第1章 质点力学
大学物理质点力学第一章 质点运动学 PPT

方向:
cosa
=
x r
cosβ=
y r
cosγ=
z r
路程:质点所经路径得总长度。
三、速度
描述位置矢量随时间变化快慢得物理量
1、平均速度
在移质为点r由)A,到单B的位过时程间中内(的所平用均时位间移为称为t该,质所点发在生该的过位
程中的平均速度。
v
=
Δ Δ
r t
=
Δx Δt
i
+ΔΔ
y t
j
+
Δ Δ
0
Δx
Δ t —割线斜率(平均速度)
dx —切线斜率(瞬时速度) dt
x~t图
t tt
1
2
2、 v ~ t 图
v ~ t图
割线斜率:
Δv Δt = a
v v2
切线斜率:
dv dt
=a
v1
v ~ t 图线下得面积(位移):
0 t1
t2
x2
dt dx x2 x1 x
t1
x1
t2 t
3、 a ~ t 图
=
dθ
dt
B
Δθ A
θ
0
x
(3)、角加速度
β =ΔΔωt
β
=
lim
Δt
Δω
0Δ t
=ddωt
=ddθt2 2
(4)、匀变速率圆周运动
0
t
1 2
t2
0 t
2
2 0
2
(5)、线量与角量得关系
Δ s = rΔθ
lim Δ s
Δt 0Δ t
=
lim
Δt 0
r
Δθ
第1章-质点运动学

z A.
(t )
.B
的变化情况,定义:质点
的平均加速度为
(t t )
O
a t
y
24
x
质点的(瞬时)加速度定义为:
d d r a lim 2 t 0 t dt dt
2
即:质点在某时刻或某位置的(瞬时)加速度等于
速度矢量 对时间的一阶导数,或等于矢径 r 对时
第一篇 力 学
1
内容提要
第一章 运动学 第二章 质点动力学(牛顿运动定律) 第三章 刚体力学
第四章 振动学基础
第五章 第六章 波动学基础
狭义相对论
2
第1章 质点运动学
§1-1 参考系、坐标系和理想模型
运动的可认知性——绝对运动与相对静止的辩证统一
案例讨论:关于物质运动属性的两种哲学论断 赫拉克利特:“人不能两次踏进同一条河流”
y
y
位置矢量 r 的大小(即质点P到原点o的距离)为
2 2 2 r r x y z
方向余弦: cos=x/r, cos=y/r, cos=z/r 式中 , , 取小于180°的值。
z
r
P(x,y,z)
z
C
cos2 + cos2 + cos2 =1
x
A
运动方程
—— 轨道方程。
11
消去时间t得:x2+y2=62
§1-3 位移 速 度
一.位移和路程
如图所示,质点沿曲线C运动。时刻t在A点,时 刻t+t在B点。 从起点A到终点B的有向线 段AB=r,称为质点在时间t内 的位移。 而A到B的路径长度S为 路程。
大学物理同步训练第2版第一章质点运动学详解

为大于零的常数,则 t 时刻其速度 v
4
;其切向加速度的大小为
;该
同步训练答案
第一章 质点力学
许照锦
质点运动轨迹是
。
答案: R sin ti R sin tj ; 0; 半径为 R 的圆 分析:
2 3
(A) 0 t 1s 内,质点沿 x 轴负向作加速运动 (B) 1 t 2 s 内,质点沿 x 轴正向作减速运动 (C) t 2 s 时,质点沿 x 轴负向作减速运动 (D)质点一直沿 x 轴正向作加速运动 答案:B
1
同步训练答案
第一章 质点力学
许照锦
分析:
v
dx 6t 3t 2 3t 2 t ,故 0 t 2 时, v 0 ; t 2 时, v 0 。 dt dv a 6 6t 6(1 t ) ,故 0 t 1时, a 0 ; t 1 时, a 0 。 dt
2
答案:A 分析: 平均速度=
x(t 2 ) xt1 3 3 2 2 2 注:t 2 t1 t 2 t1 t 2 t1t 2 t1 。 t2 t1t 2 t12 40 , t 2 t1
7. (☆)根据瞬时加速度的定义及其坐标表示,它的大小 a 可表示为
故质点作变速运动。答案 B 正确。 6. 一作直线运动的物体的运动规律是 x t 40t ,从时刻 t1 到 t 2 间的平均速度是
3
(A) t 2 t1t 2 t1 40
2 2
(完整版)第1章质点力学

1第1章 质点力学1—1 一质点的运动方程为x = 6t-t 2(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ;质点所走过的路程为 .1-3 一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a=2+6x 2(SI ),如果质点在原点处的速度为零,试求其在任意位置处的速度。
1-4一质点沿半径R 的圆周运动,运动方程为 θ=3+2t 2(SI ),则t 时刻质点的法向加速度大小为 an;角加速度 β= 。
1—5 某质点的运动方程为x= 3t —5t 3+6(SI),则该质点作 (A)匀加速直线运动,加速度沿x 轴正方向. (B )匀加速直线运动,加速度沿x 轴负方向。
(C )变加速直线运动,加速度沿x 轴正方向。
(D )变加速直线运动,加速度沿x 轴负方向。
[ ] 1—9 一质点作直线运动,其坐标x 与时间t 的函数曲线如图所示,则该质点在第秒瞬时速度为零;在第 秒至第 秒间速度与加速度同方向。
1—10 一物体作斜抛运动,初速度0v与水平方向夹角为θ, 如图所示,则物体到达最高点处轨道的曲率半径ρ为 .1-11一物体作如图所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°。
则物体在A 点的切向加速度a t = ,轨道的曲率半径ρ= 。
6t(s)题1—10图 题1-11图21-12 在相对地面静止的坐标系内,A 、B 二船都以2 m/s 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j表示),那么在A 船的坐标系中,B 船的速度(以m/s 为单位)为 :(A)j 2i 2 + (B )j 2i 2+-(C )j 2i 2 -- (D )j 2i 2- [ ]1—13 一飞机相对空气的速度大小为200km/h ,风速为56 km/h ,方向从西向东,地面雷达测得飞机速度大小为192 km/h ,方向是(A)南偏西 16。
理论力学思考题解答

1.8 某人以一定的功率划船,逆流而上.当船经过一桥时,船上的渔竿不慎落入河中.两分钟
后,此人才发现,立即返棹追赶.追到渔竿之处是在桥的下游 600 米的地方,问河水的流速
是多大?
1.9 物体运动的速度是否总是和所受的外力的方向一致?为什么?
1.10 在那些条件下,物体可以作直线运动?如果初速度的方向和力的方向一致,则物体是
末位置有关,还与路径有关,故质点到达任一点的速度不仅与初末高度差有关,还与曲线形 状有关。 1.12 答:质点被约束在一光滑静止的曲线上运动时,约束力的方向总是垂直于质点的运动 方向,故约束力不做功,动能定理或能量积分中不含约束力,故不能求出约束力。但用动能
定理或能量积分可求出质点在某位置的速度,从而得出 an ,有牛顿运动方程 Fn Rn man 便可求出 Rn ,即为约束力
r
j
y
Fr y
r
k
Fr xi yj zk Fr r F
z
r
r
Fr z
r
事实上据“ ”算符的性质,上述证明完全可以简写为
F Frr 0
这表明有心力场是无旋场记保守立场
1.17 答平方反比力场中系统的势能V r k 2m ,其势能曲线如题图 1.17 图所示,
1.2 答:质点运动时,径向速度 Vr 和横向速度 Vθ 的大小、方向都改变,而 ar 中的 r只反映 了 Vr 本身大小的改变, a 中的 r r 只是 Vθ 本身大小的改变。事实上,横向速度 Vθ 方 向的改变会引起径向速度 Vr 大小大改变, r2 就是反映这种改变的加速度分量;经向速 度 Vr 的方向改变也引起 Vθ 的大小改变,另一个 r 即为反映这种改变的加速度分量,故 ar r r2 ,a r 2r. 。这表示质点的径向与横向运动在相互影响,它们一起才能
理论力学(周衍柏)第一章质点力学

(1)矢量形式的运动学方程
rr(t)
理论力学:Theoretical mechanics 当质点运动时r是时间t的单值连续函数。此方程常用来 进行理论推导。它的特点是概念清晰,是矢量法分析质点 运动的基础。
(2)直角坐标形式的运动学方程
x x(t)
y
y (t)
z z ( t )
这是常用的运动学方程,尤其当质点的轨迹未知时。它是 代数方程,虽然依赖于坐标系,但是运算容易。
说明: ① 参照物不同,对同一个物体运动的描述结果可能不同;
② 观察者是站在参照系的观察点上; ③ 不特别说明都以地球为参照系。
2. 坐标系
理论力学:Theoretical mechanics 为了定量研究的空间位置,就必须在参考系上建立坐标 系。参照系确定后,在参照系上选择适宜的坐标系,便于 用教学方式描述质点在空间的相对位置(方法)。
ji
解: 确定动系和静系 静系:河岸 动系:河流 研究对象:小船
理论力学:Theoretical mechanics
:0 牵连速度, : 绝对速度, :相 对 速度
ji
由:
0
0
c2i
r d
dt
j
c1 cosi c1 sin
j
i
选取极坐标, 得
理论力学:Theoretical mechanics
0:人行走速度, : 风速(相对于地), :风 相对于人的速
度 由:
得: 理论力学:Theoretical mechanics
得: 解得:
y
2
2
理论力学:Theoretical mechanics
因此:x 4,y 4
风速: x2y2 4 2km/h
力学舒幼生第一章质点运动学

通过积分,可以得到轨道方程 r r()
33
例 狐狸沿圆周跑,狗从圆心出发,速度都 为v,圆心、狗、狐狸始终连成一直线。
求狗的速度、加速度和轨道方程。
狐狸的角速度 d v
dt R
狗有横向和纵向速度
v r,vr v2v2
狗的横向和纵向加速度
a2d dd d r t trd d2 2t,ard d22 rtr d d t2
A (r ,,t) A re r A e
与直角坐标系的变换
xrco ,syrsin
27
正交基矢与极坐标的微分关系
正交基矢只依赖 ,与 r 无关
当θ变化时,正交基矢同时改变方向 满足微分关系
der
de
de de r
e
er
d r(t)
参考空间:沿左右、前后、上下三对方向无限扩展, 构成三维平直空间
参考系:参考空间+测量时间的时钟
z 坐标系:在参考空间中任选一点作为原点, 可建立各种坐标系。
时间的零点也可任选
O
y
x
相对运动的参考系
两个参考系之间若有相对运动,
他们观测同一个运动物体 是否会得到相同的距离和时间?
v
z
O
y
x
质点
由繁到简 将物体模型化为一个点——质点
dt dt
加速度
v(t)
dR
d
R
⊙k
a d v d R d R R v d td t d t a 心 v , a 切 R
22
曲线的曲率和曲率半径
曲率 d dl
大学物理第1章质点运动学的描述

t0
0 2 4
t 2s 4
2
t 2s
x/m
6
-6 -4 -2
例3 如图所示, A、B 两物体由一长为 l 的刚性 细杆相连, A、B 两物体可在光滑轨道上滑行.如物体 A以恒定的速率 v 向左滑行, 当 60 时, 物体B的 速率为多少? 解 建立坐标系如图, 物体A 的速度
1. 5 arctan 56.3 1
(2) 运动方程
x(t ) (1m s )t 2m
y(t ) ( m s )t 2m
1 4 2 2
1
由运动方程消去参数
1 -1 2 y ( m ) x x 3m 4
轨迹图
t 4s
6
t 可得轨迹方程为
y/m
三、位置变化的快慢——速度
速度是描写质点位置变化快慢和方向的物理量,是矢量。
速率是描写质点运动路程随时间变化快慢的物理量,是标量。 1 平均速度 在t 时间内, 质点从点 A 运动到点 B, 其位移为
B
y
r r (t t) r (t)
r (t t)
s r
质点是经过科学抽象而形成的理想化的物理模 型 . 目的是为了突出研究对象的主要性质 , 暂不考 虑一些次要的因素 .
二、位置矢量、运动方程、位移
1 位置矢量
确定质点P某一时刻在 坐标系里的位置的物理量称 . 位置矢量, 简称位矢 r
y
y j
r xi yj zk
j k 式中 i 、 、 分别为x、y、z
xA xB xB x A
yB y A
o
x
经过时间间隔 t 后, 质点位置矢量发生变化, 由 始点 A 指向终点 B 的有向线段 AB 称为点 A 到 B 的 位移矢量 r . 位移矢量也简称位移.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 质点力学1-1 一质点的运动方程为x = 6t - t 2(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ;质点所走过的路程为 。
1-3 一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a=2+6x 2(SI ),如果质点在原点处的速度为零,试求其在任意位置处的速度。
1-4一质点沿半径R 的圆周运动,运动方程为 θ=3+2t 2(SI ),则t 时刻质点的法向加速度大小为a n ;角加速度 β= 。
1-5 某质点的运动方程为x= 3t-5t 3 +6(SI ),则该质点作(A )匀加速直线运动,加速度沿x 轴正方向。
(B )匀加速直线运动,加速度沿x 轴负方向。
(C )变加速直线运动,加速度沿x 轴正方向。
(D )变加速直线运动,加速度沿x 轴负方向。
[ ] 1-9 一质点作直线运动,其坐标x 与时间t 的函数曲线如图所示,则该质点在第 秒瞬时速度为零;在第 秒至第 秒间速度与加速度同方向。
1-10 一物体作斜抛运动,初速度0v与水平方向夹角为θ, 如图所示,则物体到达最高点处轨道的曲率半径ρ为 。
1-11一物体作如图所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°。
则物体在A 点的切向加速度a t = ,轨道的曲率半径ρ= 。
t(s) 题1-10图 题1-11图1-12 在相对地面静止的坐标系内,A 、B 二船都以2 m/s 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j表示),那么在A 船的坐标系中,B 船的速度(以m/s 为单位)为 :(A )j 2i 2 + (B )j 2i 2 +- (C )j 2i 2 -- (D )j 2i 2 - [ ] 1-13 一飞机相对空气的速度大小为200km/h ,风速为56 km/h ,方向从西向东,地面雷达测得飞机速度大小为192 km/h ,方向是(A )南偏西 16.3°。
(B )北偏东 16.3°。
(C )向正南或向正北。
(D )西偏北 16.3°。
(E )东偏南 16.3°。
[ ]1-14 已知一质点运动方程为 j t t i t t r )314()2125(32++-+=(SI )。
当t =2s 时, a = 。
1-15 一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是β=12t 2-6 t (SI )则质点的角速度ω= , 切向加速度a t = 。
1-21 在xy 平面内有一运动的质点,其运动方程为j t i t r 5sin 105cos 10+=(SI ),则t 时刻其速度v = 加速度的大小a t = ;该质点运动的轨迹是 。
1-26一质点沿x 轴作直线运动,它的运动方程为 x=3+5t +6t 2 _ t 3(SI ),则(1)质点在t=0时刻的速度v 0 = ;(2)加速度为零时,该质点的速度v = 。
1-28一质点P 从O 点出发以匀速率1cm/s 作顺时针转向的圆周运动,圆的半径为1m ,如图所示。
当它走过32圆周时,走过的路程是 ,这段时间内的平均速度大小为 ,方向是 。
1-29 已知质点的运动方程为()j t i t r 3242++=,则该质点的轨道方程为 。
yx O1-35 某物体的运动规律为t k dt2v dv -= ,式中的k 为大于零的常数。
当t =0时,初速度为v 0,则速度v 与时间t 的函数关系是(A )0v v +=221kt . (B )0v v +-=221kt (C )021211v v +=kt . (D )021211v v +-=kt [ ] 1-36某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?(A )北偏东30°。
(B ) 南偏东30°。
(C )北偏西30°。
(D ) 西偏南30°。
[ ]1-37一质点在平面上运动,已知质点位置矢量的表示式为r = at 2i +bt 2j (其中a 、b 为常量)则该质点作(A ) 匀速直线运动。
(B ) 变速直线运动。
(C ) 物线运动。
(D ) 一般曲线运动。
[ ] 1-39 某人骑自行车以速率v 向正西方行驶,遇到由北向南刮的风(设风速大小也为v ),则他感到风是从(A) 东北方向吹来。
(B )东南方向吹来。
(C )西北方向吹来。
(D )西南方向吹来。
[ ]1-40 一个质点在做匀速率圆周运动时(A) 切向加速度改变,法向加速度也改变。
(B) 切向加速度不变,法向加速度改变。
(C )切向加速度不变,法向加速度也不变。
(D )切向加速度改变,法向加速度不变。
[ ]1-41 设质点的运动方程为j t sin R i t cos R r ω+ω=(式中R 、ω皆为常量)。
则质点的v = ,=dtdv 。
1-43一质点在平面上做曲线运动,其速率v 与路程S 的关系为v =1+S 2(SI ),其切向加速度以路程S 来表示的表达式为a t = (SI )。
1-44一船以速度0v 在静水湖中匀速直线航行,一乘客以初速1v 在船中竖直向上抛出一石子,则站在岸上的观察者看石子运动的轨迹是 ,其轨迹方程是 。
1-46一物体从某一确定高度以v 0的速度水平抛出,已知它落地时的速度为v t ,那么它运动的时间是(A) g t 0v v - (B) g t 20v v - (C) g 21)(2o 2t v v - (D) g 221)(2o 2t v v - [ ] 1-50 两个质量相等的小球由一轻弹簧相连接,在用一细绳悬挂于天花板上,处于静止状态。
将绳子剪断的瞬间,球1和球2的加速度分别为(A )a 1 = g , a 2 = g . (B )a 1= 0, a 2 = g .1-53 两物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平推力F ,则物体A 对物体B 的作用等于(A )F m m m 211+. (B )F . (C )F m m m 212+. (D )F m m 12. [ ] 1-54 质量分别为m A 和m B 的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F 作用下匀速运动。
如图所示。
如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为(A )a A =0, a B =0. (B )a A >0, a B <0.(C )a A <0, a B >0. (D )a A <0, a B =0. [ ]1-55 一圆锥摆摆长为l ,摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅垂线夹角θ,则(1)摆线的张力T=______________;(2)摆锤的速率v =__________________。
1-56 质量为m 的小球,用轻绳AB 、BC 连接。
如图,剪断绳AB 前后的瞬间,绳BC 中的张力比T :T'=________________。
1-59 如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为(A )θcos mg . (B )θsin mg .(C )θcos mg . (D )θsin m g . [ ] 1-60 如图所示,斜面与竖直墙壁均光滑,则质量为m 的小球对斜面作用力的大小为(A ) mgsin θ (B) θcos mg . (C ) θsin mg . (D ) θcos mg . [ ]1-61 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端。
它们由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A )甲先到达。
(B )乙先到达。
(C )同时到达。
(D )谁先到达不能确定。
[ ] 1-62一根细绳跨过一光滑的定滑轮。
一端挂一质量为M 的物体。
另一端被人用双手拉着,人的质量M m 21=。
若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是(A )320g a + (B ))3(0a g -- (C )320g a +--. (D )a 0. [ ]1-63 一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2,滑轮质量及一切摩擦均不计,此时重物的加速度的大小为a 。
今用一竖直向下的恒力F= m 1g 代替质量为m 1的物体,质量为m 2的重物的加速度为a ',则(A ) a '= a . (B )a '>a .(C ) a '<a . (D )不能确定。
[ ]m θm θ1-64如图,物体A 、B 质量相同,B 在光滑水平桌面上,滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计,系统无初速地释放。
物体A 下落的加速度(A )g. (B )2g . (C )3g . (D )54g . [ ] 1-66 质量m 为10kg 木箱放在地面上,在水平拉力F 的作用下由静止开始沿直线运动,其拉力随时间的变化关系如图所示。
若已知木箱与地面间的摩擦系数μ为0.2,那么在t=4s 时,木箱的速度大小为 ;在t=7s 时,木箱的速度大小为 。
(g 取10m/s 2)1-67 试根据质点动量定理,推导由两个质点组成的质点系的动量定理,并导出动量守恒的条件。
1-69 质量为m 的质点,一不变速率v 沿如图中正三角形的水平光滑轨道运动。
质点越过A 角时,轨道作用于质点的冲量大小为(A )mv 。
(B )v m 2。
(C )v m 3。
(D )2mv 。
[ ]1-73 一物体质量M=2kg ,在合外力i )t 23(F +=(SI )的作用下,从静止出发沿水平x 轴作直线运动,则当t=1s 时物体的速度1v=__________________。
1-74 质量为20g 的子弹沿x 轴正向以500m/s 的速率射入一块木块后,与木块一起仍沿x 轴正向以50m/s 的速率前进,在此过程中木块所受冲量的大小为(A ) 9N ·s. (B )-9N ·s.(C )10N ·s. (D )-10N ·s . [ ]O 4 7 t(s)A B C1-78一质点的运动轨迹如图所示。
已知质点的质量为20g ,在A 、B 二位置处的速率都为20m/s ,A v 与x 轴成45°角,B v 垂直于y 轴,求质点由A 点到B 点这段时间内,作用在质点上外力的总冲量。