蛋白质的提取与分离
《蛋白质的提取和分离》 说课稿

《蛋白质的提取和分离》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是《蛋白质的提取和分离》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教学方法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“蛋白质的提取和分离”是高中生物选修 1《生物技术实践》中的重要内容。
这部分知识在生物技术领域具有重要的应用价值,对于学生理解生物技术的原理和方法,培养实践能力和创新思维具有重要意义。
教材首先介绍了蛋白质提取和分离的基本原理,包括蛋白质的性质、凝胶色谱法和电泳法的原理等。
然后通过具体的实验操作步骤,详细阐述了如何从细胞中提取蛋白质,并进行分离和纯化。
教材内容条理清晰,注重理论与实践的结合,为学生提供了丰富的学习素材和实践机会。
二、学情分析学生在之前的学习中已经掌握了细胞的结构和功能、蛋白质的相关知识,具备了一定的生物学基础知识和实验操作能力。
但是,对于蛋白质提取和分离的具体方法和技术,学生可能还比较陌生,需要通过本节课的学习来加深理解和掌握。
此外,高中学生已经具备了一定的逻辑思维能力和自主学习能力,但在实验设计和操作方面还需要进一步的指导和训练。
三、教学目标1、知识目标(1)理解蛋白质提取和分离的基本原理。
(2)掌握凝胶色谱法和电泳法的操作过程和应用。
2、能力目标(1)通过实验设计和操作,培养学生的实验探究能力和动手操作能力。
(2)通过对实验结果的分析和讨论,提高学生的思维能力和解决问题的能力。
3、情感目标(1)培养学生的科学态度和合作精神。
(2)激发学生对生物技术的兴趣和探索欲望。
四、教学重难点1、教学重点(1)凝胶色谱法和电泳法的原理和操作方法。
(2)蛋白质提取和分离的实验设计和操作。
2、教学难点(1)凝胶色谱法的原理和操作。
(2)电泳法中各种试剂的作用和操作要点。
五、教学方法1、讲授法讲解蛋白质提取和分离的基本原理、实验方法和操作步骤,使学生对知识有系统的了解。
2、讨论法组织学生讨论实验设计方案,引导学生思考和解决问题,培养学生的思维能力和合作精神。
分离提纯蛋白质的方法

分离提纯蛋白质的方法
蛋白质是营养中很重要的一类物质,它们可以参与营养的过程,也可以参与多种有机反应,因此,提纯蛋白质是很有必要的。
提纯蛋白质的方法一般有硅胶沉淀法、沉淀抽提法、膜分离法等。
一、硅胶沉淀法
硅胶沉淀法是一种常用的提纯蛋白质的方法,它可以将大分子质量,体积小的分子排除在外,只提取蛋白质,这种方法的优点是操作简单,实验时间短,并且耗材成本也较低。
操作时,将样品稀释到所需的浓度,将稀释液中加入适量的硅胶,冷却混匀,经过适当的时间,硅胶就会沉淀在液体中,沉淀物吸附在硅胶上,把沉淀后的液体收集起来,经过一定的漂洗操作,就可以得到纯的蛋白质。
二、沉淀抽提法
沉淀抽提法是一种常用的提取蛋白质的方法,它可以对样品中的蛋白质进行极限沉淀,然后通过抽提的方式分离蛋白质和其他组分。
操作时,将样品加入硫酸钾溶液,然后搅拌均匀,再添加一定量的酒精,使大分子量的蛋白质极限沉淀,抽提上层液体,将抽提的液体经过一定的处理,利用蒸馏抽提的方法,就可以提取出纯净的蛋白质。
三、膜分离法
膜分离法是一种利用滤膜的选择性孔径对物质的分离。
蛋白质的分离提取方法

蛋白质的分离提取方法
蛋白质分离提取是生物分析中一种常见的分析方法。
它能够从各种细胞和蛋白溶液中分离提取出有用的蛋白质,并有效地检测蛋白质的结构和功能。
一般来说,蛋白质分离提取的具体工艺如下:
1.抽提溶解:通常,抽提溶解的工艺是将细胞或蛋白溶液抽提成单独的溶液,再通过更细的滤器或繁复的曲折手段将其中的一些蛋白分离提取出来。
抽提的溶液可以是一种细胞因子或去离子水,也可以是添加有特定蛋白的溶液。
抽提的方法包括溶胀(如乳酸钠溶解)、离心离液(如凝胶离心)、沉淀(如滤渣沉淀)和浓缩(如滤渣浓缩)等。
2.冷冻干燥:冷冻干燥的技术是改变物质的温度以及蒸发蒸馏,以将抽提的蛋白质溶解体转变为晶体状态。
冷冻干燥的具体工艺主要有:先冷冻、改变气压、蒸发水份,再加热恢复溶液容量。
3.结构分离:结构分离是指对抽提的蛋白质进行多种物理和化学方法分离提取,通过改变结构和性质来识别和纯化特定蛋白质。
结构分离的方法包括电泳(例如乳糖电泳)、离心离液(例如凝胶离心)、层析(例如膜滤层析)等。
提蛋白质的原理及步骤

蛋白质提取是一项基础实验,通常用于从组织或细胞中提取纯度较高的蛋白质样品,以便进行各种蛋白质研究。
常规的蛋白质提取步骤包括以下几个主要步骤:
1. 细胞或组织的裂解:将待提取的样品裂解以释放出蛋白质。
裂解方法取决于被裂解的细胞类型,可使用机械法、化学法、超声波或高压等方法进行裂解。
2. 蛋白质的分离:将蛋白质与非蛋白质组分进行分离,常用的方法有沉淀、过滤、离心和柱层析等。
3. 蛋白质的纯化:通过进一步的分离和纯化来获得高纯度的蛋白质。
这些步骤通常需要进行多次,每次都使用不同的方法来分离和纯化蛋白质。
提蛋白质的原理是基于蛋白质的化学和物理特性进行分离和纯化。
蛋白质分子量大小、电荷、亲水性等特性不同,容易与不同化学试剂、柱层析介质或生物酶相互作用。
通过调节这些条件和步骤,就可以使不同的蛋白质与其它组分分离出来,并得到纯度较高的蛋白质样品。
虽然蛋白质提取步骤较多,但因为各种蛋白质的特性不同,所以实验时需要根据需要选择不同的提取和分离方法以获得更理想的效果。
蛋白质的十种提取方法

蛋白质的十种提取方法蛋白质是构成生物体重要组成部分的大分子有机化合物,对于生物研究和工业生产具有重要意义。
目前,蛋白质的提取方法多种多样,根据不同的目的和实验要求可以选择合适的提取方法。
下面将介绍蛋白质的十种常用提取方法。
1.溶液渗透法:该方法利用溶液渗透作用,通过梯度离心或薄膜渗透,将蛋白质从混合物中分离出来。
这种方法适用于体积较小且溶解度高的蛋白质。
2.超声波破碎法:通过使用超声波的机械波作用,使得细胞膜破碎,释放出蛋白质。
这种方法操作简单,操作快速,适用于处理小体积的样品。
3.离心法:通过离心来分离混合物中的蛋白质。
根据蛋白质的分子量和比重差异,可以利用离心的力把蛋白质沉淀到离心管的底部。
这种方法适用于分离大分子量的蛋白质。
4.水解法:通过将蛋白质与水或酸性溶液共同处理,使蛋白质发生水解反应,从而分离出目标蛋白质。
这种方法对于含有多种蛋白质的混合物有效。
5.超滤法:利用超滤膜的渗透性,将蛋白质从混合物中分离出来。
根据蛋白质的分子量大小,可以选择合适孔径的超滤膜。
这种方法可以快速、高效地提取蛋白质。
6.毛细管电泳法:利用毛细管对溶液中的蛋白质进行分离。
该方法可以根据蛋白质的电荷、大小和形状来分离不同蛋白质。
这种方法操作简单、实验时间短。
7.离子交换法:利用离子交换树脂或离子交换膜,根据蛋白质的电荷特性来分离蛋白质。
这种方法可以选择不同类型和大小的离子交换树脂,以实现对不同蛋白质的选择性提取。
8.吸附法:通过特定配体与蛋白质之间的亲和作用,将蛋白质吸附到固相材料上,并通过洗脱来分离蛋白质。
这种方法可以用于高效地纯化蛋白质。
9.柱层析法:利用固定相和流动相之间的亲和力或互斥力分离蛋白质。
依据蛋白质的大小、形状和电荷特性,选择不同类型的柱层析材料,实现对蛋白质的选择性提取。
10.电泳方法:通过电场驱动蛋白质在凝胶中迁移,根据蛋白质的大小和电荷来分离蛋白质。
这种方法可以分离不同分子量和电荷的蛋白质,并可用于纯化和定量分析。
《蛋白质的提取和分离》 讲义

《蛋白质的提取和分离》讲义一、蛋白质提取和分离的重要性蛋白质是生命活动的主要承担者,在生物体中发挥着极其重要的作用。
从生物体内提取和分离出特定的蛋白质,对于深入研究蛋白质的结构、功能、相互作用以及疾病的诊断和治疗等方面都具有至关重要的意义。
例如,通过提取和分离某种疾病相关的蛋白质,可以为疾病的诊断提供特异性的标志物;对特定蛋白质进行分离和纯化,有助于研究其作用机制,为新药的研发提供靶点。
二、蛋白质提取的原理和方法(一)原理蛋白质的提取基于其溶解性、电荷、分子量等性质的差异。
不同的蛋白质在不同的条件下(如 pH 值、盐浓度、温度等)溶解度不同,利用这一特性可以将目标蛋白质从复杂的混合物中分离出来。
(二)方法1、机械破碎法这包括使用匀浆器、研钵等工具将细胞破碎,使细胞内的蛋白质释放出来。
2、化学渗透法使用一些化学试剂(如表面活性剂、有机溶剂等)破坏细胞膜的结构,从而使蛋白质得以释放。
3、酶解法利用特定的酶(如溶菌酶等)分解细胞壁,达到破碎细胞的目的。
三、蛋白质分离的原理和技术(一)原理蛋白质分离主要依据其物理化学性质的差异,如分子大小、电荷、亲水性等。
(二)技术1、离心技术通过离心机产生的离心力,使不同分子量的蛋白质在溶液中分层沉淀,从而实现分离。
2、凝胶过滤层析利用多孔凝胶作为固定相,根据蛋白质分子大小进行分离。
大分子蛋白质无法进入凝胶颗粒内部,先被洗脱出来;小分子蛋白质则能进入凝胶颗粒内部,后被洗脱出来。
3、离子交换层析基于蛋白质所带电荷的不同进行分离。
离子交换剂带有固定的电荷基团,能与带相反电荷的蛋白质结合。
通过改变溶液的离子强度和 pH 值,可以将结合的蛋白质洗脱下来。
4、亲和层析利用蛋白质与特定配体之间的特异性亲和力进行分离。
将配体固定在层析柱上,含有目标蛋白质的混合物通过层析柱时,目标蛋白质与配体结合而被保留,其他蛋白质则被洗脱,然后通过改变条件将目标蛋白质洗脱下来。
四、蛋白质提取和分离的实验步骤(一)材料的准备选择合适的生物材料,如细胞、组织或生物体。
蛋白质提取的方法和原理

蛋白质提取的方法和原理蛋白质提取是生物化学研究中一项非常重要的工作,它是通过化学或物理方法将目标蛋白质从混合物中提取出来,并获得纯度较高的蛋白样品。
蛋白质提取的方法和原理可以根据不同的需求和样本特点而有所区别,下面我将从样品处理、细胞破碎、蛋白质分离、纯化等方面详细介绍蛋白质提取的常用方法和原理。
一、样品处理样品的类型有很多,包括动物组织、细胞、血液等,每种样品的提取方法都有一定差异。
一般来说,细胞或组织样本在提取之前需要冷冻保存,并进行快速破碎以避免蛋白质降解。
对于血液样本,需要血样离心分离血浆或红细胞,再进行提取。
二、细胞破碎细胞破碎是蛋白质提取的关键步骤,目的是破坏细胞膜和细胞器,并释放蛋白质。
常见的细胞破碎方法有机械破碎、超声波破碎和化学法。
1. 机械破碎机械破碎是最常用的细胞破碎方法之一,可以通过碾磨、研磨、切割等方式破坏细胞。
例如,将样品置于液氮中冷冻后,使用研钵和研杵进行研磨,将细胞研磨成粉末状。
2. 超声波破碎超声波破碎是利用高频高能量的超声波震荡来破碎细胞,通常是在冷冻样品和显微量水中进行。
超声波的震荡可以高效破坏细胞和细胞器,并释放蛋白质。
3. 化学法化学法通常是通过加入化学试剂来破坏细胞。
例如,使用洗涤剂(如SDS、Triton X-100)可以溶解细胞膜,释放细胞内的蛋白质。
三、蛋白质分离蛋白质提取后,需要对蛋白质进行分离,去除杂质和其他成分。
1. 离心离心是最常用的蛋白质分离方法之一,通过不同速度的离心来分离蛋白质。
一般来说,较重的细胞碎片、细胞器和沉淀物会沉积在离心管的底部,而较轻的蛋白质上清液则在上方。
2. 电泳电泳是利用电场将带电蛋白质分离的技术。
常见的电泳方法有SDS-PAGE和凝胶过滤层析等。
SDS-PAGE可以根据蛋白质的大小和电荷来分离,凝胶过滤层析则可以根据蛋白质的分子量和渗透性进行分离。
四、蛋白质纯化蛋白质分离后,还需要进行纯化以获得较高纯度的蛋白样品。
《蛋白质的提取和分离》 讲义

《蛋白质的提取和分离》讲义一、蛋白质提取和分离的意义蛋白质是生命活动的主要承担者,在生物体的生长、发育、代谢等过程中发挥着至关重要的作用。
对蛋白质进行提取和分离,有助于深入研究其结构与功能,了解生命活动的分子机制。
同时,这也是制备生物制品、研发新药、诊断疾病等领域的关键技术手段。
二、蛋白质提取的基本原理蛋白质提取的关键在于破坏细胞结构,使蛋白质释放出来,并保持其活性和完整性。
常用的方法包括机械破碎(如研磨、匀浆)、物理破碎(如超声破碎、渗透压冲击)和化学破碎(如使用表面活性剂、酶解法)等。
选择提取方法时,需要考虑蛋白质的性质(如溶解性、稳定性)、细胞类型以及后续的分离步骤。
例如,对于较为脆弱的细胞,可以采用温和的物理方法;而对于细胞壁较厚的细胞,则可能需要化学与机械方法相结合。
三、蛋白质分离的方法1、沉淀法(1)盐析沉淀:向蛋白质溶液中加入中性盐(如硫酸铵、氯化钠),随着盐浓度的增加,蛋白质的溶解度逐渐降低而沉淀析出。
不同的蛋白质在不同盐浓度下沉淀,从而实现初步分离。
(2)有机溶剂沉淀:向蛋白质溶液中加入能与水互溶的有机溶剂(如乙醇、丙酮),降低了溶液的介电常数,使蛋白质分子间的静电引力增加,导致蛋白质沉淀。
2、层析法(1)凝胶过滤层析:根据蛋白质分子大小进行分离。
大分子蛋白质不能进入凝胶颗粒内部,先被洗脱出来;小分子蛋白质则进入颗粒内部,后被洗脱出来。
(2)离子交换层析:利用蛋白质的带电性质。
带有不同电荷的蛋白质与离子交换剂结合的强度不同,通过改变洗脱液的离子强度或 pH 值,使蛋白质依次被洗脱下来。
(3)亲和层析:基于蛋白质与特定配体之间的特异性亲和力进行分离。
将配体固定在层析介质上,与配体结合的蛋白质被保留,未结合的蛋白质被洗脱,然后再用特定的洗脱液将结合的蛋白质洗脱下来。
3、电泳法(1)聚丙烯酰胺凝胶电泳(PAGE):在电场作用下,蛋白质在凝胶中泳动,由于蛋白质的分子量、电荷等差异,其泳动速度不同,从而实现分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质提取与制备具体操作方法1、原料的选择早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。
但至目前经常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料,因而对提取要求更复杂一些。
原料的选择主要依据实验目的定。
从工业生产角度考虑,注意选含量高、来源丰富及成本低的原料。
尽量要新鲜原料。
但有时这几方面不同时具备。
含量丰富但来源困难,或含量来源均理想,但分离纯化操作繁琐,反而不如含量略低些易于获得纯品者。
一般要注意种属的关系,如鲣的心肌细胞色素C较马的易结晶,马的血红蛋白较牛的易结晶。
要事前调查制备的难易情况。
若利用蛋白质的活性,对原料的种属应几乎无影响。
如利用胰蛋白酶水解蛋白质的活性,用猪或牛胰脏均可。
但若研究蛋白质自身的性质及结构时,原料的来源种属必须一定。
研究由于病态引起的特殊蛋白质(本斯.琼斯氏蛋白、贫血血红蛋白)时,不但使用种属一定的原料,而且要取自同一个体的原料。
可能时尽量用全年均可采到的原料。
对动物生理状态间的差异(如饥饿时脂肪和糖类相对减少),采收期及产地等因素也要注意。
2、前处理a、细胞的破碎材料选定通常要进行处理。
要剔除结缔组织及脂肪组织。
如不能立即进行实验,则应冷冻保存。
除了提取及胞细外成分,对细胞内及多细胞生物组织中的蛋白质的分离提取均须先将细胞破碎,使其充分释放到溶液中。
不同生物体或同一生物体不同的组织,其细胞破坏难易不一,使用方法也不完全相同。
如动物胰、肝、脑组织一般较柔软,作普通匀浆器磨研即可,肌肉及心组织较韧,需预先绞碎再制成匀桨。
⑴机械方法主要通过机械切力的作用使组织细胞破坏。
常用器械有:①高速组织捣碎机(转速可达10000rpm,具高速转动的锋利的刀片),宜用于动物内脏组织的破碎;②玻璃匀浆器(用两个磨砂面相互摩擦,将细胞磨碎),适用于少量材料,也可用不锈钢或硬质塑料等,两面间隔只有十分之几毫米,对细胞破碎程度较高速捣碎机高,机械切力对分子破坏较小。
小量的也可用乳钵与适当的缓冲剂磨碎提取,也可加氧化铝、石英砂及玻璃粉磨细。
但在磨细时局部往往生热导致变性或pH显著变化,尤其用玻璃粉和氧化铝时。
磨细剂的吸附也可导致损失。
⑵物理方法主要通过各种物理因素的作用,使组织细胞破碎的方法。
Ⅰ反复冻融法于冷藏库或干冰反复于零下15~20℃使之冻固,然后缓慢地融解,如此反复操作,使大部分细胞及细胞内颗粒破坏。
由于渗透压的变化,使结合水冻结产生组织的变性,冰片将细胞膜破碎,使蛋白质可溶化,成为粘稠的浓溶液,但脂蛋白冻结变性。
Ⅱ冷热变替法将材料投入沸水中,于90℃左右维持数分钟,立即置于冰浴中使之迅速冷却,绝大部分细胞被破坏。
Ⅲ超声波法暴露于9~10千周声波或10~500千周超声波所产生的机械振动,只要有设备该法方便且效果也好,但一次处理量较小。
应用超声波处理时应注意避免溶液中气泡的存在。
处理一些超声波敏感的蛋白质酶时宜慎重。
Ⅳ加压破碎法加一定气压或水压也可使细胞破碎。
⑶化学及生物化学方法Ⅰ有机溶媒法粉碎后的新鲜材料在0℃以下加入5~10倍量的丙酮,迅速搅拌均匀,可破碎细胞膜,破坏蛋白质与脂质的结合。
蛋白质一般不变性,被脱脂和脱水成为干燥粉末。
用少量乙醚洗,经滤纸干燥,如脱氢酶等可保存数月不失去活性。
Ⅱ自溶法将待破碎的鲜材料在一定pH和适当的温度下,利用自身的蛋白酶将细胞破坏,使细胞内含物释放出来。
比较稳定,变性较难,蛋白质不被分解而可溶化。
利用该法可从胰脏制取羧肽酶。
自体融解时需要时间,需加少量甲苯、氯仿等。
应防止细菌污染。
于温室30℃左右较早溶化。
自体融解过程中PH显著变化,随时要调节pH。
自溶温度选在0~4℃,因自溶时间较长,不易控制,所以制备活性蛋白质时较少用。
Ⅲ酶法与前述的自体融法同理,用胰蛋白酶等蛋白酶除去变性蛋白质。
但值得提出的是溶菌酶处理时,它能水解构成枯草菌等菌体膜的多糖类。
能溶解菌的酶分布很广。
尤其卵白中含量高,而多易结晶化。
1g 菌体加1~10mg溶菌酶,pH6.2~7.01h内完全溶菌。
于生理食盐水或0.2mol蔗糖溶液中溶菌,虽失去细胞膜,但原形质没有脱出。
除溶菌酶外,蜗牛酶及纤维素酶也常被选为破坏细菌及植物细胞用。
表面活性剂处理较常用的有十二烷基磺酸钠、氯化十二烷基吡淀及去氧胆酸钠等。
此外一些细胞膜较脆弱的细胞,可把它们置于水或低渗缓冲剂中透析将细胞胀破。
b、细胞器的分离制备某一种生物大分子需要采用细胞中某一部分的材料,或者为了纯化某一特定细胞器上的生物大分子,防止其他细胞组分的干扰,细胞破碎后常将细胞内各组分先行分离,对于制备一些难度较大需求纯度较高的生物大分子是有利的。
尤其近年来分子生物学、分子遗传学、遗传工程等学科和技术的发展,对分布在各种细胞器上的核酸和蛋白质的研究工作日益增多,分离各种细胞器上的各类核酸和特异性蛋白质已成为生物大分子制备工作重要内容之一。
各类生物大分子在细胞内的分布是不同的。
DNA 几乎全部集中在细胞核内。
RNA则大部分分布于细胞质。
各种酶在细胞内分布也有一定位置。
因此制备细胞器上的生物大分子时,预先须对整个细胞结构和各类生物大分子在细胞内分布匹有所了解。
细胞器的分离一般采用差速离心法。
细胞经过破碎后,在适当介质中进行差速离心。
利用细胞各组分质量大小不同,沉降于离心管内不同区域,分离后即得所需组分。
细胞器的分离制备、介质的选择十分重要。
最早使用的介质是生理盐水。
因它容易使亚细胞颗粒发生聚集作用结成块状,沉淀分离效果不理想,现一般改用蔗糖、Ficoll(一种蔗糖多聚物)或葡萄糖-聚乙二醇等高分子溶液。
蛋白质(包括酶)的提取大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。
水溶液提取法稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。
提取的温度要视有效成份性质而定。
一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。
但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。
为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。
蛋白质的盐析中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。
盐析时若溶液pH在蛋白质等电点则效果更好。
由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。
蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。
其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。
硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。
蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。
此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。
影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。
一般温度低蛋白质溶介度降低。
但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。
(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。
蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。
用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。
如细胞色素C属碱性蛋白质,常用稀酸提取,肌肉甘油醛-3-磷酸脱氢酶属酸性蛋白质,用稀碱提取。
某些蛋白质或酶与其分物质结合常以离子键形式存在,选择PH3~6范围对于分离提取是有利的。
(3) 蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。
因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。
(4) 盐浓度等渗盐溶液尤以0.02~0.05mol/L 磷酸盐缓冲液和碳酸盐缓冲液常用。
0.15mol/L氯化钠溶液应用也较多。
如6-磷酸葡萄糖脱氢酶用0.1mol/L碳酸氢钠液提取等。
有时为了螯合某些金属离子和解离酶分子与其他杂质的静电结合,也常使用枸橼酸钠缓冲液和焦磷酸钠缓冲液。
有些蛋白质在低盐浓度下浓度低,如脱氧核糖核蛋白质需用1mol/L以上氯化钠液提取。
总之,只要能溶解在水溶液中而与细胞颗粒结合不太紧密的蛋白质和酶,细胞破碎后选择适当的盐浓度及PH,一般是不难提取的。
只有某些与细胞颗粒上的脂类物质结合较紧的,需采用有机溶剂或加入表面活性剂处理等方法提取。
盐浓度稀浓度可促进蛋白质的溶,称为盐溶作用。
同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔。
升浓度为宜。
缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。
(二)有机溶剂提取法一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。
但必须在低温下操作。
丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。
另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。
有机溶剂引起蛋白质沉淀的主要原因之一使水溶液的介电常数降低。
介电常数的降低将增加两个相反电荷之间的吸引力。
蛋白质分子表面可解离基团的离子化程度减弱,水化程度降低,因此促进了蛋白质分子的聚集和沉淀。
有机溶剂引起蛋白质沉淀的另一重要方式可能与盐析相似,与蛋白质争夺水化水,致使蛋白质聚集体的形成并沉淀。