求最短路径
八年级数学最短路径题型归纳

八年级数学中的最短路径问题,通常涉及到几何图形中的点、线、面等元素,需要利用一些基本的几何知识和数学原理来求解。
以下是一些常见的最短路径题型及其解题方法:1.两点之间的最短距离:题型描述:在平面上给定两点A和B,求A到B的最短距离。
解题方法:直接连接A和B,线段AB的长度即为最短距离。
2.点到直线的最短距离:题型描述:在平面上给定一点P和一条直线l,求P到l的最短距离。
解题方法:作点P到直线l的垂线,垂足为Q,则PQ的长度即为最短距离。
3.直线到直线的最短距离:题型描述:在平面上给定两条直线l1和l2,求l1到l2的最短距离。
解题方法:如果l1和l2平行,则它们之间的距离即为最短距离;如果l1和l2不平行,则作l1到l2的垂线,垂足所在的线段即为最短4.点到圆的最短距离:题型描述:在平面上给定一点P和一个圆O,求P到圆O的最短距离。
解题方法:如果点P在圆O内,则最短距离为P到圆心的距离减去圆的半径;如果点P在圆O外,则最短距离为P到圆心的距离;如果点P在圆O上,则最短距离为0。
5.圆到圆的最短距离:题型描述:在平面上给定两个圆O1和O2,求O1到O2的最短距离。
解题方法:如果两圆外离,则它们之间的最短距离为两圆的半径之和;如果两圆外切,则它们之间的最短距离为两圆的半径之差;如果两圆相交或内切,则它们之间的最短距离为0;如果两圆内含,则它们之间的最短距离为两圆的半径之差减去两圆半径之和的绝对值。
6.多边形内的最短路径:题型描述:在一个多边形内给定两个点A和B,求A到B的最短解题方法:通常需要将多边形划分为多个三角形,然后利用三角形内的最短路径(即连接两点的线段)来求解。
7.立体几何中的最短路径:题型描述:在立体图形中给定两点A和B,求A到B的最短路径。
解题方法:通常需要将立体图形展开为平面图形,然后利用平面几何中的最短路径原理来求解。
在解决最短路径问题时,需要注意以下几点:准确理解题目要求,确定需要求的是哪两点之间的最短距离。
迪杰斯特拉求最短路径算法

通过使用迪杰斯特拉算法,我们可以找到这些最短 路径,从而帮助决策者做出更好的决策
在这些应用中,我们需要找到从一个地点到另一个 地点的最短路径,以便优化成本、时间和路线等
应用
Tarjan
Robert E. "A Class of Algorithms for Decomposing Disconnected Graphs". Journal of the ACM (JACM) 16.3 (1969): 430-447
在图论中,我们通常用节点表示地点,用边表 示两个地点之间的路径。每条边都有一个与之 相关的权重,表示从一个地点到另一个地点的 距离。迪杰斯特拉算法可以找到从源节点(出 发节点)到目标节点(目的地)的最短路径,即 使在图中存在负权重的边
算法步骤
算法步骤
初始化
01
将源节点的距离设置为0,将所有其他节点的距离
设置为正无穷。创建一个空的优先队列,并将源节
点放入队列
从优先队列中取出距离最小的节点
02
这个节点就是当前最短路径的起点
遍历从这个节点出发的所有边
03
对于每条边,如果通过这条边到达的节点的距离可
以通过当前节点更新(即新距离小于原距离),那么
就更新这个节点的距离,并将其加入优先队列
如果队列中仍有节点
04
回到步骤2。否则,算法结束
算法步骤
这个算法的时间复杂度是O((E+V)logV),其中 E是边的数量,V是节点的数量
这是因为每个节点和每条边都需要被处理和比 较,而这个过程是在一个优先队列中进行的,
需要O(logV)的时间复杂度
优点和缺点
优点和缺点
迪杰斯特拉算 法的优点在于 它可以在大多 数情况下找到 最短路径,而 且实现起来相 对简单
求最短路径课程设计

求最短路径课程设计一、教学目标本章节的教学目标是使学生掌握求最短路径的方法和算法,能够运用这些方法解决实际问题。
具体目标如下:1.知识目标:–掌握最短路径问题的定义和意义。
–了解常见的最短路径算法,如Dijkstra算法、Bellman-Ford 算法等。
–理解图论中与最短路径相关的基本概念,如权值、边、顶点等。
2.技能目标:–能够运用Dijkstra算法和Bellman-Ford算法计算最短路径。
–能够分析不同算法的时间复杂度和空间复杂度。
–能够将最短路径算法应用到实际问题中,如地图导航、网络路由等。
3.情感态度价值观目标:–培养学生的逻辑思维能力和问题解决能力。
–培养学生对算法和计算机科学的兴趣和好奇心。
–培养学生团队合作和交流的能力,能够与他人共同解决问题。
二、教学内容本章节的教学内容主要包括最短路径问题的定义和意义、常见最短路径算法的原理和实现、以及最短路径算法在实际问题中的应用。
具体内容包括以下几个方面:1.最短路径问题的定义和意义:介绍最短路径问题的背景和定义,解释最短路径在实际中的应用场景。
2.常见最短路径算法:介绍Dijkstra算法和Bellman-Ford算法的原理和实现步骤,包括算法的时间复杂度和空间复杂度分析。
3.最短路径算法应用:通过实际案例,展示最短路径算法在地图导航、网络路由等领域的应用。
三、教学方法为了激发学生的学习兴趣和主动性,本章节将采用多种教学方法相结合的方式进行教学。
具体方法包括:1.讲授法:通过讲解最短路径问题的定义、算法原理和实现步骤,使学生掌握相关知识。
2.案例分析法:通过分析实际案例,使学生了解最短路径算法在现实中的应用。
3.实验法:安排上机实验,让学生动手实践,加深对最短路径算法的理解和掌握。
4.讨论法:学生进行分组讨论,促进学生之间的交流与合作,培养学生的团队合作能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,将采用以下教学资源:1.教材:选择一本与最短路径问题相关的教材,作为学生学习的基础资源。
最短路径问题算法

最短路径问题算法最短路径问题算法概述:在图论中,最短路径问题是指在一个加权有向图或无向图中,从一个顶点出发到另外一个顶点的所有路径中,权值和最小的那条路径。
最短路径问题是图论中的经典问题,在实际应用中有着广泛的应用。
本文将介绍常见的几种最短路径算法及其优缺点。
Dijkstra算法:Dijkstra算法是一种贪心算法,用于解决带权有向图或无向图的单源最短路径问题,即给定一个起点s,求出从s到其他所有顶点的最短路径。
Dijkstra算法采用了广度优先搜索策略,并使用了优先队列来维护当前已知的距离最小的节点。
实现步骤:1. 初始化:将起始节点标记为已访问,并将所有其他节点标记为未访问。
2. 将起始节点加入优先队列,并设置其距离为0。
3. 重复以下步骤直至队列为空:a. 取出当前距离起始节点距离最小的节点u。
b. 遍历u的所有邻居v:i. 如果v未被访问过,则将其标记为已访问,并计算v到起始节点的距离,更新v的距离。
ii. 如果v已被访问过,则比较v到起始节点的距离和当前已知的最短距离,如果更小则更新v的距离。
c. 将所有邻居节点加入优先队列中。
优缺点:Dijkstra算法能够求解任意两点之间的最短路径,并且保证在有向图中不会出现负权回路。
但是Dijkstra算法只适用于无负权边的图,因为负权边会导致算法失效。
Bellman-Ford算法:Bellman-Ford算法是一种动态规划算法,用于解决带权有向图或无向图的单源最短路径问题。
与Dijkstra算法不同,Bellman-Ford算法可以处理带有负权边的图。
实现步骤:1. 初始化:将起始节点标记为已访问,并将所有其他节点标记为未访问。
2. 对于每个节点v,初始化其到起始节点s的距离为正无穷大。
3. 将起始节点s到自身的距离设置为0。
4. 重复以下步骤n-1次(n为顶点数):a. 遍历所有边(u, v),如果u到起始节点s的距离加上(u, v)边权小于v到起始节点s的距离,则更新v的距离为u到起始节点s的距离加上(u, v)边权。
求最短路径的算法

求最短路径的算法
最短路径算法是计算图中两个节点之间最短距离的算法。
在计算机科学中,最短路径算法是图论中最基本的算法之一。
最常见的应用是在路由算法中,用来寻找两个网络节点之间的最短路径。
最短路径算法有多种实现方式,其中最著名的算法是迪杰斯特拉算法和弗洛伊德算法。
迪杰斯特拉算法使用贪心策略,从起点开始对所有节点进行扫描,依次找到距离起点最近的节点,并更新与其相邻节点的距离。
弗洛伊德算法则是基于动态规划的思想,通过递推计算出所有节点之间的最短路径。
除了以上两种算法,还有贝尔曼-福德算法、A*算法等,它们各自适用于不同的场景。
例如,A*算法是一种启发式搜索算法,根据启发函数估计到目标节点的距离,从而更快地找到最短路径。
在实际应用中,最短路径算法被广泛使用。
例如,在地图导航中,我们需要找到最短路径来规划行程;在通信网络中,路由器需要计算出最短路径来转发数据包。
因此,掌握最短路径算法是计算机科学学习的基础,也是工程实践中必备的技能。
- 1 -。
弗洛伊德算法求解最短路径

弗洛伊德算法求解最短路径算法的基本思想是采用动态规划的方式,逐步地计算图中所有顶点对之间的最短路径长度。
算法首先初始化一个二维数组D,其中D[i][j]表示从顶点i到顶点j的最短路径长度。
初始时,D[i][j]的值为无穷大,表示顶点i到顶点j没有直接路径。
然后,算法通过逐步更新D数组的值,不断地优化顶点对之间的最短路径。
算法的具体步骤如下:1.初始化D数组:对于图中的每一对顶点i和j,如果i等于j,则置D[i][j]=0,表示顶点到自身的距离为0;否则,如果i和j之间有边存在,则置D[i][j]为边的权重,否则置为无穷大。
2.对于图中的每一个顶点k,依次考虑顶点对(i,j),其中i和j分别表示图中的任意两个顶点。
如果从顶点i先经过顶点k再到达顶点j的路径长度小于当前D[i][j]的值,则更新D[i][j]为新的较短路径长度。
3.对于每一对顶点i和j,以每一个顶点k为中间节点,重复步骤2、这样,在每一次迭代中,D数组会根据当前的顶点k得到更短的路径。
4.根据更新后的D数组,可以得到任意两个顶点之间的最短路径长度。
如果需要获取最短路径上的具体路径,则可以使用一个辅助数组P,其中P[i][j]表示从顶点i到顶点j的最短路径上,从顶点i到顶点j前一个顶点的编号。
通过回溯P数组,可以得到最短路径上的所有顶点。
弗洛伊德算法的时间复杂度为O(n^3),其中n表示图中顶点的个数。
由于要对所有顶点对之间的路径长度进行计算,因此算法的运行时间较长。
然而,该算法适用于复杂图中的最短路径计算,可以得到任意两个顶点之间的最短路径及其长度。
弗洛伊德算法在实际应用中有广泛的应用。
例如,在路由算法中,可以使用弗洛伊德算法来计算网络中所有节点之间的最短路径,并根据计算结果进行路由选择。
此外,弗洛伊德算法也可以应用于交通规划、航空航线优化等领域。
总之,弗洛伊德算法是一种用于求解图中所有顶点对之间最短路径的动态规划算法。
通过逐步更新路径长度的方式,可以得到任意两个顶点之间的最短路径及其长度。
最短路径问题的求解

最短路径问题的求解
4、此时再以离原点最近的未展开的点B联接的所有点,处理后,再展开离原点最近未展开的D点, 处理后得到如下图的最终结果:
5、由上图可以得出结论:点C、B、D、E就是点A到它们的最短路径(注意:这些路径并不是经过了 所有点,而是只经过了其中的若干个点,而且到每一个点的那条路径不一定相同)。因而A到E的最 短距离就是13。至于它经过了哪几个点大家可在上述过程中加以记录即可。
最短路径问题的求解
三、等代价搜索法 等代价搜索法也是在宽度优先搜索的基础上进行了部分优化的一种算法,它与 启发式搜索的相似之处都是每次只展开某一个结点(不是展开所有结点),不同之 处在于:它不需要去另找专门的估价函数,而是以该结点到A点的距离作为估价值, 也就是说,等代价搜索法是启发式搜索的一种简化版本。它的大体思路是: 1、 从A点开始依次展开得到AB(7)、AC(3)、AD(10)、AE(15)四个新 结点,把第一层结点A标 把未展开过的AB、AC、AD、AE四个结点中距离最小的一个展开,即展开AC (3)结点,得到ACB(8)、ACD(16)、ACE(13)三个结点,并把结点AC标记为 已展开; 3、 再从未展开的所有结点中找出距离最小的一个展开,即展开AB(7)结点, 得到ABC(12)、ABD(20)、ABE(19)三个结点,并把结点AB标记为已展开; 4、 再次从未展开的所有结点中找出距离最小的一个展开,即展开ACB(8)结 点,……; 5、 每次展开所有未展开的结点中距离最小的那个结点,直到展开的新结点中 出现目标情况(结点含有5个字母)时,即得到了结果。
最短路径问题的求解
[问题分析] 对于一个含有n个顶点和e条边的图来说,从某一个顶点Vi到其余任一顶点Vj的最短路径,可 能是它们之间的边(Vi,Vj),也可能是经过k个中间顶点和k+1条边所形成的路径(1≤k≤n-2)。 下面给出解决这个问题的Dijkstra算法思想。 设图G用邻接矩阵的方式存储在GA中,GA[i,j]=maxint表示Vi,Vj是不关联的,否则为权值 (大于0的实数)。设集合S用来保存已求得最短路径的终点序号,初始时S=[Vi]表示只有源点, 以后每求出一个终点Vj,就把它加入到集合中并作为新考虑的中间顶点。设数组dist[1..n]用来 存储当前求得的最短路径,初始时Vi,Vj如果是关联的,则dist[j]等于权值,否则等于maxint, 以后随着新考虑的中间顶点越来越多,dist[j]可能越来越小。再设一个与dist对应的数组 path[1..n]用来存放当前最短路径的边,初始时为Vi到Vj的边,如果不存在边则为空。 执行时,先从S以外的顶点(即待求出最短路径的终点)所对应的dist数组元素中,找出其 值最小的元素(假设为dist[m]),该元素值就是从源点Vi到终点Vm的最短路径长度,对应的 path[m]中的顶点或边的序列即为最短路径。接着把Vm并入集合S中,然后以Vm作为新考虑的中 间顶点,对S以外的每个顶点Vj,比较dist[m]+GA[m,j]的dist[j]的大小,若前者小,表明加入 了新的中间顶点后可以得到更好的方案,即可求得更短的路径,则用它代替dist[j],同时把Vj 或边(Vm,Vj)并入到path[j]中。重复以上过程n-2次,即可在dist数组中得到从源点到其余 各终点的最段路径长度,对应的path数组中保存着相应的最段路径。 对于上图,采用Dijkstra算法找出C1到Ci之间的最短路径(2≤i≤6)的过程如下:
最短路径问题求解方法

最短路径问题求解方法最短路径问题是在图中找到两个顶点之间最短路径的问题。
在现实生活和计算机科学领域中,最短路径问题有很多应用。
比如,地图导航系统需要找到从一个位置到另一个位置的最短路径;计算机网络中需要找到两台主机之间最快的通信路径。
本文将介绍三种经典的最短路径问题求解方法:Dijkstra算法、Bellman-Ford算法和Floyd-Warshall 算法。
Dijkstra算法:Dijkstra算法是解决单源最短路径问题的一种常用算法。
它从给定的起始顶点开始,逐步找到其他顶点之间的最短路径。
算法的基本思想是维护一个距离数组,记录起始顶点到其他顶点的最短距离。
然后,选择当前距离最小的顶点作为下一个中间顶点,更新与该顶点相邻的顶点的最短距离。
重复这个过程,直到所有顶点都已被遍历。
Bellman-Ford算法:Bellman-Ford算法是一种解决单源最短路径问题的经典算法。
与Dijkstra算法相比,Bellman-Ford算法可以处理带有负权边的图。
算法的基本思想是进行多轮松弛操作,通过不断地更新边的权值,逐步逼近最短路径。
算法首先初始化距离数组,将起始顶点到其他顶点的距离设置为无穷大,然后进行多轮松弛操作,直到没有可更新的边或者找到负环。
Floyd-Warshall算法:Floyd-Warshall算法是解决多源最短路径问题的一种常用算法。
它可以找到图中任意两个顶点之间的最短路径。
算法的基本思想是利用动态规划的思想,通过定义一个二维数组,记录任意两个顶点之间的最短距离。
然后,通过不断更新这个数组,逐步迭代得到最终的最短路径。
这三种算法各有特点,适用于不同场合的最短路径问题。
Dijkstra算法适用于解决从单个顶点到其他顶点的最短路径问题,且图中没有负权边;Bellman-Ford算法适用于解决带有负权边的最短路径问题;Floyd-Warshall算法适用于解决任意两个顶点之间的最短路径问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include"stdio.h"
#include"stdlib.h"
#define MVNum 100 //最大顶点数
#define Maxint 32767
enum boolean{ FALSE,TURE };
typedef char VertexType;
typedef int Adjmatrix;
typedef struct { VertexType vexs[MVNum]; //顶点数组,类型假定为char型
Adjmatrix arcs[MVNum][MVNum]; //邻接矩阵,类型假定为int型
}MGraph;
int D1[MVNum],P1[MVNum];
int D[MVNum][MVNum],P[MVNum][MVNum];
/*建立有向图的存储结构*/
void CreateMGraph(MGraph *G,int n,int e)
{ //采用邻接矩阵表示法构造有向图G,n和e表示图的顶点数和边数 int i,j,k,w; for(i=1;i<=n;i++) G->vexs[i]=(char)i; for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
G->arcs[i][j]=Maxint; //初始化邻接矩阵 printf("输入%d条边的i,j及w:\n",e); for(k=1;k<=e;k++)
{ //读入e条边,建立邻接矩阵 scanf("%d,%d,%d",&i,&j,&w); G->arcs[i][j]=w;
}
printf("有向图的存储结构建立完成。
\n");
}
/*迪杰斯特拉算法*/
void Dijkstra(MGraph *G,int v1,int n)
{ //用迪杰斯特拉算法求有向图G的v1顶点到其他顶点v的最短路径P[v]和其权D[v]
//设G是有向图的邻接矩阵,若边<i,j>不存在,则G[i][j]=Maxint //S[v]为真当且仅当v在S 中 int D2[MVNum],P2[MVNum]; int v,i,w,min;
enum boolean S[MVNum]; for(v=1;v<=n;v++) {//初始化S和D
S[v]=FALSE; //设置最短路径终点集
D2[v]=G->arcs[v1][v]; //设置初始的最短路径值
if(D2[v]<Maxint)
P2[v]=v1; //v1是v的前驱
else
P2[v]=0; //v无前驱
}
D2[v1]=0;
S[v1]=TURE; //S集初始时只有源点,源点到其自身的距离为0 //开始循环,每次求得v1到某个v顶点的最短路径,并加v到S集中
for(i=2;i<n;i++)
{
min=Maxint;
if(!S[w]&&D2[w]<min)
{ //w顶点离v1顶点更近 v=w;
min=D2[w];
}
S[v]=TURE;
for(w=1;w<=n;w++) //更新当前最短路径及距离
if(!S[w]&&(D2[v]+G->arcs[v][w]<D2[w]))
{ //修改D2[w]和P2[w]
D2[w]=D2[v]+G->arcs[v][w];
P2[w]=v;
}
}
printf("路径长度路径\n");
for(i=1;i<=n;i++)
{
printf("%5d",D2[i]);
printf("%5d",i);
v=P2[i];
while(v!=0)
{
printf("<-%d",v);
v=P2[v];
}
printf("\n");
}
}
/*费洛伊德算法*/
void Floyd(MGraph *G,int n)
{
int i,j,k,v,w;
for(i=1;i<=n;i++) //设置路径长度D和路径path初值
for(j=1;j<=n;j++)
{
if(G->arcs[i][j]!=Maxint)
P[i][j]=j; //j是i的后继
else
P[i][j]=0;
D[i][j]=G->arcs[i][j];
}
for(k=1;k<=n;k++)
{ //做k次迭代,每次均试图将顶点k扩充到当前求得的从i到j的最短路径P[i][j] 上
for(j=1;j<=n;j++)
{
if(D[i][k]+D[k][j]<D[i][j])
{
D[i][j]=D[i][k]+D[k][j]; //修改长度
P[i][j]=P[i][k];
printf("dij=%d,pij=%d\n",D[i][j],P[i][j]);
}
}
}
}
void main() {
MGraph *G;
int m,n,e,v,w,k;
int xz=1;
G=(MGraph *)malloc(sizeof(MGraph));
printf("输入图中顶点个数和边数n,e:");
scanf("%d,%d",&n,&e);
CreateMGraph(G,n,e);
while(xz!=0)
{
printf("求城市之间的最短路径\n");
printf("1.求一个城市到所以城市的最短路径\n");
printf("2.求任意两个城市间的最短路径\n");
scanf("%d",&xz);
if(xz==2)
{ Floyd(G,n);
printf("输入起点和终点:v,w");
scanf("%d,%d",&v,&w);
k=P[v][w];
if(k==0)
printf("起点%d到终点%d无路径。
\n",v,w);
else
{
printf("从起点%d到%d的最短路径是:%d",v,w,v); while(k!=w)
{ printf("->%d",k);
k=P[k][w];
}
printf("->%d",w);
printf("路径长度为:%d\n",D[v][w]);
}
}
else
if(xz==1)
{
printf("求单源路径,输入源点v:"); scanf("%d",&v);
Dijkstra(G,v,n);
}
}
printf("结束求最短路径。
\n");
}。