热致相分离教学提纲

合集下载

热致相分离制膜方法及其应用

热致相分离制膜方法及其应用

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (2)1.热致相分离制膜法 (2)1.1 热致相分离法简介 (2)1.2热致相分离制膜步骤 (2)1.3热致相分离法的优缺点 (2)1.4热致相分离法孔结构 (3)2热致相分离法的影响因素 (3)2.1 聚合物熔融指数对聚烯烃微孔膜结构和性能的影响 (3)2.2 聚合物初始浓度对膜结构和性能的影响 (4)2.3 聚合物密度对膜结构性能的影响 (4)2.4 稀释剂对膜结构和性能的影响 (4)2.5 成核剂对膜结构和性能的影响 (4)2.6 冷却速率对膜结构和性能的影响 (5)2.7 萃取剂对膜结构和性能的影响 (5)3 热致相分离制膜方法的应用 (5)3.1应用概况 (5)3.2应用实例 (5)3.2.1聚乙烯 (5)3.2.2等规聚丙烯 (5)3.2.3聚偏氟乙烯 (6)3.2.4壳聚糖 (6)3.2.5乙烯-乙烯醇共聚物 (6)3.2.6乙烯-丙烯酸共聚物 (6)3.2.7聚左旋乳酸 (6)3.2.8其它结晶高聚物 (7)4国内热值相分离技术的发展 (7)5热值相分离制膜法的发展趋势 (7)6 结论 (8)参考文献 (9)致谢 (12)热致相分离制膜方法及其应用化学工程与工艺专业学生汪俊龙指导教师武利顺摘要:热值相分离法是一种新的制备聚合物微孔膜的方法。

这种方法步骤较为简单,同时具备很多其它方法不具备的优点,热致相分离法影响因素主要有聚合物的熔融指数聚合物初始浓度、聚合物密度、稀释剂、成核剂、冷却速率、以及萃取剂。

这种方法主要用于制备微孔膜,例如:聚乙烯、等规聚丙烯、聚偏氟乙烯、壳聚糖、乙烯-乙烯醇共聚物、乙烯-丙烯酸共聚物、聚左旋乳酸、还有其它结晶高聚物。

热致相分离法与国外研究相比,差距还是不小的.随着研究的深入,这种方法会成为制备微孔膜的主要方法.关键词:热致相分离法;应用Thermally Induced Phase Separation and applicationStudent majoring in Chemistry Engineering and Technology Junlong WangTutor Wu LishunAbstract: Thermally Induced Phase Separation is a new method of preparation of polymer membrane. This method is relatively simple steps, along with many other methods do not have the advantages of thermally induced phase separation factors are the initial polymer concentration of polymer melt index, polymer density, thinner, nucleating agent, the cooling rate , And the extraction agent. This method is mainly used for preparation of microporous membranes, such as: polyethylene, polypropylene, polyvinylidene fluoride, chitosan, ethylene - vinyl alcohol copolymer, ethylene - acrylic acid copolymer, poly-L-lactic acid, also There are other crystalline polymers. Thermally induced phase separation with foreign research, the gap is not small. With further research, this method will become the main method of preparation of microporous membranes Key words:thermally induced phase separation;application引言根据国际理论与应用化学联合会(IUPAC)给膜的定义为“一种三维结构,三维中的一度(如厚度方向)尺寸要比其余两度小得多,并可通过多种推动力进行质量传递”,该定义在原来定义(“膜”是两相之间的不连续区间周)的基础上强调了维度的相对大小和功能(质量传递),强调膜的“三维”或“区间”。

锂离子电池隔膜基础知识培训手册

锂离子电池隔膜基础知识培训手册

●有一定的保护电池安全的能力。

2、隔膜机理隔膜中具有大量曲折贯通的微孔,电解液中的离子载体可以在微孔中自由通过,在正负极之间迁移形成电池内部导电回路,而电子则通过外部回路在正负电极之间迁移形成电流,供用电设备利用。

(四)锂离子电池隔膜的主要用途各种液态锂离子电池,如手机电池、便携式DVD电池、笔记本电脑电池、电动工具电池、GPS电池、电动车和储能装置电池等。

聚烯烃隔膜原料和生产原理(一)聚烯烃隔膜分类分类方法按材料分类按工艺分类按结构分类种类PP、PE、PP/PE复合干法、湿法单层PP、P E 多层PP、P E 三层PP/PE/P P(二)聚烯烃隔膜的主要原料隔膜使用的聚烯烃材料目前主要是聚丙烯(PP)、聚乙烯(P E )两类。

聚烯烃材料具有强度高、耐酸碱腐蚀性好、防水、耐化学试剂、生物相容性好、无毒性等优点,在众多领域得到了广泛的应用。

当前,商品化的液态锂离子电池大多使用微孔聚烯烃隔膜,因为聚烯烃化合物在合理的成本范围内可以提供良好的机械性能和化学稳定性,而且具有高温自闭性能,更加确保了锂离子二次电池在日常使用上的安全性。

(三)聚烯烃隔膜的主要生产方法1、热致相分离法(湿法—TIPS)利用高分子材料和特定的溶剂在高温条件下完全相容,冷却后产生相分离的特性,使溶剂相连续贯穿于聚合物相形成的连续固态相中,经过拉伸扩孔后,将溶剂萃取后在聚合物相中形成微孔。

在目前湿法隔膜制造过程中,通常将聚烯烃树脂原料和一些其它低分子量的物质同混合,加热熔融混合均匀、经挤出拉伸成膜,再用易挥发溶剂把低分子物质抽提出来,形成微孔膜。

2、熔融拉伸法(干法—MSCS)熔融拉伸法的制备原理是,高聚物熔体挤出时在拉伸应力作用冷却下结晶,形成平行排列的结晶结构,经过热处理后的薄膜在拉伸后晶体之间分离而形成狭缝状微孔,再经过热定型制得微孔膜。

在聚丙烯微孔膜制备中除了拉开片晶结构外,还可以通过在聚合物中添加结晶成核剂,形成特定的β晶型,然后在双向拉伸过程中发生β晶型向α晶型转变,晶体体积收缩产生微孔。

热致相分离法制备聚偏氟乙烯微孔膜的微观结构研究

热致相分离法制备聚偏氟乙烯微孔膜的微观结构研究
解形 成均 相 的溶 液 , 将溶 液 降温 , 之 发生 相 分 离 , 使
配 比混合 放人 高温 反应 器 中 , 在搅 拌 和 氮 气保 护 下 将混 合体 系加热 到一 定温 度 , 之溶 解成 均相 溶液 , 使 并静 置 、 泡 , 而 制 得铸 膜 液 . 铸 膜 液倒 在 自制 脱 从 将
后将样 品 以 1 0℃ / 的 速度 降温 到 一3 S 0℃ . 聚合 物 的结 晶温 度可 以从 放热 曲线 中得 到 . 比测量 前 后 对
P ) ( 对 分 子 质 量 为 1 0 0 0 由 比 利 时 Ⅵ F相 7 0 )
样 品的质 量 以确保样 品在 加热 冷却 过程 中没 有发生

组分 的质 量需要 精 确到 1 . g 将称 量好 的样 品密封 然 后 以 1 5℃/ 速 度 升温 S
以及冷 却条 件对膜 断 面结构 的影 响 .
1 实验部 分
1 1 原 料 及试 剂 .
到 20℃ , 0 在达 到最 高温 度 20℃ 时保 持 5mi, 0 n 然
水或 室温 (0℃ ) 2 环境 中 , 而使 聚合 物 结 晶 固化 成 从
膜 . 固化 的膜取出放人无水乙醇中, 将 萃取膜中的稀 释剂 , 即得 P VDF微 孔膜 . 1 3 聚合 物结 晶温 度及 混合 稀释剂 凝 固点 的测试 . 聚合 物 的结 晶温 度 用 DS 2 0来 测 定 , 量 C 60 称 定 质量 的 P DF和混 合 稀 释 剂放 人 到 固体 皿 中 , V
变化 .
S L AY公 司提 供 ; 苯二 甲酸二 丁酯 ( B ) 十 O V 邻 D P和 二 醇均 为分析纯 , 自北 京 益 利 精 细化 学 品 有 限公 购

高分子物理9相分离

高分子物理9相分离
微相态Fmin(n)1/3, ordered state; 混合态时Fm n, disordered state.
3、嵌段共聚物的微相分离
微相分离转变 ODT order-disorder transition n称为分离强度 segregation strength (n)c≈10.5+41n-1/3
3、嵌段共聚物的微相界面
链伸展Sstr-(R/R0)2 -(d/R0)2, 这里假定线团尺寸 与厚度成正比,R=d, 理想链尺寸R02=nv2/3。
F/kT= 1/2nv1/3/d + d2/(nv2/3) ,对d取最小,得到 den2/3v1/31/6. F/kT=2(n)1/3, 经实验检验
3、嵌段共聚物的微相分离
弱相分离n<100 weak segregation
强相分离n>100 strong segregation
作业9
某二元共混物的Flory-Huggins相互作用参数 =A+B/T在-23.2C时是-0.43000, 在6.8C时是 -0.21571,已知两组分高分子分别有一万和两万个 重复单元,试计算 1)A、B参数值; 2)混合临界温度; 3)判断相图是UCST型还是LCST型,并作说明。
http://www.mate.tue.nl/mate/research/index.php/7
相分离的动力学机制
AC点之间以及DB点之间2fm/2=/>0, 组分 朝低浓度扩散downhill diffusion, 小涨落不足以 导致相分离,亚稳态,足够大的涨落才引发新 相,称为成核生长机制 nucleation and growth, NG
F
{f m
( )2 ]}d

热致相分离

热致相分离

热致相分离法热致相分离法的英文缩写TIPS,是Thermally Induced Phase Separation 的简称.它的工艺过程及原理是在聚合物的熔点以上,将聚合物溶于高沸点,低挥发性的溶剂(又称稀释剂)中,形成均相溶液。

然后降温冷却。

在冷却过程中,体系会发生相分离。

这个过程分两类,一类是固-液相分离(简称S-L相分离),一类是液-液相分离(L-L相分离)。

控制适当的工艺条件,在分相之后,体系形成以聚合物为连续相,溶剂为分散相的两相结构。

这时再选择适当的挥发性试剂(即萃取剂)把溶剂萃取出来,从而获得一定结构形状的聚合物微孔膜。

与NIPS法相比,TIPS有许多优点:它通过较为迅速的热交换促使高分子溶液分相,而不是缓慢的溶剂一非溶剂交换;TIPS法避免了NIPS法(非溶剂致相分离法)由于存在溶剂一非溶剂交换,导致成膜液中部分溶剂参与了聚合物的凝胶化,所以孔隙率低的缺点;TIPS 法可用于难以采用NIPS法制备的结晶性聚合物微孔滤膜的制备,而且TIPS 法的影响因素要比NIPS法少,更容易控制;由TIPS法可获得多种微观结构,如开孔,闭孔,各同向性,各异向性,非对称等。

热致相分离制膜步骤TIPS法制备微孔膜的步骤主要有溶液的制备(可连续也可间歇制备)、膜浇注和后处理3步。

具体操作为:(1)聚合物与高沸点、低分子量的液态或固态稀释剂混合,在高温时形成均相溶液;(2)将混合物溶液制成所需要的形状(平板、中空纤维或管状);(3)冷却溶液使其发生相分离;(4)除去稀释剂(常用溶剂萃取);(5)除去萃取剂(蒸发)得到微孔结构。

热致相分离法成膜的影响因素1、结晶与液液分相的竞争热致相分离法制作无定形聚合物膜时,只需考虑高分子溶液的凝胶化的影响,因为只有高分子溶液的凝胶化才足以终止液液分相的演化过程. 但是对于目前通常选用的结晶性聚合物来说,就必须考虑以下3 种可能的相变过程:聚合物结晶引起的固液分相、溶剂结晶接着聚合物结晶和液液分相接着聚合物结晶. 发生何种类型的相变完全由组分的浓度和分相温度决定.2、溶液浓度的影响降低高分子溶液的浓度会促进液液分相、抑制聚合物的结晶,往往容易得到连通性较好的微孔结构. 对于这一现象,有以下几点原因: (1) 由相图的杠杆定则可知,TIPS 分相过程会产生更多的富溶剂相,富聚合物相的结晶固化对液液分相的抑制作用减小; (2) 富溶剂相的成核几率增加(因Δμs 增加) ,分相速率也增加;相反,富聚合物相的成核过程受到抑制; (3) 高分子溶液粘度的降低亦会促进富溶剂相的核间聚结,所以更可能出现连通性高的孔结构.3、稀释剂的影响稀释剂的流动性和结晶也会抑制(甚至终止) 液液分相的动力学过程。

热致相分离法微孔膜(ⅰ)相分离和孔结构

热致相分离法微孔膜(ⅰ)相分离和孔结构

热致相分离法微孔膜(ⅰ)相分离和孔结构热致相分离法微孔膜(ⅰ)相分离和孔结构热致相分离法微孔膜(ⅰ)是一种使用热力学原理,通过控制温度变化而实现物质的相分离的方法。

它利用热力学原理,在温度变化的情况下,使混合物的不可溶于介质的成份形成一种结晶体或析出物,然后将析出物提炼出来。

因此,热致相分离法微孔膜(ⅰ)可以有效地分离出有用的混合物中的有用成分。

热致相分离法微孔膜(ⅰ)相分离和孔结构指的是,通过控制温度变化来实现相分离所需要的配备的微孔膜。

此外,该膜还具有良好的隔离性能,使得悬浮物不能进入孔隙,从而避免污染和污染物的混合。

微孔膜的结构也对相分离的效果起着至关重要的作用。

相分离的效果与孔径大小、孔隙度、通透性、表面活性等有关,因此,微孔膜的结构和孔结构的优化可以显著改善相分离的效果。

热致相分离的过程是一个温度变化的过程,温度的变化将影响混合物中的成分间的相容性。

当温度升高时,混合物中的成分之间的相容性降低,相分离状态出现,这就是热致相分离。

因此,热致相分离法微孔膜(ⅰ)的孔结构必须能够有效地把温度变化传递到混合物中,从而实现混合物中成分之间的相容性降低,使混合物中的成分分离出来。

因此,微孔膜的孔结构必须具有良好的导热性能和热传导性能。

此外,微孔膜的孔结构还应具有良好的抗热衰减性能,以防止温度变化对混合物中的成分相容性的影响过大。

另外,为了保证微孔膜的孔结构具有良好的隔离性能,微孔膜的孔结构应该尽可能的小,以避免悬浮物进入孔隙,从而防止污染和污染物的混合。

综上所述,热致相分离法微孔膜(ⅰ)相分离和孔结构是控制温度变化以实现相分离所必须的设备,它的孔结构必须具有良好的导热性能、热传导性能、抗热衰减性能和隔离性能,以实现有效的混合物分离效果。

热致相分离法制备聚偏氟乙烯中空纤维微孔膜的研究

热致相分离法制备聚偏氟乙烯中空纤维微孔膜的研究
2 0 1 3 年第4 4 卷第9 期
浙} 化 工
热致 相分离法制备 聚偏 氟 乙烯 中空纤维微孔膜 的研究
刘 慧 周 波 徐 建 明 陈慧 闯 吁 苏 云 方 敏
( 中化 蓝 天集 团 有 限 公 司 ,浙 江 杭 州 3 1 0 0 5 1 )
摘 要 :i f , 4 用热致相 制膜技 术 , 选择 三 种 常 用 的 液 体 稀 释 剂 ( 邻 苯二 甲酸二丁 酯 , 1 , 4 一丁 内酯 , 磷 酸三 丁酯) 、 两种 固体 稀 释 剂 ( 二 苯 甲酮 , 碳酸二 苯酯 ) , 制备 出 P V DF 中空 纤 维膜 并 对 膜性 能 进 行 表 征 。 当 P VDF / 稀 释 剂 体 系 粒堆积结构 , 强度 差 , 通量 高。 随着 P v DF / 稀 释 剂体 系液一液 相 分 离 区 的增 加 , 制得 膜 转 变为 双
2 0 1 3 年 第4 4 卷第9 期
浙} 2化 工
一3一
膜, 并 对 膜 结 构 及 膜性 能 进 行 表 征 , 当P V DF / 稀 释
mo l e c u l a r S c i e n c e ,P a r t A:P u r e a n d Ap p l i e d C h e mi s t r y ,
连续结构 , 强度 增加 。
关 键 词 :P VDF; T I P S ; 稀释 剂; 中 空纤 维 膜 文 章编 号 :1 0 0 6 - 4 1 8 4 ( 2 0 1 3 ) 9 - 0 0 0 1 - 0 3
聚 偏 氟 乙烯 ( P V D F) 作 为 一 种 半 结 晶 型 聚 合
物, 具 有 优 良的力 学性 能 、 耐 化 学 稳 定 性 及 耐 候

热致相分离法制备聚丙烯中空纤维微孔膜的方法

热致相分离法制备聚丙烯中空纤维微孔膜的方法

热致相分离法制备聚丙烯中空纤维微孔膜的方法
热致相分离法是一种常用于制备中空纤维微孔膜的方法,也适用于聚丙烯的制备。

方法步骤如下:
1. 准备聚丙烯原料:将聚丙烯颗粒溶解在适当的溶剂中,形成聚丙烯溶液。

2. 气泡纺丝:将聚丙烯溶液通过纺丝装置,形成一个中空纤维,在纺丝过程中,可以通过控制纺丝条件,如溶液浓度、纺丝温度和压力,来调节纤维的直径和孔隙结构。

3. 固化:将纺丝得到的中空纤维置于热致相分离设备中,通过加热使纤维凝固固化。

固化温度和时间应根据聚丙烯的特性进行调节,通常在聚丙烯的熔点以上进行。

4. 调控孔隙结构:通过控制固化过程中的工艺参数,如加热速率和固化时间,可以调节孔隙结构的大小和分布。

5. 洗涤和干燥:将固化后的中空纤维用适当的溶剂进行洗涤,去除残留的溶剂和非溶剂成分。

然后将洗涤后的中空纤维进行干燥,得到最终的聚丙烯中空纤维微孔膜。

通过这种方法制备得到的聚丙烯中空纤维微孔膜具有高孔隙率、均匀分布的微孔结构和较好的分离性能,可广泛应用于液体分离、气体分离和膜反应等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热致相分离
热致相分离法
热致相分离法的英文缩写TIPS,是Thermally Induced Phase Separation 的简称.它的工艺过程及原理是在聚合物的熔点以上,将聚合物溶于高沸点,低挥发性的溶剂(又称稀释剂)中,形成均相溶液。

然后降温冷却。

在冷却过程中,体系会发生相分离。

这个过程分两类,一类是固-液相分离(简称S-L相分离),一类是液-液相分离(L-L相分离)。

控制适当的工艺条件,在分相之后,体系形成以聚合物为连续相,溶剂为分散相的两相结构。

这时再选择适当的挥发性试剂(即萃取剂)把溶剂萃取出来,从而获得一定结构形状的聚合物微孔膜。

与NIPS法相比,TIPS有许多优点:它通过较为迅速的热交换促使高分子溶液分相,而不是缓慢的溶剂一非溶剂交换;TIPS 法避免了NIPS法(非溶剂致相分离法)由于存在溶剂一非溶剂交换,导致成膜液中部分溶剂参与了聚合物的凝胶化,所以孔隙率低的缺点;TIPS法可用于难以采用NIPS法制备的结晶性聚合物微孔滤膜的制备,而且TIPS法的影响因素要比NIPS法少,更容易控制;由TIPS法可获得多种微观结构,如开孔,闭孔,各同向性,各异向性,非对称等。

热致相分离制膜步骤
TIPS法制备微孔膜的步骤主要有溶液的制备(可连续也可间歇制备)、膜浇注和后处理3步。

具体操作为:(1)聚合物与高沸点、低分子量的液态或固态稀释剂混合,在高温时形成均相溶液;(2)将混合物溶液制成所需要的形状(平板、中空纤维或管状);(3)冷却溶液使其发生相分离;(4)除去稀释剂(常用溶剂萃取);(5)除去萃取剂(蒸发)得到微孔结构。

热致相分离法成膜的影响因素
1、结晶与液液分相的竞争
热致相分离法制作无定形聚合物膜时,只需考虑高分子溶液的凝胶化的影响,因为只有高分子溶液的凝胶化才足以终止液液分相的演化过程. 但是对于目前通常选用的结晶性聚合物来说,就必须考虑以下3 种可能的相变过程:聚合物结晶引起的固液分相、溶剂结晶接着聚合物结晶和液液分相接着聚合物结晶. 发生何种类型的相变完全由组分的浓度和分相温度决定.
2、溶液浓度的影响
降低高分子溶液的浓度会促进液液分相、抑制聚合物的结晶,往往容易得到连通性较好的微孔结构. 对于这一现象,有以下几点原因: (1) 由相图的杠杆定则可知,TIPS 分相过程会产生更多的富溶剂相,富聚合物相的结晶固化对液液分相的抑制作用减小; (2) 富溶剂相的成核几率增加(因Δμs 增加) ,分相速率也增加;相反,富聚合物相的成核过程受到抑制; (3) 高分子溶液粘度的降低亦会促进富溶剂相的核间聚结,所以更可能出现连通性高的孔结构.
3、稀释剂的影响
稀释剂的流动性和结晶也会抑制(甚至终止) 液液分相的动力学过程。

就这一点来说,其机理完全类似于聚合物结晶的影响. 稀释剂的另一方面的重要影响是,它们与聚合物的相互作用(参数χ和r) 的差异会导致完全不同性质的相图结构,并引起相变机理和成膜的最终孔结构的巨大差异。

参数χ和r 值的影响可以根据高分子溶液的相容性判据来评价。

4、聚合物分子量的影响
聚合物分子量的影响有如下两方面:与溶剂相互作用的变化导致热力学相
图的改变和高分子溶液粘度的增加会抑制液液分相的动力学过程.
5、降温速率的影响
增加降温速率相当于增加分相的驱动力,所以液液分相和结晶的成核几率
都会同时增加. 由于细小的球晶对分相的抑制作用会减小,所以一般地增加降温速度有利于获得连通的微孔结构。

TIPS 法微孔膜的整体结构
1、非对称的微孔结构
湿法的成膜过程,铸膜液与凝胶浴之间发生非溶剂交换,铸膜液表面受到非
溶剂的影响较大,表层的相分离过程与内层有着很大的差异,所以NIPS法容易得
到非对称的微孔膜. TIPS 法成膜则不同,铸膜液足够薄时,铸膜液各处的温差较小,相似的分相条件就导致了相似的微孔结构. 应用的过程发现,对称性微孔膜
的一个主要缺点是:悬浮粒子容易进入支撑层导致孔道堵塞. 和对称性微孔膜相比,非对称的微孔膜能够更好地实现抗污染性(表层) 和通透性(支撑层) 的调节. 正是基于这一原因,如何采用TIPS 法制作非对称的多孔膜也引起高度关注。

2、杂化的TIPS 法
聚合物微孔膜的形成机制被划分成如下4 种类型:充填机理、形变机理、相变机理和组装方法,相变机理又包括溶致相分离和热致相分离. 对于工业生产而言,这些方法通常不是单独地使用,而是组合在一起以实现特定的微孔结构,这些组合各种机制的成膜方法就是杂化方法。

相关文档
最新文档