第4单元:正比例和反比例
人教版六年级数学下册第四单元《正比例和反比例》(复习课件)

汽车所行路程与相应耗油量是两种相关联的量,耗油量
随着所行路程的变化而变化。所行路程增加,耗油量随
着增加;所行路程减少,耗油量随着减少。
4.已知y与x成正比例关系,在下表的空格中填写合
适的数。(选题源于教材P49第4题)
5
15
8
3
12.5
25
50
5.同一时间、同一地点测得3棵树的树高及其影长如
下表。(选题源于教材P50第5题)
长劲鹿:0.8×18=14.4(千米)
答:斑马18分钟跑了21.6千米,
长颈鹿跑了14.4千米。
下面的图象表示斑马和长颈鹿的奔跑情况。
(3)从图象上看,斑马跑得快还是长颈鹿跑得快?
从图像上看,10分钟时,斑马跑了
12千米,长劲鹿跑了8千米。
答:斑马跑得快。
判断下面各题中的两种量是否成反比例关系,并说明理由。
面积与所需地砖数量如下表。
所需地砖数量与每块地砖的面积是否成反比例?
为什么?(选题源于教材P51第8题)
成反比例关系。
因为所需地砖数量与每块地砖的面积的乘
积等于教室的面积,而教室的面积一定,
所以所需地砖数量与每块地砖的面积成反
比例关系。
2.食品加工厂准备把一批新酿的醋装瓶运往商店。
所装瓶数与每瓶容量是否成反比例关系?为什么?
有x、y、z三个相关联的量,并有xy=z。
(1)当z一定时,x与y成
比例关系。
反
xy=z
(一定) 即xy的积一定,则xy成反比例。
正
(2)当x一定时,z与y成
比例关系。
z
=x
xy=z
则zy成正比例。
y (一定),
正 比例关系。
北师大版六年级数学下册第四单元《正比例和反比例》检测卷(含答案)

北师大版六年级数学下册第四单元《正比例和反比例》检测卷(全卷共5页,满分100分,70分钟完成)一、选择题(每小题2分,满分16分)1.下面几组相关联的量中,成正比例的是()。
A.看一本书,每天看的页数和看的天数B.圆锥的体积一定,它的底面积和高C.修一条路已经修的米数和未修的米数D.步长一定,行走的距离和步数2.下面每题中的两种量,成正比例关系的是()。
A.小伟比小红大4岁,小伟的年龄和小红的年龄B.圆柱的体积一定,它的底面积和高C.一条路,未修的长度与已修的长度D.报纸的单价一定,订阅的份数与总价3.下列每组中两种量成反比例关系的是()。
A.如果3(0,0)=>>那么y与xy x x yB.含盐率一定,海水和晒出的盐的质量C.前进的距离一定,车轮的转数和车轮直径D.一个人的身高与他的年龄4.三角形的底一定,三角形的面积和高()。
A.成正比例关系B.成反比例关系C.不成比例5.下列各数量关系中,成反比例关系的是()。
A.全班人数一定,出勤人数和缺勤人数B.单价一定,买的数量和总价C.购买书的总价一定,购买的份数和单价6.学习了正、反比例后,有三位同学各说了一句话.哪位同学说的是正确的?( )。
甲:一个圆的周长和直径成正比例 乙:一个圆的直径和圆周率成反比例丙:铅笔的长度一定,用去的长度与剩下的长度成反比例 A .甲B .乙C .丙7.下面各数量关系中,成反比例关系的是( )。
A .全班人数一定,出勤人数和缺勤人数B .三角形的面积一定,它的底和高C .正方体的表面积和它的一个面的面积D .已知3xy=,x 和y 8.下面两个量成反比例的是( )。
A .速度一定,路程和时间B .1捆9米长的电线,用去的长度和剩下的长度C .一个数与它的倒数D .圆的周长和直径二、填空题(每小题2分,满分16分)9.如表,如果x 和y 成正比例,“?”处应填 ;如果x 和y 成反比例,“?”处应填 。
北师大版六年级下册《第4单元_正比例与反比例》小学数学-有答案-同步练习卷(1)

北师大版六年级下册《第4单元正比例与反比例》小学数学-有答案-同步练习卷(1)1. 是变化的量画“√”,不是的画“×”.①小朋友的年龄和身高。
________②工人已修的路程和未修的路程。
________③汽车行驶的路程和所用的时间。
________④一天中,每个时刻的温度与其相对应的时刻。
________⑤每天看书的页数和看书的天数。
________二、下表是小明爸爸工资变化情况.下表是小明爸爸工资变化情况。
(1)上表中哪些量在发生变化?(2)说一说小明爸爸工资从1985年到2015年是如何随时间而变化的?三、有20粒糖果,平均分给一些同学,请把表填写完整.有20粒糖果,平均分给一些同学,请把表填写完整。
将20粒糖果平均分,人数越多,每人分得糖果的粒数越________.四、解答题(共1小题,满分0分)圆的半径与它的面积变化情况如表。
(1)把上表填完整(2)上表中哪些量在发生变化?(3)圆的面积是如何随着半径的变化而变化的?五、解答题(共1小题,满分0分)某电信公司的手机卡的A类套餐收费标准如下:不管通话时间多长,每张卡每月必须交月租50元。
另外,每通话1分交费0.4元。
如果用y(元)表示每月应交费用,x(分)表示通话时间。
(1)你能用式子表示每月应交费用与通话时间的关系吗?(2)若某手机用户这个月通话时间为152分,那么他应交费多少元?判断下面各题中的两个量是否成正比例,是的在括号里画“√”,不是的画“×”.一袋大米,吃去的千克数与剩下的千克数成________比例。
(在横线里写上“正”“反”“不成”)圆柱的高一定,它的体积和底面积。
________花生的出油率一定,花生的质量和榨出的油的质量。
________一个人的体重和年龄。
________二、根据下表,完成问题.根据如表,完成问题。
①上表中________和________是两种变化的量,________随着________的变化而变化。
北师大版六年级数学下册第四单元《正比例和反比例》专项练习卷(含答案)

北师大版六年级数学下册第四单元《正比例和反比例》专项练习卷(全卷共5页,共22题,70分钟完成)1.一个工程队3天修了57米路。
照这样计算再修133米,一共需要几天?(用比例知识解)2.买4个本子用了6元。
如果买3个同样的本子,要用多少钱?(用比例解)3.工程队要修一条路,计划每天修150米,60天可以修好,实际每天比计划多修30米,多少天可以修好?(用比例解)4.给一间小型会议室铺地砖,用面积0.09m2的方砖铺地,正好需要100块,如果改用边长0.2m的方砖铺地,需要多少块?(用比例解)5.一架飞机顺风每小时飞行1500km,逆风每小时飞行1200km,燃油够飞9小时,飞机起飞时为顺风,飞机飞出多远就得往回飞?(用比例知识解答)6.学校会议室,用边长0.6m的方砖铺地,正好需要200块,如果改用边长0.5m的方砖铺地,需要多少块?(用比例解)7.六年级教师办公室购进一包白纸,计划每天用20张,可以用28天。
由于有了节约用纸的意识,实际每天只用了16张,实际可以用多少天?8.李师傅原来加工一个零件需要3.5分钟,后来改进了工艺,加工同样的一个零件只需2.8分钟。
原来准备做600个零件的时间,现在可以多做多少个?(用比例知识解决)9.从芜湖到上海的路程全程约360千米。
一辆轿车1.5小时行驶了135千米,照这样的速度行驶,行完全程需要多长时间?10.学校食堂运来30袋大米,每袋40kg,第1周(5天)用了400kg照这样计算,这批大米能用多少天?(列比例解答)11.食堂运来一批煤,原计划每天烧0.4t,可以烧63天,改进技术后,每天只烧0.28t,这批煤实际能烧多少天?(用比例知识解答)12.李老师读《新教育》一书,如果每天读10页,26天能读完。
李老师想提前6天读完,平均每天要读多少页?(请用比例的知识解答)13.有一间大客厅,用面积9平方分米的方砖铺地,需要1200块,如果改用边长40厘米的方砖铺地,需要多少块?(用比例解)14.工厂加工一批零件,原计划每天做80个,30天可以完成任务。
2021年北师大版数学六下第四单元《正比例和反比例》章节知识点、达标训练附解析

北师大版数学六年级下册章节复习知识点、达标训练附解析第四单元《正比例和反比例》知识点一:变化的量1.相互关联的变量在一定条件下的变化是有规律的。
2.列表与画图都可以表示变量之间的变化关系。
分析表格时,要弄清两个变量及相对应的数据;分析图时,要弄清图中横轴、纵轴表示的量的名称,以及图中每一个点所对应的两个量的多少。
3. 一般用含有字母的式子表示有规律的变量的变化规律,应先根据题中的条件写出等量关系式,再将等量关系式用字母表示出来。
知识点二:正比例1.成正比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的比值一定。
2.如果用x和y表示两个相关联的量,用k(一定)表示它们的比值,正比例关系可以表示为=k(一定)。
3.判断两个量是否成正比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的比值;(3)最后,根据比值是否一定来判断这两个变量是否成正比例。
知识点三:正比例图像1.成正比例的两个量表示的各点在同一条直线上,即正比例图象的特征是一条直线。
2.从正比例图象中可以得出任意一点所表示的意义。
3. 观察正比例图象时,要先明确横轴、纵轴表示的意义,从图象中可以直观地看出两个量的变化情况,不需要计算,由一个量的值可以直接找到与它对应的另一个量的值。
知识点四:反比例1.成反比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的积一定。
2.如果用字母x和y表示两个相关联的量,用k(一定)表示它们的乘积,反比例关系可以表示为xy=k(一定)。
3.判断两个量是否成反比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的积;(3)最后,根据积是否一定来判断这两个变量是否成反比例。
【分层训练】六年级下册数学单元测试-第四单元正比例和反比例(基础卷) 北师大版(含答案)

六年级下册数学单元测试-第四单元正比例和反比例(基础卷)一.选择题(满分16分,每小题2分)1.下列哪个图象是正比例图象()A.B.C.D.2.下列X和Y成反比例关系的是()A.3Y X=+B.56X Y+=C.56X Y=D.6YX=3.下面四句话中.错误的有()句.①教师节、儿童节、国庆节所在的月份都是小月.②四个圆心角是90︒的扇形可以拼成一个圆.③如果两个质数的和仍是质数,那么它俩的积一定是偶数.④如果440ab+=,那么a与b成反比例.A.1B.2C.3D.44.自然数(1)a a>与它的倒数()A.不成比例B.成正比例C.成反比例D.无法判断5.全班人数一定,出席人数和缺席人数()A.成正比例B.成反比例C.不成比例D.无法判断6.a与b成反比例关系的条件是()A.acb=(一定)B.a c b⨯=(一定)C.a b c⨯=(一定)7.下面每题的两种量,()成正比例.A.小明星期天散步,行走的速度和时间B .小明的体重和他的身高C .小明洗衣服的件数和用水总量D .小明用圆规画圆,圆规两脚之间的距离与所画出的圆的周长 8.圆的面积和半径( ) A .成正比例B .成反比例C .不成比例二.填空题(满分16分,每小题2分)9.三角形的底一定,面积和高 比例;圆的面积和半径 比例;如果95x y=,那么x 和y 比例. 10.如果7x y =,那么x 和y 成 比例关系;如果2y x=,那么x 和y 成 比例关系。
11.有两种量a 和b ,它们的关系如表:a20 40 60 80 ⋯b241286⋯(1)a 和b 成 比例关系; (2)如果4b =,那么a = .12.《新教育》书籍的单价一定,购买的总钱数和本数成 比例. 13.如果440ab +=,a 与b 成 比例;如果34a b =,a 与b 成 比例. 14.王叔叔加工一批零件,加工零件个数与加工时间的关系图象如下. (1)加工的零件个数与加工的时间成 比例关系. (2)图象上有一点(,)M a b ,那么ba= . (3)这批零件一共有180个,王叔叔加工完这批零件一共需要 小时.15.如果13x y =,那么χ和y 成 比例;如果13x y =,那么x 和y 成 比例.16.下面相关联的两个量中,成正比例,成反比例.A.淘气步行从家到学校,所用的时间和平均速度;B.淘气步行从家到学校,已走的路程和未走的路程;C.每张邮票1.2元,淘气买邮票应付的钱数和所买的邮票张数;D.圆的面积和半径.三.判断题(满分8分,每小题2分)17.在一块菜地上种的黄瓜和西红柿的面积成反比例关系..18.一个人的身高和体重成正比例..19.全班人数一定,出勤人数和缺勤人数成反比例.20.圆的周长与直径成正比例关系..四.应用题(满分12分,每小题6分)21.(6分)甲、乙两数的比是5:6,乙、丙两数的比是4:5,已知甲、丙两数的差是15,则甲、丙两数分别是多少?22.(6分)下面哪杯盐水最咸?哪杯盐水最淡?盐水8:1517:509:50盐与水的质量比五.操作题(满分16分,每小题8分)23.(8分)如图图象表示长颈鹿的奔跑情况,请回答下面问题:(1)完成表:时间/分51015202530路程/千米(2)不计算,根据图象估计一下,长颈鹿跑10km,大约要分钟.(3)长颈鹿奔跑的路程和时间是否成比例?成什么比例?.24.(8分)汽车行驶的时间和路程如表.在图中描出表示路程和相应时间的点,然后把它们按顺序连起来.时间/时123456路程/km80160240320400480六.解答题(满分32分,每小题8分)25.(8分)一个环保节能型造纸厂生产情况如下表:时间/天125810生产总量/吨80160400640800(1)生产总量和时间成什么比例关系?为什么?(2)在下图中用点表示出相对应的生产总量和时间,再把它们按顺序连起来.26.(10分)如图表示某种汽车所行路程和耗油的关系.(1)根据图象,汽车耗油量与所行路程成比例关系.(2)观察图象,当汽车耗油6L,可以行驶km.(3)请你算一算,如果汽车行驶138千米,耗油多少升?(用比例解)27.(6分)已知x与y成反比例关系,在下表的空格中填写合适的数.x23y40.61228.(8分)一种笔记本每本售价2元,回答下面问题.数量/本0123456⋯总价/元024681012⋯(1)把笔记本的数量与总价所对应的点在图中描出来,并连线.(2)买7本笔记本要多少钱?六年级下册数学单元测试-第四单元正比例和反比例(基础卷)参考答案一.选择题(满分16分,每小题2分)1.解;根据正比例图象的特点可知,图B 符合正比例图象的特点,所以图B 是正比例图象. 答案:B .2.解:A 、3Y X =+,即3Y X -=,是差一定,不成比例;B 、56X Y +=,X 和Y 的和一定,不成比例; C 、56X Y =,即5:6X Y =,是比值一定,成正比例;D 、6Y X=,即6XY =,是乘积一定,成反比例. 答案:D .3.解:①教师节是9月10日,儿童节是6月1日是小月,而国庆节是10月1日不是小月; 所以教师节、儿童节、国庆节这些节日所在的月份都是小月是错误的.②4个圆心角都是90︒的扇形,半径不一定相等,所以用4个圆心角都是90︒的扇形不一定可以拼成一个圆, 所以原题说法错误.③如果两个质数的和仍是质数,据出可知这两个质数中必须有一个质数是2,因为除了2以外其它质数都是奇数,如:235+=,5是质数,257+=,7是质数; 236⨯=,6是偶数,2510⨯=,10是偶数;所以这种说法正确.④如果440ab +=,即36ab =,是乘积一定,那么a 与b 成反比例,所以这种说法正确. 所以该题说法错误的有两个, 答案:B .4.解:自然数(1)a a >⨯它的倒数1=(一定),是乘积一定,所以自然数(1)a a >和它的倒数成反比例. 答案:C .5.解;出席人数+缺席人数=全班人数(一定),是和一定,故出席人数和缺席人数不成比例. 答案:C .6.解:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.只有a b c ⨯=(一定),a 与b 才成反比例.只有C 选项符合反比例的意义. 答案:C .7.解:A 、因为:速度⨯时间=路程,路程不一定,所以小明星期天散步,行走的速度和时间不成比例;B 、小明的身高和体重,不是比值一定,也不是乘积一定,所以小明的身高和体重不成比例;C 、用水总量÷衣服的件数=每件的用水量,因为没有定量,所以小明洗衣服的件数和用水总量不成比例;D 、因为:周长2r π÷=(一定),所以小明用圆规画圆,圆规两脚之间的距离与所画出的圆的周长成正比例; 答案:D .8.解:圆的面积÷半径的平方π=(一定),是比值一定,圆的面积和半径的平方成正比例,但是圆的面积和半径不成比例. 答案:C .二.填空题(满分16分,每小题2分)9.解:(1)三角形的面积÷高2=⨯三角形的底(一定) 因为三角形的底一定,比值一定,所以面积和高成正比例; (2)圆的面积÷半径的平方π=(一定)因为比值一定,所以圆的面积和半径的平方成正比例,则圆的面积和半径不成比例; (3)5945xy =⨯=(一定)因为乘积一定,所以x 和y 成反比例; 答案:成正,不成,成反。
人教版六年级下册数学第四单元练习课(正比例和反比例)【教案】

教学笔记练习课(正比例和反比例)教学内容完成教科书P50~52“练习九”中第7、9、12、13、14、15、16题。
教学目标1.在练习中,进一步理解正、反比例的意义,弄清它们的联系和区别,能正确、熟练地判断正、反比例关系。
2.提高观察、分析、比较、抽象概括和判断推理的能力。
3.提高学生综合运用知识解决实际问题的能力,培养学生自主探究、合作交流的学习能力。
教学重点进一步掌握正、反比例关系的意义。
教学难点正确应用正、反比例知识解答基本的正、反比例应用题。
教学准备课件。
教学过程一、比较正、反比例的意义,加深理解1.回顾旧知识,对比感知。
师:我们已经初步学习了判断两种量是不是成正比例或反比例的关系的方法,你能判断下面两种量成什么比例吗?(出示课件)【学情预设】预设1:路程和时间是两种相关联的量,因为速度一定,路程÷时间=速度,所以路程和时间成正比例关系。
预设2:速度和时间是两种相关联的量,因为路程一定,速度×时间=路程,所以速度和时间成反比例关系。
预设3:路程和速度是两种相关联的量,因为时间一定,路程÷速度=时间,所以路程和速度成正比例关系。
师:同样都是速度、时间、路程,为什么有的成正比例关系,有的成反比例关系?【学情预设】引导学生说出要看两种相关联的量的变化规律,还要看比值一定还是乘积一定。
(教师可以让学生具体说一说成正比例关系的两种量的变化规律、成反比例关系的两种量的变化规律。
)师:你还能举出类似的例子吗?【学情预设】预设1:单价、数量、总价之间也有这样的关系。
总价一定,单价×数量=总价,单价和数量成反比例关系;单价一定,总价÷数量=单价,总价和数量成正比例关系;数量一定,总价÷单价=数量,总价和单价成正比例关系。
预设2:工作总量、工作时间、工作效率之间也有这样的关系。
工作总量一定,工作效率×工作时间=工作总量,工作效率和工作时间成反比例关系;工作效率一定,工作总量÷工作时间=工作效率,工作总量和工作时间成正比例关系;工作时间一定,工作总量÷工作效率=工作时间,工作总量和工作效率成正比例关系。
正比例与反比例ppt课件

-1-
第 1 课时 变化的量
■考点 认识“变化的量” 生活中存在着许多互相依存的变量,其中一个量随着另一个量的变化而
变化。例如一天的气温随着时间的变化而变化;汽车行驶的路程随着行驶时间 的变化而变化;生产总量随着生产天数的变化而变化等。
-2-
例1 连一连,把相互变化的量连起来。
路程
正方形周长
边长
-16-
第 4 课时 反比例
■考点 反比例的意义与判断方法 1.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中
相对应的两个数的积一定,这两种量就叫作成反比例的量,它们的关系叫作反 比例关系。
2.如果用字母y和x表示两种相关联的量,用k表示它们的积(一定),反比例 关系可以用字母表示:xy=k(一定)。
-4-
例2 说一说,一个量怎样随另一个量变化? 一种故事书每本3元,买书的总价与书的本数。 解析:每本故事书的单价一定,买书的总价随着买书的本数的变化而变化, 买的本数越多,总价越多,本数越少,总价越少。 正确答案:买书的总价随着书的本数的增加而增加。 易错答案:买书的总价随着书的本数的变化而变化。 错因分析:错解错在没有点明书的总价随着本数的变化怎样变化。 满分备考:解决两个变化的量的问题时,要联系生活实际和以前学过的关 系,仔细分析,得出结论,并把两个量之间的变化关系描述出来。
刘奇的睡眠时间和天数是否成正比例关系?李英的呢? 解析:分别求出刘奇和李英的睡眠时间和对应天数的比值,如果比值一定则 成正比例关系。 正确答案:刘奇: =10, =10, =10, =10,刘奇的睡眠时间和对应 天数的比值一定,所以成正比例。
-12-
李英: =8, =8, =8, =8, =8,李英的睡眠时间和对应天数的 比值一定,所以成正比例关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(四)小结
这节课我们学到了什么?你们有什么收获?
(注意:原点是实心还是空心画图像时要注意)《课堂作业》重难点题目解析:
、回答问题:
(1)图中的点ABCD……在一条直线上吗?
(2)把图中的点用平滑的曲线依次连起来。
(3)长和宽是怎样变化的?有什么规律?
长扩大,宽缩小,相对应的长和宽的乘积是24。
关系式:长×宽=长方形面积(一定)
我们可以用图示来表示成反比例的量之间的关系。
根据学生的掌握程度判断是否加深知识点。
如果学生掌握的好,可以指出我们所画的图示就是反比例数y=kx 的图像。
、自己找一些反比例的例子,并把它转化成数学问题,用图表示其中的反比例关系
二、课堂小结
通过解决问题有什么收获?还有什么疑问?
三、课堂练习:《课堂作业本》P
10
拓展作业设计:
并说明理由:
单价、数量和总价这三个量每两个量之间有什么样的比例关系:
2.课本第33页练习二第3题。
先让学生分析表中的数据,独立完成题目后再全班交流。
3.独立完成P34第4、6题后交流。
三课堂作业
《作业本》P13~14第3、4两题。
《课堂作业本》重难点题目解析:。