1.1 金属的晶体结构

合集下载

摩擦磨损原理1固体的表面特性

摩擦磨损原理1固体的表面特性

化学反应
表面氧化膜
氧化膜对金属的保护作用取决于氧化膜的内应力以及生 长速度:
(1)氧化膜的密度和金属相近:氧化膜能牢固覆盖在 金属表面。
(2)氧化膜的密度大于金属密度:氧化膜中易出现拉 应力,膜易破裂或出现多孔疏松膜。
(3)氧化膜的密度小于金属密度:随着氧化膜的生长, 膜的体积不断膨胀,在膜内形成平行于表面的压应力和 垂直于表面使膜脱离表面的拉应力,膜愈厚,内应力愈 大,膜易剥落。
物理吸附的作用力,是范得瓦尔斯(Vander Waals)分子力。范得瓦尔斯分子力是由于表面 原子与吸附原子之间的极化作用而产生的。这类 吸附能量较低,它不能改变吸附层分子的分布, 而且对介质一般无选择性,这种吸附对温度非常 敏感,热量可以使之脱吸,其吸附与脱吸是可逆 的。吸附能量小于l04J/mol。
•化学吸附于固体表面的强弱与固体表面和被吸附的物质特 性有关,如氧可以很强烈地吸附于铁或钛,但吸附于铜、 银等贵金属却很弱。 •化学吸附基本上是一单层过程。例如,在固体铁的表面一 旦吸附一层氧,这层氧不会长期停留在它开始吸附的位置 上,而是在表面发生氧原子和铁原子的重新排列——铁与 氧交换位置,直到表面能量达到最低状态时,交换终止。 这称之为再组建的化学吸附。
在表面的位置 配位数 表面所处晶面 配位数
角上原子
3
原子在(111)上
9
边缘原子
5
原子在(100)上
8
晶体表面原子的配位数与晶体的位向有关,面心立方晶体 不同位向表面,原子的配位数见表。
晶体表面原子不仅能量较高,而且还存在着许多缺陷。 这些缺陷不是静止、稳定不变的,而是随着条件的改变而 不断变化和交互作用的。它们对晶体表面的机械性能、物 理性能和化学性能有很大的影响。

金属的晶体结构及其性质

金属的晶体结构及其性质

金属的晶体结构及其性质金属是一类具有很高的导电性和热导性的物质,广泛应用于工业、建筑、交通等领域。

对于金属的结构和性质进行深入的探究不仅有助于我们更好地理解和应用它们,在材料科学和工程领域也具有重要的意义。

一、金属的晶体结构1.1 单质金属的结构单质金属的晶体结构主要取决于其原子的大小、形态、数量等因素。

最简单的是钨、银、金等元素,它们的晶体结构都是面心立方格子结构,其中每个原子位于晶体的一个顶点或一个面心上。

而对于一些较小的原子,如铁、铝、镁等,则容易出现体心立方格子或六方密堆积等结构。

1.2 合金的结构合金是由两种或更多金属元素混合而成的材料,具有比单质金属更多元化的结构。

由于合金中包含了不同的金属原子,因此其形成的晶体结构也较为复杂。

以黄铜为例,它是铜和锌的合金,具有面心立方格子结构,并且晶体结构中的铜原子和锌原子是交替排列的。

二、金属的性质2.1 导电性金属具有很高的电导率,这是由于其晶体结构中存在许多自由电子,这些电子在外部电场的作用下会漂移,从而使金属的导电性得以表现。

由于金属内部电阻很小,因此电子能够自由地在金属中传导,使得金属具有优良的导电性。

2.2 热传导性金属的热传导性也很好,这是由于其晶体结构是由许多密集排列的原子构成的,因此热量能够迅速地在这些原子之间传递。

在金属中,电子和离子发生碰撞时可以带走一部分热能,从而进一步促进了热传导的发生。

2.3 塑性和可锻性金属具有很好的塑性和可锻性,这是因为其晶体结构中的原子可以向多个方向移动。

金属在受到一定的压力或拉伸力时,其原子能够在晶体中重新排列,从而产生塑性或可锻性。

金属的塑性常被用于制造各种形状的产品,如铝汽车轮毂,而可锻性则用于制造各种形态的金属制品,如铁门等。

2.4 耐腐蚀性金属对于腐蚀的抵抗能力因其化学性质而有所不同。

像铜、铝等金属,由于存在氧化物和其他形式的化学反应产物,因此具有良好的耐腐蚀性。

然而,其他的金属,如铁、钢等,则易于腐蚀,需要经过某些方式的处理以防止腐蚀。

第一章金属的晶体结构

第一章金属的晶体结构

图2-6密排六方晶胞
第三节 晶体学概念
• • • • • • • 1.3.1 晶胞中的原子数 体心立方: 面心立方: 密排六方: 1.3.2 原子半径 1.3.3 配位数和致密度 配位数:指晶体结构中与任一个原子最近邻且等距离的原 子数目。 • 体心立方晶体8个,面心立方12个,密排六方12个,所以 面心立方和密排六方致密度高 • 致密度分别为0.68、0.74、0.74
图2-5
面心立方晶胞
• (3)密排六方晶胞(close packed lattice hexagonal):密排六方晶体的晶胞如图1.6所示。 • 它是由六个呈长方形的侧面和两个呈正六边形的 底面所组成的一个六方柱体。因此,需要用两个 晶格常数表示,一个是正六边形的边长a,另—个 是柱体的高c。在密排六方晶胞的每个角上和上、 下底面的小心都有一个原子,另外在中间还有三 个原子。因此,密排六方晶格的晶胞中所含的原 子数为:6×1/6×2+2×1/2+3=6个。 • 具有密排六方晶体结构的金属有Mg、Zn、Be、 Cd、α-Ti、α-Co等。
A、B组元组成的固溶体也可表示为A(B), 其中A为溶剂, B为 溶质。例如铜锌合金中锌溶入铜中形成的固溶体一般用α表 示, 亦可表示为Cu(Zn)。
• 固溶体特性:1固溶体成分可以在一定范围内变化, 在相图上表现为一个区域。2固溶体必须保持溶剂 组元的点阵类型。3纯金属结构有哪些类型,固溶 体也应有哪些类型,即固溶体本身没有独立的点 阵类型。4组元的原子尺寸不同会引起的点阵畸变, 原子尺寸相差越大,引起的畸变也越大。
• 1.3.4晶体中原子的排列方式(略) • 1.3.5 晶体结构中的间隙 • 三种典型晶体结构的四面体间隙、八面体间 隙(图1-13,1-14,1-15) • 间隙半径与原子半径之比rB/rA=?(见表1-2) • 可见面心立方结构八面体间隙比体心立方结 构四面体间隙还大,因此溶碳量大的分类 • 1.按溶剂分类 • (1)一次固溶体:以纯金属组元作为溶剂的 固溶体称为一次固溶体,也叫边际固溶体。 • (2)二次固溶体:以化合物为溶剂的固溶体 称二次固溶体,或叫中间固溶体。如电子 化合物、间隙相。 • 有的化合物和化合物之间,也可以相互溶 解而组成固溶体,如Fe3C和Mn3C,TiC和 TiN等。

金属晶体中金属原子的相对最密堆积程度较低

金属晶体中金属原子的相对最密堆积程度较低

金属晶体中金属原子的相对最密堆积程度较低1. 引言1.1 金属晶体结构概述金属晶体是由大量金属原子通过一定的规则排列而成的固体结构,在金属晶体中,金属原子之间通过离子键或金属键相互结合,形成密集堆积的结构。

金属晶体结构的稳定性和性能直接受到金属原子的排列方式和结构特点的影响。

金属晶体结构概述主要包括面心立方结构、体心立方结构和六方密排结构等。

在面心立方结构中,每个原子与其周围最近的12个原子形成一个正六面体堆积。

在体心立方结构中,每个原子与六个最近邻原子形成一个八面体堆积,同时与另外六个原子形成一个六面体堆积。

六方密排结构是一种较为特殊的结构,其中每个原子与其周围最近的12个原子形成一个正八面体堆积。

通过对金属晶体结构的理解,我们可以更好地认识金属的性质和性能,为金属材料的制备和应用提供基础数据和理论支持。

金属晶体结构概述是我们研究金属结构和性能的起点,只有深入了解金属晶体的结构特点,才能更好地指导金属材料的设计和应用。

1.2 最密堆积原理最密堆积原理是指在金属晶体中,金属原子通过紧密堆积的方式排列,以实现最紧密的结构。

在晶体结构中,金属原子需要以一种经过精心设计的方式进行排列,以确保空间的最大利用率和结构的稳定性。

最密堆积原理是由克鲁格尔教授在19世纪提出的,他认为金属晶体中的金属原子会以紧密的方式进行堆积,以最大限度地减少间隙和空隙。

最密堆积原理的本质在于金属原子之间的相互作用和排列方式。

金属原子会通过形成密堆积的方式,使得每个原子都被邻近的原子包围,从而最大限度地降低了晶体的能量和稳定性。

在最密堆积的结构中,金属原子之间的空隙和间隙会被最小化,使得晶体的密度和硬度都得到提高。

通过最密堆积原理,金属晶体可以实现更加紧密和有序的排列结构,从而提高了材料的强度、硬度和稳定性。

最密堆积原理的应用不仅可以帮助我们更好地理解金属晶体的结构,还可以为我们设计和改进材料提供重要的指导和参考。

【2000字】2. 正文2.1 金属晶体中金属原子的最密堆积金属晶体中金属原子的最密堆积是金属材料中最常见的结构之一。

清华大学工程材料第五版第一章

清华大学工程材料第五版第一章
晶胞
老师提示 不同元素组成的金属晶体因晶格形 式及晶格常数的不同,表现出不同的物理、 化学和力学性能。金属的晶体结构可用X射线 结构分析技术进行测定。
精品课件
一、三种常见的金属晶体结构
☆ 老师提示:重点内容
1. 体心立方晶格(胞) ( BCC 晶格)
8个原子处于立方体的角上,1个原子处于 立方体的中心, 角上8个原子与中心原子紧靠。
精品课件
若两个晶向的全部指数数值相同而符
号相反, 则它们相互平行或为同一原子列,
但方向相反。
如[110]与

若只研究原子排列情况, 则晶向[110]

可用同一个指数[110]表示。
精品课件
晶向族 原子排列情况相同而在空间位向不 同的晶向组成晶向族。
晶向族用尖括号表示, 即<uvw>。
如: <100> = [100] + [010] + [001]
晶面族用大括号表示, 即{hkl}。
在立方晶胞中
组成{111}晶面族:
精品课件
{111} 晶面族
2. 立方晶系的晶向表示方法
以晶向DA为例:
精品课件
晶向OA : [100] 晶向OB : [110] 晶向OB’ :[111]
立方晶胞中的主要晶向
晶向指数一般标记为[uvw],
表示一组原子排列相同的平行晶向。
精品课件
在立方晶系中, 一个晶面指数与 一个晶向指数数值和符号相同时, 则 该晶面与该晶向互相垂直。
如:(111)⊥[111]。
晶面与晶向互相垂直
精品课件
3. 六方晶系的晶面指数和 晶向指数
四指数方法表示晶面和晶向。
水平坐标轴选取互相成120°

1.1.1金属的晶体结构试题

1.1.1金属的晶体结构试题

1.1.1 金属的晶体结构(一)填空题1.同非金属相比,金属的主要特性是导电性、导热性、塑性优良,正的电阻-温度系数2.晶体与非晶体的最根本区别是晶体中原子排列是周期性规则有序的,而非晶体中原子排列是混乱无序的3.金属晶体中常见的点缺陷是空位和间隙原子,最主要的面缺陷是晶界。

4.位错密度是指单位体积中位错线的总长度,其数学表达式为L / V 。

5.表示晶体中原子排列形式的空间格子叫做晶格,而晶胞是指能表示晶体结构的最小的晶格。

6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是【111】,而面心立方晶格是【110】。

7 晶体在不同晶向上的性能是不同的,这就是单晶体的各向异性现象。

一般结构用金属为多晶体晶体,在各个方向上性能是相同的,这就是实际金属的伪各向同性现象。

8 实际金属存在有点缺陷、线缺陷和面缺陷三种缺陷。

位错是线缺陷。

实际晶体的强度比理想晶体的强度低得多。

9.常温下使用的金属材料以细小晶粒为好。

而高温下使用的金属材料在一定范围内以粗大晶粒为好。

10.金属常见的晶格类型是FCC 、BCC 、HCP 。

11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为<1-10> 或<-110> ,OC晶向指数为<112> ,OD晶向指数为<212> 。

12.铜是FCC 结构的金属,它的最密排面是(111) ,若铜的晶格常数a=0.36nm,那么最密排面上原子间距为。

13 α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn中属于体心立方晶格的有,属于面心立方晶格的有,属于密排六方晶格的有。

14.已知Cu的原子直径为0.256nm,那么铜的晶格常数为。

1mm3Cu中的原子数为。

15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为{001} . 16.在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为{120} .17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有金属键的结合方式。

第1章_金属的晶体结构

(3)原子半径 atomic radius (4)致密度 atomic packing factor (APF)---0.68 (5)空隙半径 gap radius (6)配位数 coordination number—最近邻等距离原子数,体心
立方晶格的配位数为8。配位数越大, 原子排列紧密程度就越大。
面心立方晶胞原子排列
FCC –Page2/4
❖ 面心立方晶胞特征:
(1)晶格常数 a=b=c, α=β=γ=90° (2)晶胞原子数 (个)

FCC –Page3/4
(3)原子半径
r原子
2a 4
or
a 2r原子 2
(4)致密度 0.74 (74%) (5)配位数 12
FCC –Page4/4
❖ 金属的晶格常数一般为:
1×10-10 m~7×10-10 m。
❖ 不同元素组成的金属晶体因晶格形式及晶格常数不同, 其物理、化学和力学性能也不同。
❖ 金属的晶体结构可用X射线(X-ray)结构分析技术进行测定。
1.2 金属的晶体结构 –3 三种典型的晶体结构
❖ 体心立方晶格(胞) Body-Centered Cubic (B.C.C.晶格) ❖ 面心立方晶格(胞) Face-Centered Cubic (F.C.C.晶格) ❖ 密排六方晶格(胞) Hexagonal Close-Packed (H.C.P.晶格)
ቤተ መጻሕፍቲ ባይዱ
1.1 金属简介
❖ 学习目标: ➢ 根据金属键的本质,解释固态金属的一些特性—导
电性、正的电阻温度系数、传热性及延展性等) ➢ 利用双原子作用模型,分析两个原子间的相互作用
(P3的图1-2)
1.2 金属的晶体结构 –1 晶体的特性

金属的晶体结构试题

1.1.1 金属的晶体结构(一)填空题1.同非金属相比,金属的主要特性是导电性、导热性、塑性优良,正的电阻-温度系数2.晶体与非晶体的最根本区别是晶体中原子排列是周期性规则有序的,而非晶体中原子排列是混乱无序的3.金属晶体中常见的点缺陷是空位和间隙原子,最主要的面缺陷是晶界。

4.位错密度是指单位体积中位错线的总长度,其数学表达式为L / V 。

5.表示晶体中原子排列形式的空间格子叫做晶格,而晶胞是指能表示晶体结构的最小的晶格。

6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是【111】,而面心立方晶格是【110】。

7 晶体在不同晶向上的性能是不同的,这就是单晶体的各向异性现象。

一般结构用金属为多晶体晶体,在各个方向上性能是相同的,这就是实际金属的伪各向同性现象。

8 实际金属存在有点缺陷、线缺陷和面缺陷三种缺陷。

位错是线缺陷。

实际晶体的强度比理想晶体的强度低得多。

9.常温下使用的金属材料以细小晶粒为好。

而高温下使用的金属材料在一定范围内以粗大晶粒为好。

10.金属常见的晶格类型是FCC 、BCC 、HCP 。

11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为<1-10> 或<-110> ,OC晶向指数为<112> ,OD晶向指数为<212> 。

12.铜是FCC 结构的金属,它的最密排面是(111) ,若铜的晶格常数a=,那么最密排面上原子间距为。

13 α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn中属于体心立方晶格的有,属于面心立方晶格的有,属于密排六方晶格的有。

14.已知Cu的原子直径为0.256nm,那么铜的晶格常数为。

1mm3Cu中的原子数为。

15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为{001} . 16.在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为{120} .17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有金属键的结合方式。

《机械工程材料》教案

《机械工程材料》教案第一章:金属材料1.1 金属的晶体结构介绍金属晶体的基本结构解释金属键的概念探讨金属的晶体缺陷1.2 金属的力学性能讨论金属的强度、韧性、硬度等力学性能解释影响金属力学性能的因素探讨金属的疲劳和腐蚀性能1.3 常用金属材料介绍铁合金、铜合金、铝合金等常用金属材料分析各种金属材料的特性及应用领域第二章:非金属材料2.1 陶瓷材料介绍陶瓷材料的组成、制备和特性探讨陶瓷材料的烧结过程及影响因素分析陶瓷材料在工程中的应用2.2 塑料材料介绍塑料的组成、制备和特性讨论塑料的成型加工方法探讨塑料在工程中的应用及限制2.3 复合材料介绍复合材料的定义及分类解释复合材料的特点及优势分析复合材料在工程中的应用案例第三章:材料的力学性能测试3.1 拉伸试验介绍拉伸试验的原理及设备探讨拉伸试验中应力、应变、塑性、弹性等概念分析拉伸试验结果及应用3.2 压缩试验介绍压缩试验的原理及设备探讨压缩试验中应力、应变、脆性等概念分析压缩试验结果及应用3.3 冲击试验介绍冲击试验的原理及设备探讨冲击试验中冲击吸收能量、冲击韧性等概念分析冲击试验结果及应用第四章:材料的焊接4.1 焊接概述介绍焊接的定义、分类及原理解释焊接过程中的热影响区、冷却速度等概念探讨焊接接头的缺陷及影响因素4.2 常见焊接方法介绍熔化焊接、压力焊接、摩擦焊接等常见焊接方法分析各种焊接方法的适用范围及特点4.3 焊接质量控制讨论焊接质量的检测方法解释焊接质量标准及要求探讨焊接质量控制的具体措施第五章:材料的选用及应用5.1 材料选用原则介绍材料选用的基本原则解释材料选用时需要考虑的因素分析材料选用的重要性和必要性5.2 工程材料应用案例分析分析具体工程材料应用案例探讨材料在工程应用中的优势和局限性总结材料应用的经验教训《机械工程材料》教案第六章:材料的热处理6.1 热处理的基本概念介绍热处理的定义、目的和分类解释热处理过程中温度、时间等参数的作用探讨热处理的基本方法(如退火、正火、淬火等)6.2 热处理工艺及设备介绍各种热处理工艺的具体步骤和操作要点探讨热处理设备的类型及选用原则分析热处理过程中的热量传递和相变规律6.3 热处理的应用及效果分析热处理在改善材料性能方面的作用讨论热处理对材料组织结构的影响探讨热处理在实际工程中的应用案例第七章:表面处理技术7.1 表面处理技术概述介绍表面处理技术的定义、目的和分类解释表面处理技术在工程中的应用重要性探讨表面处理技术的选择原则7.2 常见表面处理方法介绍抛光、喷砂、电镀、阳极氧化等常见表面处理方法分析各种表面处理方法的特点、适用范围及优缺点7.3 表面处理技术的应用案例分析表面处理技术在实际工程中的应用案例探讨表面处理技术在提高材料性能、延长使用寿命等方面的作用第八章:材料的疲劳与断裂8.1 疲劳与断裂的基本概念介绍疲劳与断裂的定义、类型和特点解释疲劳失效的过程及影响因素探讨断裂力学的相关概念(如应力强度因子、断裂韧性等)8.2 材料的疲劳性能测试与评估介绍疲劳试验的方法、设备及参数测定分析疲劳试验结果及疲劳寿命的预测方法探讨材料的疲劳裂纹扩展行为及影响因素8.3 疲劳与断裂的控制与应用讨论材料和构件在防止疲劳与断裂方面的设计原则分析实际工程中的疲劳与断裂控制案例总结疲劳与断裂研究的新进展及发展趋势第九章:材料的磨损与腐蚀9.1 磨损与腐蚀的基本概念介绍磨损与腐蚀的定义、类型和特点解释磨损与腐蚀对材料性能和寿命的影响探讨磨损与腐蚀的常见原因和机理9.2 材料的磨损与腐蚀性能测试方法介绍磨损试验(如摩擦磨损试验、冲击磨损试验等)及设备分析腐蚀试验(如浸泡试验、电化学腐蚀试验等)及方法探讨磨损与腐蚀试验结果的分析与评估9.3 磨损与腐蚀的控制与应用讨论材料选择、表面处理等在防止磨损与腐蚀方面的作用分析实际工程中的磨损与腐蚀控制案例总结磨损与腐蚀研究的新进展及发展趋势第十章:材料的环境适应性10.1 环境适应性的基本概念介绍环境适应性的定义、类型和重要性解释材料在不同环境(如大气、水、土壤等)中的行为探讨环境适应性评价的方法和指标10.2 材料的环境老化与性能变化分析环境因素(如温度、湿度、紫外线等)对材料老化的影响讨论材料老化过程及性能退化的机制探讨材料环境老化试验的方法和设备10.3 提高材料环境适应性的策略与应用介绍提高材料环境适应性的方法(如改性、表面防护等)分析实际工程中提高材料环境适应性的应用案例总结材料环境适应性研究的新进展及发展趋势《机械工程材料》教案第十一章:材料的设计与性能优化11.1 材料设计的基本概念介绍材料设计的目标和方法解释材料设计的意义和挑战探讨计算机辅助材料设计的发展趋势11.2 材料性能优化的策略讨论单一材料性能优化的方法(如合金化、微合金化等)分析复合材料性能优化的途径(如纤维增强、颗粒填充等)探讨材料性能优化时的权衡与取舍11.3 材料设计及性能优化的应用案例分析具体材料设计及性能优化的成功案例探讨材料设计及性能优化在工程应用中的价值第十二章:材料的可持续性与环保12.1 可持续发展的基本概念介绍可持续发展的定义、原则和目标解释材料在可持续发展中的作用和责任探讨可持续发展的评价方法和指标体系12.2 环保材料的选择与应用介绍环保材料的分类和特点(如生物降解材料、再生材料等)分析环保材料在工程中的应用优势和限制探讨环保材料的发展趋势及挑战12.3 材料可持续性的实施与案例分析讨论材料生产、使用和回收过程中的可持续性措施分析实际工程中实现材料可持续性的成功案例总结材料可持续性研究的新进展及发展趋势第十三章:材料的经济性分析13.1 材料成本的构成与分析介绍材料成本的构成要素分析材料成本的影响因素探讨降低材料成本的策略和方法13.2 材料的经济性评价方法介绍经济性评价的基本原则和方法(如成本效益分析、生命周期成本分析等)分析各种经济性评价方法的适用范围和优缺点探讨经济性评价在材料选择中的应用13.3 材料经济性分析的应用案例分析实际工程中材料经济性分析的成功案例探讨材料经济性分析在工程项目中的价值第十四章:材料在机械工程中的应用14.1 机械零件的材料选择介绍机械零件设计中材料选择的重要性分析机械零件在不同工作条件下的材料要求探讨机械零件材料选择的依据和流程14.2 典型机械工程材料的应用案例分析机械工程中常用材料(如钢、铝、陶瓷等)的应用案例探讨不同材料在提高机械性能、降低成本等方面的作用14.3 材料在机械工程领域的创新应用介绍材料科学和技术在机械工程领域的最新进展分析新型材料(如记忆合金、纳米材料等)在机械工程中的应用前景第十五章:总结与展望15.1 课程总结回顾本课程的主要内容和知识点强调材料在机械工程中的重要性总结学习过程中掌握的关键技能和思维方法15.2 展望未来分析材料科学和技术的发展趋势探讨材料在机械工程领域的潜在应用激发学生对材料科学和工程的兴趣和热情重点和难点解析重点:理解不同类型材料(金属、非金属、复合材料等)的结构、性能及其应用;掌握材料的力学性能测试方法及其结果分析;了解材料的热处理工艺、表面处理技术以及疲劳与断裂、磨损与腐蚀的基本原理和控制方法;熟悉材料的经济性分析以及在机械工程中的应用。

金属的晶体结构

不管原子以哪种方式进行堆垛,在原子刚球之间都必然存在 间隙,这些间隙对金属的性能以及形成合金后的晶体结构都 有很重要的影响。分析间隙的数量、大小及位置对了解材料 的相结构、扩散、相变等问题都很重要。
间隙半径:间隙中所能容纳的最大圆球的半径。
体心立方晶格中的间隙
八面体间隙: 6个×0.067a
四面体间隙: 12个×0.126a
体心立方晶格(body-centred cubic)
体心立方金属有:-Fe、Cr、V、W、Mo 等30种 。体心立方晶胞Z Nhomakorabeac
a a 2r
a
bY
X
晶格常数:a=b=c; ===90
晶胞原子数: 2
1+8*1/8=2
原子半径:
致密度:0.68
致密度= Va/Vc,其中 Vc:晶胞体积a3 Va=nV1 =24r3/3 配位数:8 配位数越大,原子排列 越紧密。
四、金属晶体中的晶面和晶向
Z
c
b a
晶面─晶体点阵中,通 过阵点的任一平面,代 Y 表晶体的原子平面,称 为晶面。
第1章 金属的晶体结构
1.1 金属 1.2 金属的晶体结构 1.3 实际金属的晶体结构
本章重点与难点
• ①金属键;建立金属原子的结构模型 。 • ②建立晶格和晶胞的概念;最常见的晶体结构:
体心立方结构、面心立方结构、密排六方结构; 立方晶系的晶向指数和晶面指数。 • ③晶体中存在的缺陷:点缺陷、线缺陷(位错)、 面缺陷。
晶胞的棱边长度一般称为晶格常数或点阵常数,用a、b、 c表示。晶胞的棱间夹角叫轴间夹角。用α、β、γ表示。
2、七大晶系和十四种布拉菲点阵
依据空间点阵的基本特点划分为七大晶系:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《金属材料与热处理》导学案主备人:栾义审核人:栾义编号:002
§1-1金属的晶体结构
【使用说明】
1、依据学习目标,全体同学积极主动的根据教材内容认真预习并完
成导学案,小组长做好监督与检查,确保每位同学都能认真及时的预习相关知识。

2、结合导学案中的问题提示,认真研读教材,回答相关问题。

3、要求每位同学认真预习、研读课本,找出不明白的问题,用红笔
做好标记。

【学习目标】
1、知识与技能:了解金属晶体的分类,熟悉常见的金属晶格类型和
晶体缺陷,掌握金属的内部结构对金属性能的影响。

2、学习与方法:通过研读课本,积极讨论,踊跃展示,提升对“组织
结构决定性能”的理解。

3、情感态度价值观:激情投入,大胆质疑,快乐学习。

【重点难点】
常见金属的晶格类型和常见的晶体缺陷
金属的晶体结构和晶体缺陷对其性能的影响
【自主学习】
班级:姓名:使用时间:年月日晶体定义重要级别:★★★★★
晶格类型重要级别:★★★★★
单晶体与多晶体重要级别:★★★★
晶体缺陷重要级别:★★★★
【合作探究】
1、对比晶体与非晶体,填写下表
2、名词解释:
(1)金属的晶格类型
(2)晶格和晶胞
(3)单晶体和多晶体
《金属材料与热处理》导学案主备人:栾义审核人:栾义编号:002 (4)晶体缺陷
3、金属的晶格类型有哪几种?绘制其晶胞示意图。

各自有什么性能特点?
α-Fe和γ-Fe分别是哪种晶格类型?
4、晶体缺陷的分类以及晶体缺陷对金属材料的性能影响。

【课后作业】(自己默写,组长监督)
1、理解掌握本导学案内容,并完成习题册第一章第一节相关题目。

【学后反思】。

相关文档
最新文档