中档题.21.答案:解:(Ⅰ)显然f(x)的定义域为(0,+∞).………………………………(1分).…………(3分)∵x2+2>0,x>0,∴若x∈(0,a),x-a<0,此时f'(x)<0,f(x)在(0,a)上单调递减;若x∈(a,+∞),x-a>0,此时f'(x)>0,f(x)在(a,+∞)上单调递增;综上所述:f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.…………………(5分)(Ⅱ)证明:由(Ⅰ)知:,即:.………………………………………………………………(6分)要证g(a)<1,即证明,即证明,令,则只需证明,………………(8分)∵,且a>0,∴当a∈(0,2),a-2<0,此时h'(a)<0,h(a)在(0,2)上单调递减;当a∈(2,+∞),a-2>0,此时h'(a)>0,h(a)在(2,+∞)上单调递增,∴.…………………………………(11分)∴.∴g(a)<1.………………………………………(12分)解析:(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)求出函数的最小值,问题转化为只需证明,令,则只需证明,根据函数的单调性证明即可.本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道综合题.22.答案:解:(Ⅰ)过原点O且倾斜角为α的直线l的方程为y=tanα•x,∴直线l的极坐标方程为ρsinθ=tanα•ρcosθ,即θ=α.∵曲线M的参数方程为(φ为参数),∴曲线M的普通方程为(x-1)2+(y-1)2=1,即x2+y2-2x-2y+1=0,∴曲线M的极坐标方程为ρ2-2ρcosθ-2ρsinθ+1=0.(Ⅱ)当α=0时,直线l的直线坐标方程为y=0,直线l与圆M相切,只有一个交点,不成立;当时,设点A为靠近原点的交点,则,所以|OA|+|OB|=,∴当α∈(0,]时,|OA|+|OB|的取值范围是(2,2].解析:本题考查直线和曲线的极坐标方程的求法,考查两线段和的取值范围的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查运算求解能力,是中档题.(Ⅰ)过原点O且倾斜角为α的直线l的方程为y=tanα•x,由此能求出直线l的极坐标方程;由曲线M的参数方程,能求出曲线M的普通方程,由此能求出曲线M的极坐标方程.(Ⅱ)当α=0时,直线l的直线坐标方程为y=0,直线l与圆M相切,|OA|=|OB|=1,不成立;当时,|OA|+|OB|=,由此能求出当α∈(0,]时,|OA|+|OB|的取值范围.23.答案:解:(1)∵,∴,∵a>0,b>0,∴,当且仅当a=b时取等号,∴,∴.∴,∴,当且仅当a=b时取等号.(2)∵a>0,b>0,∴,∵,∴不存在a,b,使得的值为.解析:本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.(1)由条件利用基本不等式求得ab≤,再利用基本不等式求得的最小值.(2)根据ab≤及基本不等式求得≥,从而可得不存在a,b,使得的值为.。