正比例函数教学设计及课件作业

合集下载

正比例函数教案

正比例函数教案

《正比例函数》(第1课时)教学设计教学目标:知识技能:1.初步理解正比例函数的概念及其图象的特征。

2.能够画出正比例函数的图象。

3.能够判断两个变量是否构成正比例函数关系。

解决问题:1.能按要求运用“列表法”和“两点法”作正比例函数的图象。

2.会利用正比例函数解决简单的数学问题。

情感态度:1.结合描点作图,培养学生认真、细心、严谨的学习态度和学习习惯。

2.通过正比例函数概念的引入,使学生进一步认识数学史由于人们需要而产生的,与现实世界密切相关,同时渗透热爱自然和生活的教育。

教学重点:正比例函数的概念。

教学难点:正比例函数图像的特征。

教具准备:尺子、课件、实物投影、练习试卷教学过程:活动一:问题1. 你知道候鸟吗?他们在每年的迁徙中能飞多远?2. 候鸟燕鸥的飞行路程与时间之间有什么样的数量关系?师生行为:教师用课件出示问题让学生思考并解答教科书上的问题。

学生思考自主解决三个问题:(1)燕鸥每天飞行的路程。

(2)燕鸥总行程y(千米)与飞行时间x(天)的关系式y=200x;(3)燕鸥飞行1个半月的行程。

教师应重点关注:学生对飞行总行程y和飞行时间x的函数关系的理解;学生能否正确指出自变量、自变量的函数、自变量的取值范围。

活动二:问题1. 看大屏幕上的几个实例,这些问题中的变量对应规律可用怎样的函数表示?这些函数有什么共同点?师生行为:教师出示4个实际问题(投影),要求学生:能找出变量对应关系表达式;能说出表达式中的自变量,自变量的函数。

学生自主探究,分组讨论;然后教师让各小组代表回答问题,师生互动对问题的回答进行评价。

教师提问:l=2 中,字母 是变量吗?教师引导学生观察、分析上面5个函数表达式的共性,师口述并板书正比例函数的概念。

学生在定义处画上记号,思考并回答为什么强调k是常数,k=0?学生讨论互相补充。

2. 你能列举出一些正比例函数的例子吗?师生行为:学生尝试答问题,师提醒回答,要求:举出实际问题;能对其中的自变量、比例系数、函数关系进行正确的解释。

正比例函数教案与教学设计(两份)

正比例函数教案与教学设计(两份)

《正比例函数》教学设计(一)一、教学目标:1、知道一次函数与正比例函数的意义.2、能写出实际问题中正比例关系与一次函数关系的解析式.3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力二、教学重点:对于一次函数与正比例函数概念的理解.三、教学难点:根据具体条件求一次函数与正比例函数的解析式.四、教学方法:结构教学法、以学生“再创造”为主的教学方法五、教学步骤(一)明确目标前几节课我们学习了一些与函数有关的知识点,它们都是一些一般性的问题.从这节课开始,我们将来研究几个特殊函数的解析式和图象.首先,我们来研究一次函数.(板书)(二)整体感知提问:1.什么是函数?2.函数有哪几种表示方法?3.你能否举出几个函数的例子?若学生举的例子正是一次函数,就把它写在黑板上,用于讲解;若学生举的例子不适合,可采用书上给出的例子讲解.提问:(1)这些式子表示的是什么关系?(函数关系)(2)这些函数中的自变量是什么?函数是什么?这个问题主要是使学生明确函数就是等号左边的s和y;而自变量是x 和t之后,明确等号右边其实是一个代数式的形式,以便回答下一个问题.(3)在这些函数式中,含有函数的自变量的式子,分别是关于自变量的什么式子?这个问题是给出一次函数的概念的关键问题,若学生没有想到用“一次式”这种方式表示,教师可直接向学生提出“是关于自变量的几次式”这个问题,再由学生回答.(4)结合我们学过的一元一次方程的有关知识,你能否说出x的一次式的一般形式是什么样的?由学生讨论回答,及时纠正可能出现的错误,最后加以总结:x的一次式是kx+b(k≠0)的形式.由上面的问题结果综合得到:(板书)一般地,如果y=kx+b(k、b是常数,k≠0),那么,y叫做x的一次函数.提问:(1)k、b是常数的含义是什么?答:对于一个特定的函数式,k和b的值是固定的.(2)对于函数y=2x+3和y=-2x-5,你能否指出其中的k和b?这个问题一方面是为了向学生进一步说明k和b是常数的含义,另一方面也是为了培养学生思维的灵活性和深刻性,充分体会一次函数标准形式的表示方法,能正确分清其中的k和b,为以后学习一次函数的图象和性质打下良好的基础.强调学生在回答时,注意k和b的符号.(3)k≠0这个条件能否省略不写?由学生讨论回答,指出若k=0,则y=kx+b变形为y=b,b是关于x的0次式,因此不是一次函数,不必向学生交待常函数的意义.(4)上述一次函数的定义中,限制了k≠0,那么b能否为0呢?若b=0,上述式子变形为什么样?这个问题主要是为了引出正比例函数的概念,同时,通过这种引法,也可以使学生体会到正比例函数与一次函数是有关系的.由问题(4)总结,板书:特别地,当 b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.提问:(1)正比例函数与一次函数有怎样的关系?答:正比例函数是一次函数的特例.(2)小学时,学过正比例的知识吗?是怎样叙述的?请你回忆一下.小学叙述时,是强调两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.写成式子是y=kx(k为常数,k不等于0)提问:小学学过的正比例与我们现在说的正比例函数有什么关系?先由学生观察,然后总结:把小学学过的正比关系的式子加以变形就成为y=kx(k一定),也就是我们现在所学习的正比例函数.由于小学定义时k为商,所以k当然不为0,这个细节可由教师提问后学生回答.但小学学习时,x与y只能取正数,但现在就不同了,x和y可以取任意实数.由这个总结使学生对学过的知识能加以系统的理解.练习一:P.105中1 口答.注意:一定要让学生说清原因.刚才我们学习了一次函数和正比例函数的概念,下面我们来看一下,能否根据实际问题自己列出一次函数和正比例函数的关系式呢?(出示幻灯)例1 一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;(2)求3.5秒时小球的速度;(3)求经过几秒小球的速度可变化为10米/秒.分析:v与t是正比例关系,若学生有困难,可出示下表帮助学生理解:例2 拖拉机开始工作时,油箱中有油40升,如果每小时耗油6升,求油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式,并求出自变量的取值范围.这道题学生会感到有困难,以提问的方式分析:(1)油箱中的油为什么会减少?(耗油)(2)余油量与什么有关?(原油量与耗油量)(3)耗油量与什么有关,怎样表示?(4)你能否确定这个函数关系式?(5)这道题是实际问题,拖拉机能否一直工作?什么时候拖拉机不能工作了呢?练习二:P.105中2 填在书上,口答,注意单位(万元).(三)重点、难点的学习与目标完成过程本节课的第一个重点是一次函数与正比例函数的概念,为了便于学生的理解,教师不是上来就给出概念让学生背,而是通过一些函数的解析式让学生归纳总结一次函数概念,然后通过一次函数概念中的一些条件的分析得出正比例函数,使学生很清楚地看到一次函数与正比例函数的关系.关于本节课的第二个重点和难点,教师更是要给学生充分的思考时间,并把问题层层剖析,使学生能理解实际问题的含义,由此自然而然地达到把实际问题抽象成数学模型的目的.(四)总结、扩展教师提问,学生思考回答:1.这节课我们学习了几个特殊的函数?2.你能分别说出它们的一般形式吗?3.正比例函数与一次函数有怎样的关系?4.确定实际问题的自变量取值范围应注意什么?《正比例函数》教学设计(二)一、教学目标知识与技能:1.理解正比例函数的概念。

19.2.1 正比例函数 教学设计

19.2.1 正比例函数 教学设计

19.2.1正比例函数的概念教学设计一、教学目标:1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.二、教学重、难点:重点:正确理解正比例函数的概念.难点:根据己知条件写出正比例函数解析式.三、教学过程:知识精讲思考:下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式.(1)圆的周长1随半径r的变化而变化;.(2)铁的密度为7.8g∕c*铁块的质量m(单位:g)随它的体积V(单位:(W)变化而变化;.(3)每本练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:Cm)随这些练习本的本数n的变化而变化;.(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T(单位:°C)随冷冻时间t(单位:min)的变化而变化..认真观察以上出现的四个函数有什么共同特点?(1)1=211r(2)m=7.8V(3)h=0.5n(4)T=-2t正如函数y=300t一样,上面这些函数都是常数与自变量的积的形式.一般地,形如y=kx(k是常数,kW0)的函数,叫做正比例函数,其中k叫做比例系数.注:(Dk是常数,且k#0;(2)自变量X的次数是1;(3)自变量X的取值范围是一切实数;(4)y=kx,则称y与X成正比例;反之,若y与X成正比例,则可设y=kx.问题1:2011年开始运营的京沪高速铁路全长1318km.设列车的平均速度为300km∕h.考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需多少小时(结果保留小数点后一位)?(2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系?(3)京沪高铁列车从北京南站出发2.5h 后,是否已经过了距离始发站IloOkm 的南京南站?解:(1)京沪高铁列车全程运行时间约需1318÷300≈4.4(三)(2)京沪高铁列车的行程y 是运行时间t 的函数,函数解析式为:y=300t(0≤t≤4.4)(3)京沪高铁列车从北京南站出发2.5h 的行程,是当t=2.5时函数y=300t 的值,即y=300×2.5=750(km)这时列车尚未到达距始发站HOOkm 的南京南站. 典例解析例1.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?(1)y=3x;(2)y=2x+l; (3)y=~^y=-√3x. 解:(1)是正比例函数,比例系数为3;(2)不是正比例函数;(3)是正比例函数,比例系数为T ;(4)不是正比例函数;(5)是正比例函数,比例系数为「;(6)是正比例函数,比例系数为-遮;【针对练习】下列式子,哪些y 是X 的正比例函数?如果是,请你指出正比例系数k 的值.(l)y=-O.lx ; (2)y=j ; (3)y=2x 2; (4)y 2=(4)y=-; (5)y=11x ;(6)X4x(5)y=-4x÷3;(6)y=2(x—x2)÷2x2. 解:(1)是正比例函数,正比例系数是-0.1(2)是正比例函数,正比例系数是T(3)不是正比例函数(4)不是正比例函数(5)不是正比例函数⑹是正比例函数,正比例系数是2例2.已知y=(m+2)x∣ml-1,当m为何值时,y是%的正比例函数?解:由题意得,{∣^∣^21t°r解得m=2工当m=2时,y是X的一次函数.【针对练习】若y=(τn-2)%+m2-4是y关于%的正比例函数,求该正比例函数的解析式.解:=(m-2)x+m2-4是y关于X的正比例函数,・'・m—2≠0,τn2—4=0,解得m=-2.・・・该正比例函数的解析式为y=-4x.问题2.已知某种小汽车的耗油量是每100km耗油151..所使用的汽油为5元/ 1..(1)写出汽车行驶途中所耗油费y(元)与行程X(km)之间的函数关系式,并指出y是X的什么函数;(2)计算该汽车行驶220km所需油费是多少?解:⑴y=5×15x÷100,即y⅛(x⅛O),y是X的正比例函数.4(2)当x=220时,3y=^×220=165答:该汽车行驶220km所需油费是165元.课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。

正比例函数(第一课时)课件

正比例函数(第一课时)课件
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
正比例函数(第一课 时)课件
目录
CONTENTS
• 引言 • 正比例函数的基本概念 • 正比例函数的性质 • 正比例函数的应用 • 练习与问题解答
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
01
引言
课程目标
01
定义域
函数中x的取值范围。
值域
函数中y的取值范围。
正比例函数的定义
01
正比例函数是指形式为y=kx( k≠0)的函数,其中k是常数。
02
当k>0时,函数图像位于第一、 三象限;当k<0时,函数图像位 于第二、四象限。
正比例函数的图像
正比例函数的图像是 一条经过原点的直线 。
图像在x轴上的交点 为(0,0),在y轴上的 交点为(0,b)。
增减性的判断
根据斜率的正负来判断,斜率大于0时,函数为 增函数;斜率小于0时,函数为减函数。
3
增减性与生活实际应用
增减性在生活和生产中有着广泛的应用,如速度 、加速度、物价变化等都可以用正比例函数的增 减性来描述。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
正比例函数的应用
斜率等于函数图像上任意两点纵坐标 差与横坐标差之商。
截距
截距定义
正比例函数与y轴交点的纵坐标称 为截距。
截距的表示
正比例函数一般形式为y=kx,其 中k为截距。
截距的实际意义
表示当x=0时,y的值,即y轴上的 交点。
增减性

八年级数学上册《正比例函数》教案、教学设计

八年级数学上册《正比例函数》教案、教学设计
2.利用多媒体课件,直观展示正比例函数的图像特点。通过动态演示,帮助学生理解正比例函数的图像是一条通过原点的直线,并引导学生探究其性质。
3.设计具有梯度的问题,引导学生逐步深入理解正比例函数。从简单的判断题、选择题到综合应用题,让学生在解决问题的过程中,掌握正比例函数的知识。
4.创设小组合作交流的机会,让学生在讨论中互相启发,共同进步。教师适时给予指导,帮助学生突破难点。
-目的:培养学生团队协作、共同解决问题的能力,提高学生的沟通表达能力。
5.课后反思:要求学生撰写ቤተ መጻሕፍቲ ባይዱ后反思,总结自己在学习正比例函数过程中的收获和不足。
-反思内容:可以包括对本节课知识点的理解、解题方法的掌握、学习过程中的困惑等。
6.家长参与:鼓励家长参与学生的作业过程,了解学生的学习情况,为学生提供必要的帮助和支持。
-提问:“那么,我们如何用数学公式来表示这种关系呢?”
(二)讲授新知
1.正比例函数的定义:教师给出正比例函数的定义,并解释相关概念。
-解释:“正比例函数是指一个函数,当自变量x的值增大或减小时,其对应的函数值y也按照相同的比例增大或减小。”
2.正比例函数的表达式:引导学生根据定义推导正比例函数的表达式y=kx(k≠0)。
-提示:在解决提高题时,鼓励学生运用图像分析、逻辑推理等方法,提高问题解决能力。
3.创新实践:设计具有挑战性的创新题目,要求学生结合生活实际,运用正比例函数模型解决实际问题。
-要求:学生需将问题解决过程和结果以书面形式呈现,注重解题思路和方法的创新。
4.小组合作:布置小组合作作业,让学生在组内共同探讨、解决一个综合性的正比例函数问题。
-提问:“根据正比例函数的定义,我们可以得出什么样的数学表达式?”

正比例函数教学设计(9篇)

正比例函数教学设计(9篇)

正比例函数教学设计(9篇)正比例函数教学设计1【教学内容】正比例【教学目标】使学生理解正比例的意义,会正确判断成正比例的量。

【重点难点】重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。

【教学准备】投影仪。

【复习导入】1、复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?板书:=速度。

②已知总价和数量,怎样求单价?板书:=单价。

③已知工作总量和工作时间,怎样求工作效率?板书:=工作效率。

2、引入课题:这是我们过去学过的一些常见的数量关系。

这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。

板书课题:成正比例的量。

【新课讲授】1、教学例1.教师用投影仪出示例1的.图和表格。

学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?(2)铅笔的总价是怎样随着数量的变化而变化的?(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:①铅笔的。

总价随着数量变化,它们是两种相关联的量。

②数量增加,总价也增加;数量降低,总价也减少。

③铅笔的总价和数量的比值总是一定的,即单价一定。

教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2、教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是=速度(一定)。

教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

3、归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

《正比例函数》教学设计

《正比例函数》教学设计

19.2.1 正比例函数学习目标:1、理解正比例函数的概念,在用描点法画正比例函数图象过程中发现正比例函数图象性质2、能用正比例函数图象的性质简便地画出正比例函数图像3、能够利用正比例函数解决简单的数学问题学习重点:画正比例函数图像及总结正比例函数的性质学习难点:正比例函数图像的性质学习过程:(一) 、正比例函数的概念1.刘翔跑步的关系式在生活中广泛存在,下列问题中的变量对应规律可用怎样的函数表示?这些函数有什么共同点?(1)圆的周长l 随半径r 的变化而变化。

(2)铁的密度为7.8g/3cm ,铁块的质量m (单位:g )随它的体积V (单位:3cm )的变化而变化。

(3)每个练习本的厚度为0.5cm ,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n 的变化而变化。

(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体的温度T (单位:℃)随冷冻时间t (单位:min )的变化而变化。

•问题探究: • (1)以上对应关系都是函数关系吗?其变量和常量分别是什么?进一步指出谁是自变量,谁是函数值?(2)认真观察自变量和常量运用什么运算符号连接起来的?这些常量可以取哪些值?(3)这4个函数表达式与问题1的函数表达式 y =8.54x 有何共同特征?请你用语言加以描述.• 1.如果我们把这个常数记为k ,你能用数学式子表达吗?• 2.对这个常数k 有何要求呢?为什么?•3.请你尝试给这类特殊函数下个定义: •(1)观察这些函数关系式,这些函数都是常数与自变量 的形式; • (2)一般地,形如 ( )函数,叫做正比例函数,其中k 叫做 。

4、你能列举出一些正比例函数的例子?跟踪练习(一):1.下列式子,哪些表示y 是x 的正比例函数?如果是,请你指出正比例系数k 的值.(1)y =-0.1x (2)y=x/2(3)y =2x 2 (4)y 2=4x(5)y =-4x +3 (6)y=2(x -x 2 )+2x 2(二)、1.如果y =(k -1)x ,是y 关于x 的正比例函数,则k 满足________________.2.如果y=kx k-1,是y 关于x 的正比例函数,则k =__________.3.如果y =3x +k-4,是y 关于x 的正比例函数,则k =_________.(二)正比例函数图像的画法与性质知识链接:用描点法画函数图象的一般步骤:①______________,②___________________③___________________ 用描点法画出下列函数的图像(1)y=2x 列表得1) ;(2) (2) y=-2x解:列表得:观察所画图像,填写你发现的规律:(3) 函数y=2x ,x y2-=的图像是经过 的 __________. (4) 函数x y 2=的图像经过第_______象限,从左到右呈_______趋势,即y 随x 的增大而________;(5) 函数x y 2-=的图像经过第_______象限,从左到右呈_______趋势,即y 随x 的增大而________;三、比较总结(1)想想看,经过原点与点(1,k )的直线是哪个函数的图像?(2)思考:画正比例函数的图像时,怎样画最简便?为什么?(3)上面总结的正比例函数规律对其他正比例函数适用吗?具有一般规律吗?下面我们一起用你认为最简便的画法完成下面函数图像2.试一试:用最简单的方法画出下列函数的图像(1) y=23x (2)、 y=-3x总结:正比例函数的性质正比例函数kx y =(k ≠0)是一条经过 .当k > 0时,直线经过 象限,从左到右呈 趋势,即y 随x 的增大而 当k 〈0时,直线经过 象限,从左到右呈 趋势,即y 随x 的增大 而 跟踪练习(二):1. .函数x y 5-=的图像在第_______象限,经过点(0,____)与点(1,____),y 随x 的增大而_________2、已知正比例函数y=(3-k)x,若y 的值随x 的增大而增大,则k 的取值范围是什么?若y 的值随x 的增大而减小,则k 的取值范围是什么?四、总结归纳1、整理知识:正比例函数——1、 定义2、 图象特征3、 性质数学思想方法:类比化归、数形结合。

19.2.1正比例函数 教学设计 第2课时

19.2.1正比例函数 教学设计 第2课时

教学过程三、课堂练习四、课堂小结正比例函数的图象特征:1、 (k是常数,k≠0)的图象是一条经过原点的直线.2、当k>0时,经过第一、三象限;当k<0时,经过第二、四象限。

思考:你能用最简单的方法画出下列函数的图象吗?(1)3y x=-活动二、探究正比例函数的性质1、在函数 , , 和中,随着x的增大,y的值分别是如何变化的?2、我们还可以借助函数图象分析此问题观察图象可以发现:①当k>0时,从左向右逐渐上升, 即y的值随x的增大而增大;②当k<0时,从左向右逐渐下降,即y的值随x的增大而减小。

课堂练习见PPT通过本节课的学习,你所学到的正比例函数的图象是什么样的?它具有哪些特征?它又具有哪些性质呢?板书设计19.2.1正比例函数的图象与性质一、图象:经过原点的一条直线.当k>0时,经过第一、三象限;当k<0时,经过第二、四象限.二、性质:当k>0时,y的值随x值的增大而增大;当k<0时,y的值随x值的增大而减小.作业布置1、用两点法画出下列函数的图象2、课本第98页,第1、2题。

课题19.2.1正比例函数的图象与性质课型新授课时第2课时核心素养1.会画正比例函数的图象 .2.根据正比例函数的图象探究图象的特征与性质.3.利用正比例函数的性质解答有关的问题.教学重点难点重点:正比例函数的图象与性质难点:探究正比例函数的性质及其性质的应用教学准备课件、三角尺教学方法合作探究教学过程教学程序师生活动一、复习回顾二、探究新知1、用描点法画函数图象有哪几个步骤?①列表②描点③连线2、正比例函数的定义是什么?一般地,形如式( k是常数,k≠0)的函数,叫做正比例函数,其中k是比例系数。

活动一、探究正比例函数的图象特征1、画出下列正比例函数的图象观察函数图象,它是一条经过的直线,并且经过了象限。

2、画出下列正比例函数的图象观察函数图象,它是一条经过的直线,并且经过了象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.2.1 正比例函数
教学内容
本节课主要内容是正比例函数的研究,讨论这种函数的定义、图象和增减性.
教学目标
1.知识与技能
领会正比例函数的定义,会从实际问题中提炼出正比例函数的解析式.
2.过程与方法
经历探索正比例函数的过程,发展学生的类比思维.
3.情感、态度与价值观
培养由此及彼地认识问题的能力,体会事物的抽象性以及正比例函数的实际应用价值.重、难点与关键
1.重点:正比例函数.
2.难点:正比例函数性质的理解.
3.关键:从实际问题出发,从中提炼出函数的模型.
教具准备
投影仪、幻灯片.
教学方法
采用“情境导入──建立模型”的方法,让学生从实际生活中感知正比例函数概念.教学过程
一、回顾交流,探索新知
【知识回顾】
教师叙述:在小学我们学过正比例关系,小学数学是这样陈述的:•两种相关联的量,一种量变化,另一种量也随着变化.如果这两种量中相对应的两个数的比值一定,这两种
量就叫做成正比例的量,它的关系叫做正比例关系,写成式子是y
x
=k(一定),在小学k是
大于零的数.
【投影显示】
问题探究1:1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环:4•个月零1周后,人们在2.56万米外的澳大利亚发现了它.
(1)这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?
(2)这只燕鸥的行程y(单位:千米)与飞行时间x(单位:天)之间有什么关系?
(3)这只燕鸥飞行1个半月的行程大约是多少千米?
【教师活动】操作投影仪,引导、启发学生,提问,参与讨论.
【学生活动】合作探究,寻求答案,实际上这只燕鸥大约平均每天飞行的路程不小于25600÷(30×4+7)≈200(km);假设这只燕鸥每天飞行路程为200km,那么它的行程y(单位:千米)就是飞行时间x(单位:天)的函数,函数解析式为y=200x(0≤x≤127);这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值,即y=200×45=9000(km).【评析】教师在巡视中参与学生的讨论,对有不同想法的学生,鼓励他们发言,从而提供讨论素材,学生刻画出燕鸥的飞行路程,y=200x尽管只是近似的,•教师应强调:它可作为反映燕鸥的行程与时间的对应规律的一个模型.
【教学形式】生生互动,师生对话.
【投影显示】
问题探究2:下列问题中的变量对应规律可用怎样的函数表示?•这些函数有什么共同点?
(1)圆的周长L随半径r的大小变化而变化:(L=2 r)
(2)铁的密度为7.8g/m3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的大小变化而变化;(m=7.8V)
(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)•随这些练习本的本数n的变化而变化;(h=0.5n)
(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T(单位:℃)•随冷冻时间t(单位:分)的变化而变化;(T=-2t)
【教师活动】操作投影仪,关注中等学生的思维,启发引导“学困生”,并要求学生注意这四个函数式的特征.
【学生活动】独立地完成思考题,踊跃上讲台演示,交流自己的做法.
【特征归纳】正如y=200x一样,上述函数都是常数与自变量的乘积的形式.
【形成定义】一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,•其中k叫做比例系数.
【教学形式】互动交流,讲练结合.
二、范例点击,提高认知
【投影显示】
【例1】画出下列正比例函数的图象.
(1)y=2x (2)y=-2x
【教师活动】动手操作示范,边画边讲述作图的步骤:(1)•列表表示几组对应值;(2)描点;(3)连线.画出y=2x图象后,让学生画y=-2x图象,•并且引导学生进行比较(见课本图14.2-1,图14.2-2).
【学生活动】先观看教师的操作,然后独立地画出y=-2x的图象.
【观察与比较】
教师口述:请同学们比较上面两个函数的图象的相同点与不同点,考虑两个函数的变化规律.
填写你发现的规律:两图象都是经过原点的直线.函数y=2x的图象从左向右(上升),经过第(一、三)象限;函数y=-2x的图象从左向右(下降),•经过第(二、四)象限.【学生活动】观察比较,寻求规律,总结方法.
三、随堂练习,巩固深化
课本P112练习.
【形成性质】(投影显示)
一般地,正比例函数的y=kx(k是常数,k≠0)的图象是一条经过原点的直线,•我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,•即随着x的增大反而减小.
【教师提问】经过原点与点(1,k)的直线是哪个函数的图象?•画正比例函数的图象时,怎样画最简单?为什么?
【思路点拨】一般地,一次函数的图象是一条直线,在前面画一次函数的图象时,采用先列表、描点、再连线的方法.现在我们明确了一次函数的图象都是一条直线,因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了.【学生活动】回答教师提出的问题,并通过探讨,得到画正比例函数的最简单方法:(1)先选取两点,通常选出(0,0)与点(1,k);
(2)在坐标平面内描出点(0,0)与点(1,k);
(3)过点(0,0)与点(1,k)做一条直线.
这条直线就是正比例函数y=kx(k≠0)的图象.
四、随堂练习,消化理解
课本P113练习.
五、课堂总结,发挥潜能
1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.
2.正比例函数的性质.(由学生归纳)
六、布置作业,专题突破
1.课本P120习题14.2第1、2、3题.
2.选用课时作业设计.
板书设计
本节课可以将黑板分成两份,左边部分板书正比例函数概念和图象、性质,右边部分板书范例.
疑难解析
应从实际出发引入正比例函数概念,由于正比例函数在数量关系上具有典型性,实际背景并不复杂,教学时应紧紧抓住实际问题的背景,弄清解析式中各字母的意义,知道常量、变量、自变量、函数,这里应注意正比例函数中自变量可以是任意实数,关于正比例函数增减性的严格证明并不要求,但是还是要用适当的式子证明,从数形方面加深对这个性质的理解.
第一课时作业设计
一、填空题.
1.正比例函数y=kx,(1)若比例系数为-1
3
,则函数关系式为______;(2)•若点经过
(5,-1),则函数关系式_______.
2.已知函数y=(m-2)x m-1,(1)m_____时,y是x的正比例函数;(2)若点P(-2,b)在(1)中所求的函数图象上,则b=____,OP的长为_______.
3.某商店进了一批货,每件2元,出售时,每件加利润5角.如果售出x件,应收货款y元,则y与x的函数关系式为_______.
二、解答题.
4.有一个物体沿一个斜坡下滑,它们速度y(米/秒)与其下滑时间x(秒)的关系如
图所示.
(1)写出y与x之间的关系式;
(2)下滑3秒时物体的速度是多少?
5.写出如图中直线L所表示的变量x,y之间的关系式.
三、聚焦中考.
6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时发现乌龟快到终点了,于是急忙追赶,但为时已晚,•乌龟还是先到达了终点……,用s1,s2分别表示乌龟和兔子所行的路程,t为时间,•则下列图象中与故事情节相吻合的是().
答案:
一、1.(1)y=-1
3
x (2)y=-
1
5
x
2.略
3.y=2.5x(x取正整数)
二、4.(1)y=2.5x (2)7.5米/秒
5.y=1
2
x
三、6.D.。

相关文档
最新文档