可测函数与连续函数
可测函数与连续函数

上一页 下一页 主 页 返回
退出
定理1指的是可测函数f 限制在 E 的一个闭子集上可以 是连续的,然而我们对一般闭集上的连续函数远不象
对区间或区域上的函数那样直观易理解,所以我们总
是希望用通常意义下的连续函数来描述可测函数。即
n
是说,对 E 上任意可测函数,我们能不能找到 R 上
的连续函数,使得它们在E 的一个测度充分接近 mE
n i 1
U ( x0 ) C Rn
i i0
Fi U ( x0 )
Fi U ( x0 )
Fi0 ,
当x ( x0 ) F时, | f ( x) f ( x0 ) || ci0 ci0 | 0
f ( x)在F 上连续。
2018年8月12日12时3分
上一页 下一页 主 页 返回
退出
Fδ 为互不相交的闭集的并的条件不可少。比如:
下午12时3分27秒
⑵ f 在E上有界可测. 设 f 在E上可测,则存在简单函数列φn 在E上
收敛到 f .
利用叶果洛夫定理,
存在集合 E0 E,使 φn 在E0 上一致收敛到
f ,且 m ( E- E0 ) < /2,
可测函数与连续函数的关系
下午12时3分27秒
下午12时3分27秒
定理 1 (鲁津 Лузин) 设 f 是 E 上几乎
处处有限的可测函数,则对任意 > 0,存在闭
子集 F E,使 f 在F 上是连续函数,且
m( E \ F ) .
结论:连续函数与可测函数的关系:
连续函数一定是可测函数;
2018年8月12日12时3分
上一页 下一页 主 页 返回
连续与可测函数

,当 x < δ 时,
1 g ( x ) − g (0) < 4
1 则若 g ( 0 ) ≥ 2 , ( −δ , 0 ) ⊆ E ( f ≠ g ) 1 则若 g ( 0 ) ≤ 2 , ( 0, δ ) ⊆ E ( f ≠ g )
因此, m ( E ( f ≠ g ) ) ≥ δ > 0 ,即不会几乎处处相等
8
令
Eδ = ∩ Fk
k =1
∞
则 Eδ ⊆ E 是闭集,且
m ( E \ Eδ ) = m
(∪
∞
∞
E \ F ( k )) k =1
<δ
≤ ∑ m ( E \ Fk )
k =1
由于每个 f k 在闭集 Eδ 上连续,且
fk ⇒ f ,
f 在 Eδ 上连续。
9
例:考虑 Dirichlet 函数 D ( x ) 。
1
定义:
2
例1. 考察 R 上的 Dirichlet 函数
⎧1, x ∈ D ( x) = ⎨ ⎩0, x ∉
则 D ( x ) 处处不连续。
但是考察函数
D Q ,即
D在有理数集合上的限制。
D Q是 Q 上的连续函数。
类ห้องสมุดไป่ตู้的,Dirichlet函数在无理数集合上的限制也连续。 这个例子表明,对于不连续函数,若缩小定义域,则 不连续函数可以变成连续函数。 度?
3
引 理 1 设 F1 ,
k
, Fk 是 互 不 相 交 闭 集 , F = ∪ Fi , 则
i =1
k
f ( x ) = ∑ ai χ Fi ( x ) 是 F 上连续函数。
证明:设 x0 ∈ F 。则存在 i0 :x ∈ Fi 。 0 由于 F , , F 互不相交, x ∉ ∪ Fi 。由闭集性质,
可测函数与连续函数

连续。由引理 1, 作
引理证毕。
定理 1(Lusin)设 为可测集 上几乎处处有限的可测函数,则对任意的
,有沿 连续的函数 使
,并且
。(去掉一个小测度集,在留下的集合上连续)
证明:不失一般性设 在 上处处有限。
3 / 6'.
.
先设 是有限可测集。由定理 2.3,有 上的简单函数列 ,使 。现对每一 ,由引理 2.2,存在沿 连续的函数
,使
中去掉有限个或可数多 ,现在我们定义一个函数
此外,当
时,令 的图形是联
及 时,分别联 ,
及,ቤተ መጻሕፍቲ ባይዱ
整个直线上的连续函数,且满足定理的各项要求。
的直线,当 的直线,于是 是
三、小结
一方面,可测集上的连续函数是可测的,另一方面,Lusin定理表明, Lebesgue可测函数可以用连续函数逼近。可测集 上的连续函数一定为可测函 数,但可测函数不一定连续。如Dirichlet函数,Riemann函数都是可测函数但都 不连续。显然,可测函数要比连续函数更加广泛。
上的连续函数 ,并且
=
。
引理 2.2 设 是可测集 上的简单函数。则对任何
续的函数 使
。
有沿 连
二、可测函数和连续的关系
1、连续函数的可测性
定理1 可测集上的连续函数都是可测函数。
证明: 对任意 ,设
,则由连续性假设,存在x的某邻域 ,
使
。因此,令
,则:
反之,显然有
,因此:
从而:
但 G 是开集(因为它是一族开集这并),而 E 为可测集,故其交 仍
此时
是闭集,并且 沿 连续。由引理 2.1, 作为 上的函数
可以开拓成 上的连续的函数 ,并且
§.Rn(Euclid空间)上的可测函数和连续函数(精品)

§3.3 n R 上的可测函数与连续函数教学目的 本节将考察欧氏空间上的可测函数和连续函数关系. 本节将证明重要的Lusin 定理, 它表明Lebesgue 可测函数可以用性质较好连续函数逼近. 这个结果在有些情况下是很有用的.本节要点 一方面, L 可测集上的连续函数是可测的, 另一方面, Lusin 定理表明, Lebesgue 可测函数可以用连续函数逼近. Lusin 定理有两个等价形式. 另外, 作为准备定理的Tietze 扩张定理本身也是一个很有用的结果.在§1.4我们已经给出了在nR 的任意子集上E 连续函数的定义. 这里先看两个例子. 例1 考虑1R 上的Dirichlet 函数=.1)(为无理数若为有理数若x x x D显然)(x D 在1R 上处处不连续. 若用Q 表示有理数的全体,则将)(x D 限制在Q 上所得到的函数Q D 在Q 上恒等于1. 故Q D 是Q 上的连续函数.(注意D 与Q D 是两个不同的函数). 这个例子表明若缩小了函数的定义域,不连续函数可能变成连续函数.例2 设k F F ,,1 是nR 上的k 个互不相交的闭集, ∪ki iFF 1==. 则简单函数∑==ki F i x I a x f i 1)()(是F 上的连续函数.证明 设,0F x ∈ 则存在0i 使得.00i F x ∈ 由于k F F ,,1 互不相交, 故∪0i i iFx ≠∉.由于∪0i i iF ≠是闭集, 因此.0),(00>=≠∪i i i F x d δ对任意,0>ε 当F x ∈并且δ<),(0x x d 时, 必有.0i F x ∈ 于是0)()(0=−x f x f .ε<因此)(x f 在0x 连续. 所以)(x f 在F 上连续(图3—1). ■图3—1定理1 设E 是nR 中的Lebesgue 可测集. f 是E 上的连续函数连续. 则f 是E 上Lebesgue 可测函数.证明 设∈a ,1R 记}.)(:{}{a x f E x a f E <∈=<我们证明, 存在nR 中的开集G , 使得.}{G E a f E ∩=< (1)事实上, 对任意},{a f E x <∈ 由于a x f <)(并且f 在x 连续, 故存在x 的邻域),(x x U δ,使得当),(x x U y δ∈并且E y ∈时, 成立.)(a y f < 即}.{),(a f E x U E x <⊂∩δ (2)令,),(}{∪a f E x xx U G <∈=δ则G 是开集. (2)式表明}.{a f E G E <⊂∩另一方面, 包含关系G E a f E ∩⊂<}{是显然的. 因此(1)式成立. (1)式表明对任意∈a ,1R }{a f E <是Lebesgue 可测集. 因此f 是E 上Lebesgue 可测函数. ■定理2 (Lusin 鲁津)设E 是nR 上的Lebesgue 可测集, f 是E 上a.e.有限的Lebesgue 可测函数. 则对任意,0>δ 存在E 的闭子集,δE 使得f 是δE 上的连续函数(即δE f 在δE 上连续), 并且.)(δδ<−E E m证明 分两步证明. (1) 先设f 是简单函数, 即,1∑==ki E i i I a f 其中k E E ,,1 是互不相交的L 可测集, .1∪ki i E E ==由§2.3定理6, 对任意给定的,0>δ 对每个,,,1k i = 存在XY 1F 0xδ+0x δ−0x 2F 3F 1a 2a 3ai E 的闭子集,i F 使得.,,1,)(k i kF E m i i =<−δ令,1∪ki i F E ==δ 则δE 是E 的闭子集, 并且.)())(()(11δδ<−≤−=−∑==ki i i k i i i F E m F E m E E m ∪由于∑==ki F i E i I a f1,δ由例2知f 是δE 上的连续函数.(2) 一般情形. 设f 是E 上的L 可测函数.不妨设f 是处处有限的.若令).1(,1ggf ff g −=+=则g 是有界可测函数, 并且f 连续当且仅当g 连续. 故不妨设f 有界. 由§3.1推论10, 存在简单函数列}{k f 在E 上一致收敛于f . 对任给的,0>δ 由已证的情形(1), 对每个k f 存在E 的闭子集kF , 使得k f 在k F 上连续,并且.2)(kk F E m δ<− 令,1∩∞==k k F E δ 则δE 是E 的闭子集,并且.)())(()(11δδ<−≤−=−∑∞=∞=k k k k F E m F E m E E m ∪由于每个k f 都在δE 上连续并且}{k f 在δE 上一致收敛于f , 因此f 在δE 上连续. ■例3 仍考虑例1中的Dirichlet 函数).(x D 设},,{21 r r Q =是有理数集. 对任意,0>δ 令.2,2(1111∪∞=++−−−=i i i i i r r R E δδδ则δE 是闭集, 并且.2)2,2()2,2()(11111111δδδδδδδ==−−≤−−=−∑∑∞=++∞=∞=++i ii i i i i i i i i i r r m r r m E R m ∪由于δE 中不含有理数, 因此)(x D 在δE 恒为零. 所以)(x D 在δE 上连续.下面我们将给出鲁津定理另一种形式. 为此, 先作一些准备.引理3 若⊂B A ,n R 是两个闭集并且,∅=∩B A ∈b a ,,1R .b a <则存在nR 上的一个连续函数f , 使得,a fA= b fB=并且∈≤≤x b x f a ,)(n R .证明 容易证明, 若A 是闭集, 则),(A x d 作为x 的函数在nR 上连续, 并且0),(=A x d 当且仅当A x ∈(见第一章习题第34题). 因此, 若令.),(),(),(),()(A x d B x d A x bd B x ad x f ++=容易验证f 满足所要求的性质.■定理4 (Tietze 扩张定理)设F 是nR 中的闭子集, f 是定义在F 上的连续函数. 则存在n R 上的连续函数,g 使得,f gF= 并且.)(sup )(sup x f x g Fx R x n∈∈=证明 先设.sup +∞<=∈M f Fx 令},3{M f M A −≤≤−=}.3{M f MB ≤≤= 则B A ,是两个闭集并且.∅=∩B A 由引理3, 存在nR 上的连续函数,1g 使得,31Mg A−= .31Mg B=并且 ∈≤x Mx g ,3)(1.n R .,32)()(1F x M x g x f ∈≤−对函数1g f −应用引理3, 注意此时g f −的上界是.32M 因此存在nR 上的一个连续函数2g , 使得∈⋅≤x M x g ,3231)(2.n R.,323232)()(221F x M M g x g x f ∈=⋅≤−−这样一直作下去, 得到nR 上的一列连续函数},{k g 使得∈⋅≤−x M x g k k ,3231)(1,n R ,,2,1 =k (4),,32)()(1F x M x g x f kki i ∈≤−∑= ,2,1=k . (5)由(4)知道级数∑∞=1)(k kx g在n R 上一致收敛. 记其和为),(x g 则)(x g 是n R 上的连续函数.而(5)表明在F 上).()(x f x g = 并且,323)()(111M Mx g x g k k k k =≤≤∑∑∞=−∞= ∈x .n R因此当f 有界时, 定理的结论成立.若)(x f 无界, 令),(tg )(1x f x −=ϕ 则≤)(x ϕ.2π由上面所证, 存在n R 上的连续函数,ψ 使得.ϕψ=F令)(tg )(x x g ψ=. 则g 是n R 上的连续函数并且.f gF=■定理5 (Lusin 鲁津) 设E 是n R 上的Lebesgue 可测集, f 是E 上a.e.有限的Lebesgue 可测函数. 则对任意,0>δ 存在n R 上的连续函数g ,使得.)})()(:({δ<≠∈x g x f E x m并且.)(sup )(sup x f x g Ex R x n∈∈≤证明 由定理2, 对任意,0>δ 存在E 的闭子集F , 使得f 在F 上连续并且.)(δ<−F E m 由定理4, 存在n R 上的连续函数,g 使得当F x ∈时, ).()(x f x g =并且.)(sup )(sup )(sup x f x f x g Ex Fx R x n∈∈∈≤=由于.)}()(:{F E x g x f E x −⊂≠∈ 因此.)()})()(:({δ<−≤≠∈F E m x g x f E x m ■思考题: 在直线上的情形, 用直线上开集的构造定理给出定理5的另一证明.小 结 本节考察了欧氏空间上的可测函数和连续函数关系.本节的主要结果是Lusin 定理(有两个等价形式). Lusin 定理表明, Lebesgue 可测函数可以用连续函数在某种意义下逼近. 由于连续函数的具有较好的性质, 比较容易处理, 因此这个结果在有些情况下是很有用的. 本节还证明了Tietze 扩张定理, 它也是一个很有用的结果. 习 题 习题三, 第29题—第31题.。
可测函数与连续函数

连续。由引理 1, 作
引理证毕。
定理 1(Lusin)设 为可测集 上几乎处处有限的可测函数,则对任意的
,有沿 连续的函数 使
,并且
。(去掉一个小测度集,在留下的集合上连续)
证明:不失一般性设 在 上处处有限。
先设 是有限可测集。由定理 2.3,有 上的简单函数列 ,使 。现对每一 ,由引理 2.2,存在沿 连续的函数
,使
,
令 ,
则
并且在
上
。
由于 有界,所以存在
的有界闭子集 ,使得 在 上一致收敛于 并且
。再由定理 2.2, 沿 连续.这样由引理 2.1, 作为 上
的函数可以开拓成沿 连续的函数 。此时 样我们在 有界的条件下证明了定理。
。这
对一般的
,此时对每一整数 ,令
则 都是有界的。从而由上段证明,对每一 ,存在 的闭子集 ,使 沿 连续,并且
一、基本概念
1、几乎处处:
给定一个可测集 E,假如存在 E 的一个子集 , 在 上处处成立,则称性质 P 在 E 上几乎处处成立。
,且使得性质 P
2、可测函数:
设
是 Lebesgue 可测集, 是 上的实值函数。假如对于任意实数
都是可测集,则称 是 上的 Lebesgue 可测函数(简称 是 上的可测函数)。 3、几乎处处有限的可测函数:
此时
是闭集,并且 沿 连续。由引理 2.1, 作为 上的函数
可以开拓成 上的连续的函数 ,并且
。
定理证毕。
推论 若 是 上几乎处处有限的可测函数,则对任何 ,有 上连
续函数 ,使
,并且
。
定理 2 设 为可测集, 为 上的实函数,如果对任何 ,存在闭集
可测函数与连续函数

可测函数与连续函数【摘要】本文从是什么,为什么,怎么样三个角度出发,首先介绍了一些相关的基本概念,之后叙述了将可测函数与连续函数联系起来的必要性和实际方法。
【关键词】可测函数连续函数几乎处处逼近1.是什么——什么是可测函数第三章主要围绕可测函数展开,那么本文首先对可测函数进行一个简单的概述,同时对之后证明是需要用到的一些定义和引理进行描述。
1.1基本定义可测函数:设f ( x)是定义在可测集E< Rn 的实函数. 如果对于任何有限实数a, E [ f > a ]都是可测集,则称f ( x)为定义在E上的可测函数连续函数:设f ( x)是定义在集U ( x) ∩E< E [ f > a ] E上的有限函数,如果对Pε > 0, v 5 > 0,使得P x∈∪( x0 ; 5) ,有| f ( x) - f ( x0 ) | <ε,那么称函数f ( x)在点x0 处连续. 如果f ( x)在E中每一点都连续,则称f ( x)在E上连续.几乎处处:给定一个可测集E,假如存在E的一个子集,,且使得性质P在上处处成立,则称性质P在E上几乎处处成立。
几乎处处有限的可测函数:设,是定义于的函数,,假如则称沿在连续;假如沿内任意一点都连续,则称沿连续。
1.2基本定理定理3.3.1 设是一个紧集,是一列沿连续的函数。
若在上一致收敛于,则也沿连续。
定理3.3.2(Egoroff)设和都是测度有限的集上的几乎处处有限的可测函数。
若在上几乎处处收敛于,则对任何,有的闭子集,使,并且在上一致收敛于。
引理3.3.1设是中的闭集,函数沿连续,则可以开拓成上的连续函数,并且=。
引理3.3.2设是可测集上的简单函数。
则对任何,有沿连续的函数使。
2.为什么——为什么把可测函数与连续函数联系起来数学分析中,我们关注的是函数的分析性质:连续性,可微性,可积性。
但是一旦我们发现一个函数不连续,就认为这个函数性质不好,不再关心他。
可测函数的构造(15)

令 Fδ =
∪
n
Fi
n
则F δ 闭
i=1
F ⊂ E, m(E−F ) = m∪(Ei −F) <δ δ δ i
i=1
且 f ( x ) 在 Fδ 上 连 续 。
事实上,∀x0 ∈ Fδ = ∪ Fi , Fi互不相交,i = 1, 2,..., n
i =1
n
必存在唯一i0 , 1 ≤ i0 ≤ n
则E = ∪ Ek , Ek 互不相交,{ϕn ( x)}为E上的简单函数列, 并且有 lim ϕ n ( x) = f ( x), x ∈ E
k =0
n →∞
事实上 : ∀x0 ∈ E i )若f ( x0 ) = +∞, 则x0 ∈ E ( f ≥ n), ϕn ( x0 ) = n → +∞ = f ( x0 ), (n → +∞)
问题 1 简单函数可测否?可测函数在构造上与简单函数的关系是什么? 问题 2 连续函数可测否?可测函数在构造上与连续函数的关系是什么?
1、可测函数与简单函数的关系
(102定理8)
f ( x)在E上可测 ⇔ 存在简单函数列{ϕn ( x)} , 使得 lim ϕn ( x) = f ( x)
n →∞
证: 由可测函数的性质可得 ⇐
则 当 x ∈ N ( x 0 , δ ) ∩ F δ ⊂ F i0 有 | f ( x) - f ( x 0 ) |= | C i0 − C i0 |= 0 < ε
即f(x)在 x 0 连续 从而在F连续
B)设 f (x)是E上一般可测函数
lim f n ( x) = f ( x) a.e.于E
n →∞
∵ f ( x)可测 ∴ 存在简单函数列{ f n ( x)}, 使得
可测函数及其性质(最新版)

证明:由于
f (x 1 f ( x x) f ( x) n ) f ( x) f ' ( x) lim lim 1 x o n x n
从而f `(x)是一列连续函数(当然是可测函数) 的极限,故f `(x)是可测函数. 利用了可测函数列的极限函数仍为可测函数.
(4)先证f 是可测函数。( a 0) R,
2
E[ f 2 a ] E[ f a ] E[ f a ], 所以E[ f 2 a ]是可测集。
a(<0) R, E[ f 2 a ] E , 所以E[ f 2 a ]是可测集, 1 因此f 2是可测函数。fg [( f g) 2 ( f g) 2 ], 所以fg也是 4 可测函数。
i 1
n
E ( x)
i
1 xEi 0 xE Ei
注:[0,1]上的Dirichlet函数是简单函数。
例(3)可测集E上的连续函数f(x)必为可测函数
设f(x)为E上有限实函数,称f(x) 在 x0 E 处连续
若 0, 0, 使得f (U ( x , ) E ) U ( f ( x ), )
一般情况,a R, E[ f g a] E[ f - g +a],
由(1)知-g是可测函数,所以-g +a也是E上的可测函数。 由引理可知,E[ f - g +a]是可测集,即E[ f g a]是可测集, 因此f g是E上的可测函数。
E[ f 0] E[ f 1 / a ], a 0 (3)E[1 / f a ] E[ f 0] \ E[ f ], a 0 E[ f 0] E[ f 1 / a ], a 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可测函数与连续函数实变大作业2011/4/27可测函数与连续函数【摘要】:主要介绍几乎可测函数的定义与性质,及几乎处处有限的可测函数与连续函数的关系。
由于连续函数不是本章所学的内容,故不对其介绍。
【关键词】:可测函数、连续函数、关系这一章中主要学习了可测函数,这是一类新的函数,所以搞清它的性质及其与其它函数之间的关第是十分重要与必要的。
特别是我们十分熟悉的函数之间的关系。
一、基本概念1、几乎处处:给定一个可测集E,假如存在E的一个子集E1,m(E∖E1)=0,且使得性质P 在E1上处处成立,则称性质P在E上几乎处处成立。
2、可测函数:设E⊂ℝ是Lebesgue可测集,f是E上的实值函数。
假如对于任意实数CE(f>C)={x∈E:f(x)>C}都是可测集,则称f是E上的Lebesgue可测函数(简称f是E上的可测函数)。
3、几乎处处有限的可测函数:设E⊂ℝ是Lebesgue可测集,给定一个可测集E,存在E的一个子集E1,m(E∖E1)=0,f在E1上有限,假如对于任意实数CE(f>C)={x∈E:f(x)>C}都是可测集,则称f是E上几乎处处有限的的Lebesgue可测函数4、连续函数:设D⊂ℝ,f是定义于D的函数,x∈D,假如lim y→x,y∈D f(y)=f(x)则称f沿D在x连续;假如f沿D内任意一点都连续,则称f沿D连续。
5、预备定理、引理定理2.2设 f 是一个紧集, { f n}n≥1是一列沿 F连续的函数。
若{ f n}在 F上一致收敛于 f,则 f 也沿 F 连续。
定理2.3(Egoroff ) 设 f 和 f n (n ≥1) 都是测度有限的集 D 上的几乎处处有限的可测函数。
若 f n 在 D 上几乎处处收敛于 f ,则对任何 ε>0,有D 的闭子集 F ,使 m ( D − F )<ε,并且 f n 在 F 上一致收敛于 f 。
引理2.1 设 F 是 R 中的闭集,函数 f 沿 F 连续,则 f 可以开拓成 R 上的连续函数 f ∗,并且sup x∈R | f ∗(x )|=sup x∈R| f (x )|。
引理2.2 设 f 是可测集 D 上的简单函数。
则对任何 ε>0,有沿 D 连续的函数 f ∗使 m ( {f ≠f ∗} )<ε 。
二、可测函数和连续的关系1、连续函数的可测性定理1 可测集上的连续函数都是可测函数。
证明: 对任意a ∈R ,设x ∈E (f >a ),则由连续性假设,存在x 的某邻域U (x ),使U (x )∩E ⊂E (f >a )。
因此,令G =⋃U(x)x∈E(f>a),则:G ∩E =[⋃U(x)x∈E(f>a)]∩E =⋃U(x)x∈E(f>a)∩(f >a)反之,显然有E (f >a )⊂G ,因此:E (f >a )⊂G ∩E (f >a )⊂G ∩E从而:E (f >a )= G ∩E (f >a )但G 是开集(因为它是一族开集这并),而E 为可测集,故其交G ∩E 仍为可测集,即E (f >a )为可测集,由定义知:f(x)是可测函数。
但可测函数不一定连续例 例:可测函数Dirichlit 函数在[0,1]上处处间断2、用连续函数逼近可测函数,可测函数的连续性引理1:设F 是R 中的闭集,函数f 没F 连续,则f 可以开拓成R 的连续函数f ∗,并且:sup x∈R |f ∗(x)|=sup x∈R|f(x)| 证明:此时F c =⋃(a n ,b n )是开集,其中开区间族{(a n ,b n )}两两不相交。
今定义f ∗(x )={ f (x ),若x ∈F 线性,若x ∈[a n ,b n ],且[a n ,b n ]有界f (a n ),若x ∈[a n ,b n ),其中b n =∞ f (b n ),若x ∈(a n ,b n ],其中a n =−∞则显然f ∗(x )是R 上的连续函数,它是f 的开拓。
引理得证。
引理2:设 f 是可测集 D 上的简单函数。
则对任何ε>0,有没 D 的连续的函数f ∗ 使m (E (f ≠f ∗})<ε证明:不妨设f (D )={a k }1≤k≤n ,其中a k 都是实数且两两不同。
令E k =E (f =a k ),则{E k }1≤k≤n 两两不相交且D =⋃E k n k=1.现对每一k ,令F k 是E k 的闭子集且m (E k −F k )<εn ,k =1,2,…,n. 此时易知 f 沿闭集F =⋃E k n k=1连续。
由引理1, f 作为 F 上的函数可以开拓成沿 D 连续的函数 f ∗ ,此时m (E (f ≠f ∗})≤m (D −F )=m (⋃E k n k=1−⋃F k n k=1)≤m (⋃(E k −F k )n k=1)≤∑m (E k −F k )n k=1<ε引理证毕。
定理1(Lusin )设f 为可测集D 上几乎处处有限的可测函数,则对任意的ε>0,有沿D 连续的函数f ∗使m ({f ≠f ∗})<ε,并且max x∈D |f ∗(x )|≤sup x∈D |f (x )|。
(去掉一个小测度集,在留下的集合上连续)证明:不失一般性设 f 在 D 上处处有限。
先设 D 是有限可测集。
由定理2.3,有 D 上的简单函数列 { f n },使 f n (x)→f(x)(x ∈D)。
现对每一 n ≥1,由引理2.2,存在沿 D 连续的函数 f n ∗ ,使m ( {f ≠f ∗} )<ε2n+1,n =1,2,…令E =⋃{f n ≠f n ∗}∞n=1, 则 m(E)<ε2 并且在 D −E 上 f n ∗(x)→f(x)。
由于 D 有界,所以存在 D −E 的有界闭子集 F ,使得 f n ∗ 在 F 上一致收敛于 f 并且 m (D −E −F )<ε2 。
再由定理2.2,f 沿 F 连续.这样由引理2.1, f 作为 F 上的函数可以开拓成沿 D 连续的函数 f ∗。
此时 m ( {f ≠f ∗} )≤m(D −F)<ε。
这样我们在 D 有界的条件下证明了定理。
对一般的 D ⊂ R ,此时对每一整数 n ,令D n =D ∩[n,n +1), n =0,±1,±2,…则 D n 都是有界的。
从而由上段证明,对每一 n ,存在 D n 的闭子集 F n ,使 f 沿 F n 连续,并且m ( D n − F n )<ε2|n |+1, n =0,±1,±2,…此时 F =⋃F n ∞n=−∞ 是闭集,并且 f 沿 F 连续。
由引理2.1,f 作为 F 上的函数可以开拓成 D 上的连续的函数 f ∗,并且m ( {f ≠f ∗} )≤m (D −F )=m(∪D n −∪F n )≤m(∪(D n − F n ))≤∑m(D n − F n )∞n=−∞<∑ε2|n|+1∞n=−∞<ε。
定理证毕。
推论 若f 是[a,b ]上几乎处处有限的可测函数,则对任何ε>0,有[a,b ]上连续函数f ∗,使m ({f ≠f ∗})<ε,并且max |f ∗(x )|≤sup |f (x )|。
定理 2 设E 为可测集,f 为E 上的实函数,如果对任何ε>0,存在闭集F ⊂E ,使f 在F 上连续,且m (E ∖F )<ε,则f 为E 上可测。
定理3 设E 为R 上的可测集,f 是E 上几乎处处有限的可测函数,则对任何ε>0,存在闭集F ⊂E ,及R 上的连续函数Φ(x ),使(1) 在F 上 Φ(x )=f (x )。
(2) m (E ∖F )<ε。
如果在E 上|f (x )|≤M ,还可要求|Φ(x )|≤M .证明:由定理1,有闭集F ⊂E ,使m (E ∖F )<ε,而f (x )是F 上的连续函数,因此问题在于扩张F 上的f (x ),使其在整个空间上连续。
F 是有界闭集,因此是从一闭区间[c,d ]⊂(a,b )中去掉有限个或可数多个互不相交的开区间而成,设这些开区间是(c i ,d i ),现在我们定义一个函数g (x ),使g (x )={ 0,当x ≤a 或x ≥b 时f (x ),当x ∈F 时此外,当x ∈(c i ,d i )时,令g (x )的图形是联(c i ,f (c i )),(d i ,f (d i ))的直线,当x ∈(a,c )及(d,b )时,分别联(a,0), (c,f (c ))及(b,0), (d,f (d ))的直线,于是g (x )是整个直线上的连续函数,且满足定理的各项要求。
三、小结一方面,可测集上的连续函数是可测的,另一方面,Lusin 定理表明,Lebesgue 可测函数可以用连续函数逼近。
可测集E 上的连续函数一定为可测函数,但可测函数不一定连续。
如Dirichlet 函数,Riemann 函数都是可测函数但都不连续。
显然,可测函数要比连续函数更加广泛。
参考文献:周性伟,实变函数,科学出版社,2007.江泽坚,实变函数论,高等教育出版社,1994.戴培良,可测函数与连续函数的关系,常熟理工学院学报,2008年2月。