石墨烯介绍
石墨烯采暖原理

石墨烯采暖原理一、石墨烯的介绍石墨烯是由碳原子构成的单层二维晶体材料,具有极高的导电性和导热性,是目前已知最强硬的材料之一。
由于其优异的物理和化学性质,石墨烯被广泛应用于电子学、光学、生物医学和能源等领域。
二、石墨烯采暖原理1. 石墨烯的导电性石墨烯具有极高的导电性,其电阻率约为10^-6 Ω·cm。
当外界施加电压时,电子在石墨烯中自由移动,形成电流。
这种特殊的导电性使得石墨烯可以被用作加热元件。
2. 石墨烯的导热性除了导电性外,石墨烯还具有极高的导热性,其导率可以达到3000~5000 W/mK。
这意味着在施加电压时,不仅可以产生大量的电流,同时也会产生大量的热量。
3. 石墨烯采暖原理基于以上两点特性,利用将一定数量的碳纳米管和石墨烯片材分散在聚酰亚胺基体中形成的复合材料,可以制成一种新型的石墨烯加热膜。
当加热膜受到电压刺激时,电子在其中自由移动,产生大量的电流和热量。
这些电流和热量会通过加热膜向周围传播,使得整个房间内的温度升高。
4. 石墨烯采暖的优势相比传统的采暖方式,使用石墨烯进行采暖有以下几个优势:(1)快速升温:由于其高导电性和导热性,使用石墨烯进行采暖可以迅速升温,缩短了等待时间。
(2)能耗低:使用传统采暖方式需要消耗大量的能源,而使用石墨烯进行采暖可以大幅降低能耗。
(3)环保健康:相比传统采暖方式所产生的污染物和有害气体,使用石墨烯进行采暖更加环保健康。
(4)节省空间:相比传统采暖设备所占用的空间,使用石墨烯进行采暖可以大幅节省空间。
三、石墨烯采暖的应用前景石墨烯采暖作为一种新兴的采暖方式,具有广阔的应用前景。
目前已有企业开始推出相关产品,并在市场上取得了一定的成绩。
未来,随着技术的不断发展和成本的不断降低,相信石墨烯采暖将会成为一种主流的采暖方式。
石墨烯的性质及应用

石墨烯的性质及应用石墨烯是一种由碳原子通过共价键结合形成的二维晶体结构,具有一系列独特的性质和应用潜力。
以下将详细介绍石墨烯的性质和应用。
性质:1. 单层结构:石墨烯是由单层碳原子构成的二维晶体结构,在垂直方向上只有一个原子层,具有单层的特点。
2. 高强度:尽管石墨烯只有一个碳原子层,但其强度非常高。
石墨烯的破断强度远远超过钢铁,是已知最强硬的材料之一。
3. 高导电性:石墨烯的碳原子呈现出类似于蜂窝状的排列方式,使得电子能够在其表面自由传导。
石墨烯的电子迁移率是晶体硅的200倍以上,使得其具有非常高的导电性能。
4. 高热导性:由于石墨烯中的碳原子排列紧密,热量传递效率非常高。
石墨烯的热导率超过铜的13000倍,是已知最高的热导材料之一。
5. 弹性:石墨烯具有非常强的弹性,在拉伸过程中可以扩展到原始长度的20%以上,然后恢复到原始形状。
这种弹性使得石墨烯在柔性电子学和拉伸传感器等领域具有广泛应用。
应用:1. 电子器件:石墨烯的高导电性和高迁移率使其成为制造高速电子器件的理想材料。
石墨烯可以作为传统半导体材料的替代品,用于制造更小、更快的电子元件,如晶体管、电容器和电路等。
2. 透明导电膜:石墨烯具有优异的透明导电性能,可以制备成透明导电膜,用于制造触摸屏、显示器和太阳能电池等设备。
相比于传统的氧化铟锡(ITO)薄膜,石墨烯具有更好的柔性和耐久性。
3. 电池材料:石墨烯可以用作锂离子电池的电极材料,具有高电导性和高比表面积的优势。
石墨烯电极可以提高电池的充放电速度和储能密度,有望在电动汽车和可再生能源储存等领域得到应用。
4. 传感器:石墨烯具有优异的电子迁移率和极高的比表面积,使其成为制造高灵敏传感器的理想材料。
石墨烯传感器可以用于检测气体、压力、湿度和生物分子等,具有快速响应和高灵敏度的特点。
5. 柔性电子学:石墨烯的高强度和高弹性使其成为柔性电子学的重要组成部分。
石墨烯可以制备成柔性电路、柔性显示屏和柔性传感器等,有望应用于可穿戴设备、智能医疗和可卷曲设备等领域。
石墨烯ppt课件

04
缺点
设备成本高,制备过 程复杂。
液相剥离法制备过程及优化策略
过程
将石墨或膨胀石墨分散在溶剂中,通 过超声波、热应力等作用剥离出单层 或少层石墨烯。
优化策略
选择适当的溶剂和剥离条件,如超声 功率、时间、温度等,以提高剥离效 率和石墨烯质量。
优点
制备过程简单,成本低。
缺点
难以制备大面积、单层的石墨烯。
未来挑战和机遇并存局面思考
技术挑战
石墨烯制备技术仍存在一些难题 ,如大规模制备、成本控制、质 量稳定性等,需要加强技术研发
和创新。
市场机遇
随着石墨烯技术的不断突破和市场 需求的持续增长,石墨烯产业将迎 来更广阔的发展空间,企业需要抓 住机遇,积极拓展市场。
跨界融合
石墨烯产业需要与其他产业进行跨 界融合,共同推动产业升级和创新 发展,如与互联网、人工智能等产 业的深度融合。
THANKS
感谢观看
消费电子市场需求
随着消费电子产品的不断更新换代, 石墨烯在智能手机、平板电脑、可穿 戴设备等领域的应用需求将持续增长 。
新能源市场需求
石墨烯在新能源领域具有广阔的应用 前景,如太阳能电池、锂离子电池、 燃料电池等,未来市场需求将不断扩 大。
医疗健康市场需求
石墨烯在生物医疗领域的应用也逐渐 受到关注,如生物传感器、药物载体 、医疗器械等,未来市场需求有望持 续增长。
三维多孔支架、细胞培养基质、神经修复导管
石墨烯组织工程支架材料的研究进展及前景
骨组织工程、皮肤组织工程、心肌组织工程
安全性评价和毒理学问题关注
石墨烯的生物安全性问题
01 细胞毒性、免疫原性、遗传毒性
石墨烯的体内代谢和毒性机制
石墨烯傅里叶红外光谱

石墨烯傅里叶红外光谱石墨烯傅里叶红外光谱随着科学技术的不断发展,有许多新材料涌现出来。
石墨烯便是近年来备受关注的一种材料。
其优异的力学和电学性能,成为科学家和工业界探索的热点。
本文将介绍石墨烯的傅里叶红外光谱及其应用。
一、石墨烯的简介石墨烯是由一个由碳原子组成的平面单层晶体结构,类似于蜂窝状的结构。
它的晶格常数为0.246 nm,是钻石中C-C键的长度的1.4倍。
石墨烯的力学性能极为优异,在某些方向上有着极高的强度和刚度。
因此,在纳米科技、电子学和生物医学领域有着广泛的应用。
二、傅里叶红外光谱傅里叶红外光谱是利用分子中化学键振动引起的红外吸收频率的定量测量来分析化学结构和成分的(一种非常普遍的)结构分析技术。
石墨烯的谱图常用的红外光源是红外自由电子激光(FEL),但是由于其不易获取和控制,石墨烯的FT红外光谱数据较为常见。
三、石墨烯的FT红外光谱峰石墨烯的FT红外光谱曲线中,可见到以下3个峰:1. 峰位在1600 ~ 1800 cm-1:常被称为“石墨烯指纹区”。
该区域是由石墨烯的非平面应变和功能化基团振动引起的。
2. 峰位在1250 ~ 1450 cm-1:由于石墨烯上的C-O-C伸缩振动而引起。
3. 峰位在1000 cm-1左右:来自于石墨烯的A1g振动模式。
四、傅里叶红外光谱在石墨烯研究中的应用石墨烯的傅里叶红外光谱能够提供石墨烯在表面附着物、杂质和缺陷方面的信息。
这些信息可以用于研究石墨烯的物理和化学性质、电学性质以及生物学应用。
其中,石墨烯在电子学行业的应用最为广泛。
石墨烯通过在其表面和边缘上化学修饰,可以实现特定电化学反应或生物反应,从而用于制造生物传感器。
五、结论石墨烯傅里叶红外光谱提供了研究其结构、附着物、杂质和缺陷的价值信息,尤其适用于在电子学和生物技术领域中的应用。
值得注意的是,石墨烯傅里叶红外光谱技术的快速进展,必将有助于解锁石墨烯在许多其他领域中的潜在应用。
石墨烯的介绍

-
1 石墨烯的基本性质 2 石墨烯的制备方法 3 石墨烯的应用领域 4 结论与展望
石墨烯的介绍
石墨烯是一种由碳原子组成 的二维材料,它是单层石墨 的片状结构,具有极高的电 导率、热导率和机械强度
下面我们将详细介绍石墨烯 的基本性质、制备方法、应 用领域以及研究现状
CHAPTER 1
石墨烯的应用领域
能源领域
石墨烯的热导率和电导率都非常高,因此它在能源领域也有广泛的应用。例如,石墨烯可 以用于制造高效能电池和超级电容器等能源器件。此外,石墨烯还可以作为催化剂载体用 于燃料电池等领域
石墨烯的应用领域
生物医学领域
石墨烯具有良好的生物相容性和抗氧化性,因此在生物医学领域也有广泛的应用。例如, 石墨烯可以用于制造药物载体、生物传感器和成像试剂等生物医学器件。此外,石墨烯还 可以作为生物材料用于组织工程等领域
CHAPTER 3
石墨烯的应用领域
石墨烯的应用领域
石墨烯的应用领域
由于石墨烯具有优异 的物理和化学性质, 它在许多领域都有广 泛的应用。以下是石 墨烯的主要应用领域
石墨烯的应用领域
电子器件领域
石墨烯具有很高的电 导率,因此它在电子 器件领域具有广泛的 应用。例如,石墨烯 可以用于制造晶体管 、场效应管、太阳能 电池等电子器件。此 外,石墨烯还可以作 为透明导电膜用于显 示器等领域
CVD法
CVD法是一种常用的制备石墨烯的方法,它是通过加热含碳气体(如甲烷、乙炔等)在基底 表面形成石墨烯。这种方法可以制备大面积、高质量的石墨烯,但需要高温条件和复杂的 设备
石墨烯的制备方法
氧化还原法
氧化还原法是一种通过氧化剂将石墨氧化成氧化石墨,再通过还原剂将氧化石墨还原成石 墨烯的方法。这种方法制备的石墨烯质量较高,但需要使用化学试剂和复杂的工艺流程
石墨烯简介

石墨烯简介石墨烯是一种由碳原子构成的单层二维晶格材料,具有出奇制胜的电学、热学和力学性质。
它的发现引发了广泛的科学研究和技术应用,被誉为材料科学领域的"奇迹"。
下面是对石墨烯的详细介绍:石墨烯的结构石墨烯的结构非常简单,它是由一个层层叠加的碳原子构成,每一层都只有一个碳原子的厚度。
这些碳原子排列成六角形的蜂窝状晶格,就像蜜蜂蜂巢一样。
这种排列方式赋予石墨烯许多独特的性质。
电学性质石墨烯的电学性质令人惊叹。
它是一种半导体材料,但在室温下,电子能够在其表面以极高的移动速度自由传导,几乎没有电阻。
这使得石墨烯成为极好的导电材料,有望用于高速电子器件和新型电池。
热学性质尽管石墨烯是世界上最薄的材料之一,但它的热传导性能却非常出色。
石墨烯可以有效地传递热量,因此被广泛应用于散热材料和热导材料的领域。
机械性质石墨烯具有出色的机械强度,是世界上最坚硬的材料之一。
它的强度比钢还要高,并且非常轻薄。
这些性质使得石墨烯在材料科学和纳米技术中具有广泛的应用前景。
光学性质石墨烯对光的吸收和散射也表现出了独特的性质。
它在可见光和红外光谱范围内表现出高吸收率,但对其他波长的光几乎是透明的。
这一性质在光电子学和传感器领域具有重要应用价值。
应用领域石墨烯的独特性质使得它在许多领域都有广泛的应用潜力。
目前,石墨烯已经在电子器件、柔性显示屏、电池技术、传感器、材料强化、医疗设备等领域取得了重要突破。
总之,石墨烯是一种具有革命性潜力的材料,其独特的电学、热学、力学和光学性质使其在科学研究和技术创新中备受瞩目。
随着对石墨烯的深入研究和应用的不断推进,我们可以期待看到更多令人兴奋的发现和应用。
石墨烯以及导热性质的介绍

石墨烯以及导热性质的有关介绍石墨烯( Graphene)又叫单层石墨,是构造其他石墨材料的最基本的材料单元。
石墨稀是由sp2碳原子以蜂窝状晶格构成的二维单原子层结构。
每个碳原子周围有3个碳原子成键,键角120°;每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键。
在石墨烯中,碳原子在不停的振动,振动的幅度有可能超过其厚度。
其中最重要的石墨烯的晶格振动,不仅仅影响石墨烯的形貌特征,还影响的石墨烯的力学性质、输运特性、热学性质和光电性质。
对石墨烯的热学性质的影响主要是由于石墨烯晶格振动。
根据有关资料的显示,对石墨烯晶格振动的研究可利用价力场方法。
在价力场方法中,石墨烯内所有原子间的相互作用力可以分为键的伸缩力和键的弯曲力。
从经典的热学理论出发,对石墨烯的导热系数进行研究。
一、以下是石墨烯薄片的热通量有关的表达式:上面理论计算的导热系数主要由石墨烯的声子频率、声子的支数和声子的作用过程等决定。
从得出的结果出可以得出以下的图表:从图中看出来石墨烯的导热系数随温度的增加而减小。
在同一温度下,导热系数随石墨烯的宽度的增加而增加。
由经典的热传导理论可知,随着温度的升高,晶格振动加强,声子运动剧烈,热流中的声子数目也增加。
声子间的相互作用或碰撞更加频繁,原子偏离对平衡位置的振幅增大,引起的声子散射加剧,使导热载体(声子)的平均自由程减小。
这是石墨烯的导热系数随温度升高而降低的主要原因。
对于石墨烯,电子的运动对导热也有一定的贡献,但在高温情况下,晶格振动对石墨烯的导热贡献是主要的,起主导作用。
二、石墨烯的导热系数经验公式式中 Xg 是温度系数,L 是单层石墨烯的中间部分与散热片之间的距离,h 是单层石墨烯厚度,d 为单层石墨烯的宽度,δf 是G 峰位移,δP是样品的热功率的变化。
从经验公式可以看出,石墨烯的导热系不同宽度的石墨烯薄片的导热系数与温度的关系数主要受3个因数的影响: 单层石墨烯的尺寸效应,温度,石墨烯生长的基底材料。
石墨烯的功能化及其相关应用

石墨烯的功能化及其相关应用一、本文概述石墨烯,一种由单层碳原子紧密排列形成的二维纳米材料,自2004年被科学家首次成功分离以来,便以其独特的电子、热学和机械性能,引起了全球科研人员的广泛关注。
由于其具有超高的电子迁移率、超强的导热性和极高的力学强度,石墨烯被誉为“黑金”,并有望引领新一轮的工业革命。
本文旨在深入探讨石墨烯的功能化方法,以及这些功能化后的石墨烯在各个领域的应用前景。
我们将从石墨烯的基本性质出发,详细阐述其功能化的基本原理和技术手段,包括化学修饰、物理掺杂等。
随后,我们将对石墨烯在能源、电子、生物医学、复合材料等领域的应用进行详细介绍,并分析其潜在的市场价值和挑战。
我们将对石墨烯功能化及其应用的未来发展趋势进行展望,以期能为相关领域的科研工作者和从业人员提供有益的参考和启示。
二、石墨烯功能化的方法石墨烯作为一种二维碳纳米材料,拥有出色的电学、热学和力学性能,这使得它在多个领域具有广泛的应用前景。
然而,原始石墨烯的化学稳定性较高,与大多数溶剂和分子的相容性较差,这限制了其在实际应用中的使用。
因此,对石墨烯进行功能化修饰,以提高其与其他材料的相容性和稳定性,成为了石墨烯研究领域的重要方向。
目前,石墨烯的功能化方法主要包括共价键功能化和非共价键功能化两大类。
共价键功能化是通过化学反应将官能团或分子共价连接到石墨烯的碳原子上。
这种方法可以精确控制石墨烯的化学性质,实现对其电子结构和性质的调控。
常见的共价键功能化方法包括重氮反应、环加成反应和自由基加成反应等。
通过这些方法,可以在石墨烯上引入羟基、羧基、氨基等官能团,从而改善其在溶剂中的分散性和与其他材料的相容性。
非共价键功能化则是通过物理相互作用,如π-π堆积、静电作用、氢键等,将分子或聚合物吸附到石墨烯表面。
这种方法不需要破坏石墨烯的碳碳共价键,因此可以在保持石墨烯原有性质的基础上,实现对其功能的拓展。
常见的非共价键功能化方法包括π-π堆积作用、表面活性剂包裹和聚合物吸附等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何获得石墨烯?
如何获得石墨烯?
安德烈·海姆(左)和康斯坦丁·诺沃谢洛夫(右)
如何获得石墨烯? 石墨烯---2010诺贝尔物理学奖
2010年10月5日,瑞典皇家科学院在斯德哥尔摩宣布,将2010年诺贝尔物理学奖授予英国曼彻斯 特大学科学家安德烈・海姆和康斯坦丁・诺沃肖洛夫,以表彰他们在石墨烯材料方面的卓越研究。 他们于2004年首次制成石墨烯材料。这是目前世界上最薄的材料,仅有一个原子厚.
光学特性 石墨烯的可见光透过率97.7%,且与波长无关。因此自由悬浮的石墨烯是高度透明且无色无味的。
物理特性
仅有一个原子的厚度, 石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管, 集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10nm时,用它制造出的晶体管稳定性变 差。
热导率 (极高)
石墨烯的热导率约为5000 wm/K,是室温下铜的热导率(401 wm/K)的10倍多。
模型结果
石墨烯的来源?
实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨, 厚1毫米的石墨大约包含300万层石墨烯。
石墨烯
如何获得石墨烯?
1947年,菲利普·华莱士开始研究石墨烯的电子结构 1987年,穆拉斯首次使用Graphene一词 如何才能制得石墨烯?
美国德克萨斯大学的罗德尼·鲁夫曾尝试着将石墨在硅片上摩擦,并深信采用这个简单的方法可 获得单层石墨烯,但可惜他当时并没有对产物的厚度做进一步的测量。 美国哥伦比亚大学的菲利普·金也利用石墨制作了一个“纳米铅笔”,进行划写,得到了石墨薄 片,层数最低可达10层。
他们离石墨烯的发现仅一步之遥。
如何获得石墨烯?
2004年,英国曼彻斯特大学的安德烈·K·海姆(Andre K. Geim)【左】和他的同事康斯坦 丁·诺沃肖洛夫【右】偶然中发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从 碎片中剥离出较薄的石墨薄片,然后用普通的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一 分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构 成——他们制得了石墨烯,推翻了科学界的一个长久以来的错误认识——任何二维晶体不能在有限 的温度下稳定存在。
石墨烯还是目前已知导电性能最出色的 材料。石墨烯的这种特性尤其适合于高 频电路。高频电路是现代电子工业的领 头羊,一些电子设备,例如手机,由于 工程师们正在设法将越来越多的信息填 充在信号中,它们被要求使用越来越高 的频率,然而手机的工作频率越高,热 量也越高,于是,高频的提升便受到很 大的限制。由于石墨烯的出现,高频提 升的发展前景似乎变得无限广阔了。 这使它在微电子领域也具有巨大的应用 潜力。石墨烯看作是硅的替代品,能用 来生产未来的超级计算机。
机械特性 (强度最大)
石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。据 测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将 能承受大约两吨重物品的拉力,而不至于断裂.
化学性质 石墨烯具有与石墨相似的表面特性, 可以吸附各种原子和分子。
我们所熟知的石墨、纳米碳管和富勒烯等,是由单层石墨烯某种形变而形成的。名称
简述
碳 富勒烯 元 Fullerene 素 的 同 素 碳纳米管 异 性 体
石墨烯
1985年,英国化学家哈罗德·沃特尔·克罗托博士和美国科学家理 查德·斯莫利等人在实验中首次制得由60个碳组成的碳原子簇结构 分子C60。克罗托获得1996年度诺贝尔化学奖随后又陆续发现C70 等一系列由非平面的五元环、六元环等构成的封闭式空心球或椭 球结构的共轭烯结构,以建筑学家富勒命名为富勒烯。
如何获得石墨烯?
胶带沾出了诺贝尔奖—— 只有想不到的,没有做不到的!
对于创新来说,方法就是新的世界,最重要的不是知识,而是思路。 ————郎加明《创新的奥秘》
1 石墨烯介绍 2 石墨烯特性 3 石墨烯应用
石墨烯特性---缘何为“超级材料”
特性
导电性 (最好)
简述
石墨烯结构非常稳定,迄今为止研究者仍未发现石墨烯中有碳原子缺失的情况。这种稳定的晶格结 构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子 而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到 的干扰也非常小; 在室温状况,石墨烯具有惊人的高电子迁移率(electron mobility),其数值超 过15,000 cm2V−1s−1, 电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料; 电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。 硅和铜远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一 些能量,目前一般的电脑芯片以这种方式浪费了70%-80%的电能,石墨烯则不同,它的电子能量 不会被损耗;
在1991年日本NEC公司的电子显微镜专家饭岛(Iijima)在高分辨 透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意 外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的 “Carbon Nanotube”,即碳纳米管。
2004年,曼彻斯特大学Geim教授、Novoselov博士和同事以微 机械剥离法剥离层状石墨,发现了二维碳原子平面结构——石墨 烯。
1 石墨烯介绍 2 石墨烯特性 3 石墨烯应用
石墨烯应用
1. 电子器件方面的应用
2. 代替硅生产超级计算机
室温下石墨烯具有l0倍于商用硅片的高 载流子迁移率(约10 am /V·s),并且 受温度和掺杂效应的影响很小,这是石 墨烯作为纳电子器件最突出的优势,使 电子工程领域极具吸引力的室温弹道场 效应管成为可能。较大的费米速度和低 接触电阻则有助于进一步减小器件开关 时间,超高频率的操作响应特性是石墨 烯基电子器件的另一显著优势。此外, 石墨烯减小到纳米尺度甚至单个苯环同 样保持很好的稳定性和电学性能,使探 索单电子器件成为可能。
石墨烯介绍
• Date: 2013年05月10日
1 石墨烯介绍 2 石墨烯特性 3 石墨烯应用
什么是石墨烯?
石墨烯(英文Graphene,命名来自英文graphite+ -ene) 是一种由C原子形成的蜂巢状的准二维 结构,是C元素的另外一种同素异形体。由于是从石墨中制取,且包含烯类物质的基本特征(碳原子之 间的双键), 所以称为石墨烯。