信息论与编码(第二版)陈运主编课件第二章 (5)

合集下载

《信息论与编码》课件1第2章

《信息论与编码》课件1第2章
I(ai)是一个随机变量并不难理解。因为ai发生可以使收 信者获得大小为I(ai)的自信息,然而在信源未发出消息之 前,收信者不仅对ai是否发生具有不确定性,而且对于能 够获得多少自信息也是不确定的。因此,伴随着X=ai的随 机发生而发生的自信息I(ai)是一个随机变量,并且与随机 变量X具有相同的概率分布, 即自信息I(ai)是一个发生概率 为P(X=ai)
如果消息ai已发生,则该消息发生所含有的自信息定 义为
1
1
I (ai ) log P(ai ) log pi
(2.4)
第2章 离散无记忆信源与信息熵
可以很容易地证明, 自信息的定义满足上面提出的四个
(1) 此自信息的定义是根据消息发生的概率建立的一个 工程定义,而不是根据这个消息对人的实际意义而建立的 定义。这一纯粹技术性的定义仅仅抓住了“信息”一词在
(2) 自信息I(ai) 在消息ai发生之前,自信息I(ai)表示ai发生的不确定性; 在消息ai发生以后,自信息I(ai)表示ai所含有的(或提
第2章 离散无记忆信源与信息熵
(3) 在式(2.4)中关于对数的底未作明确规定。这是 因为对数的底仅仅影响到度量的单位,实际中可根据
如果取对数的底为2,则所得信息量的单位为比特 (bit, binary unit),此时logx用lbx
第2章 离散无记忆信源与信息熵
第2章 离散无记忆信源与信息熵
2.1 离散无记忆信源 2.2 自信息和熵 2.3 熵函数的性质 2.4 联合事件的熵及其关系 2.5 连续信源的信息测度 习题2
第2章 离散无记忆信源与信息熵
信息理论的研究对象是以各类信息的获取、表示、 传输和处理为目的的信息系统。图2-1给出了一个典型 的通信系统物理模型。在这样的通信系统中,一个贯 穿始终的、最基本的问题便是信息,即信源输出的是 信息,在系统中传输的是信息,接收者获得的也是信 息。可见,在信息理论的学习和研究中,首先需要对

信息论与编码_第2章

信息论与编码_第2章
14
2.1信源描述与分类

马尔可夫信源 更一般,经过n-m步后转移至sj的概率
pij (m, n) = P{S n = s j / S m = si } = P{s j / si } pij (m, n) ≥ 0 ∑ pij (m, n) = 1 j
15
2.1信源描述与分类
i
33
2.2离散信源熵与互信息

单符号离散信源熵 定义:对于给定离散概率空间表示的信源所定 义的随机变量I的数学期望为信源的信息熵, 单位为比特/符号
H ( X ) = E[ I ( x)] = −∑ p ( xi ) log p ( xi )
X = x1 x 2 0 . 8 0 . 2 P
32
2.2离散信源熵与互信息
I ( x1 ) = − log 2 p ( x1 ) = − log 2 0.8bit I ( x 2 ) = − log 2 p( x 2 ) = − log 2 0.2bit N次后所获得的信息量为 I = Np ( x1 ) I ( x1 ) + Np ( x 2 ) I ( x 2 ) = (−0.8 log 2 0.8 − 0.2 log 2 0.2) N 平均每次所获得的信息量为 I = p ( x1 ) I ( x1 ) + p ( x 2 ) I ( x 2 ) = ∑ p ( xi ) log p ( xi )
第2章 信源与信息熵

信源描述与分类 离散信源的信息熵和互信息 离散序列信源的熵 连续信源的熵与互信息 冗余度
1
2.1信源的描述与分类


信源是产生消息(符号)、消息序列和连续消 息的来源。从数学上,由于消息的不确定性, 因此,信源是产生随机变量、随机序列和随机 过程的源 信源的基本特性是具有随机不确定性

信息论与编码-第2章信源熵辅助课件一

信息论与编码-第2章信源熵辅助课件一

一般情况,X和Y既非互相独立,也不是一一对应,那么 从Y获得的X信息必在零与H(X)之间,即常小于X的熵。
2.1单符号离散信源
4。凸函数性 结论: (1)固定信道,调整信源,I(X;Y)是p(x)的上凸 函数 证明:当n=2时的具体情形
用什么公式?为什么?如何用? 已知:P(x)及P(y|x) (2)固定信源,调整信道,I(X;Y)是p(y|x)的下凸函数
分布的连续消息的信源; 2. 离散信源:发出在时间上和幅度上都是离散
分布的信源。 离散信源又可以细分为:
2.1单符号离散信源
(1)离散无记忆信源:所发出的各个符号之间 是相互独立的,各个符号的出现概率是它自身 的先验概率。
(2)离散有记忆信源:发出的各个符号之间不 是相互独立的,各个符号出现的概率是有关联 的。
2.1单符号离散信源
总之:
H(X)代表接收到Y前关于X的平均不确定性, H(X/Y)代表接收到Y后尚存关于X的平均不确 定性。可见,通过信道传输消除了一些不确定 性,获得了一定的信息。所以定义平均互信息 量(2.1.5)
I(X;Y) = H(X ) − H(X /Y)
2.1单符号离散信源
2.1.5平均互信息量(交互熵)
2.1单符号离散信源
也可以根据信源发出一个消息所用符号的多 少,将离散信源分为:
1. 发出单个符号的离散信源:信源每次只发出 一个符号代表一个消息;
2. 发出多符号的离散信源:信源每次发出一组 含二个以上符号的符号序列代表一个消息。
将以上两种分类结合,就有四种离散信源:
2.1单符号离散信源
(1)发出单符号的无记忆离散信源; (2)发出多符号的无记忆离散信源; (3)发出单符号的有记忆离散信源; (4)发出多符号的有记忆离散信源。

信息论与编码第二讲

信息论与编码第二讲

n维n重空间R
k维n重 码空间C
G
n-k维n重
对偶空间D
H
图3-1 码空间与映射
第46页,此课件共84页哦
c是G空间的一个码字,那么由正交性得到:
c HT= 0
0代表零阵,它是[1×n]×[n×(n-k)]=1×(n-k)矢量。
上式可以用来检验一个n重矢量是否为码字:若等式成立,该 n重是码字,否则不是码字。
m G =C
张成码空间的三个基,
本身也是码字。
第37页,此课件共84页哦
第38页,此课件共84页哦
信息空间到码空间的线性映射
信息组(m2 m1 m0 )
000
001 010
011 100
101
110 111
码字(c5 c4 c3 c2 c1c0 )
000000
001011 010110
011101 100111
2.3译码平均错误概率
第16页,此课件共84页哦
第17页,此课件共84页哦
第18页,此课件共84页哦
2.4 译码规则
第19页,此课件共84页哦
2.4.1 最大后验概率译码准则
第20页,此课件共84页哦
例题
第21页,此课件共84页哦
第22页,此课件共84页哦
2.4.2 极大似然译码准则
式中,E(RS)为正实函数,称为误差指数,它与RS、C的关系 如下图所示。图中,C1、C2为信道容量,且C1>C2。
第10页,此课件共84页哦
2.2 信道编码基本思想
第11页,此课件共84页哦
第12页,此课件共84页哦
第13页,此课件共84页哦
第14页,此课件共84页哦
第15页,此课件共84页哦

信息论与编码教学课件(全)

信息论与编码教学课件(全)
信息论与编码教学课件(全)
目录
• 课程介绍与背景 • 信息论基础 • 编码理论基础 • 信道编码技术 • 数据压缩技术 • 多媒体信息编码技术 • 课程总结与展望
01
课程介绍与背景
Chapter
信息论与编码概述
信息论的基本概念
01
信息、信息量、信息熵等
编码的基本概念
02
信源编码、信道编码、加密编码等
02
极化码(Polar Codes)
一种新型信道编码方式,通过信道极化现象实现高效可靠的信息传输。
03
深度学习在信道编码中的应用
利用深度学习技术优化传统信道编码算法,提高编码性能和效率。
05
数据压缩技术
Chapter
数据压缩概述与分类
数据压缩定义
通过去除冗余信息或使用更高效的编码方式,减小数据表示所需存储空间的过 程。
线性分组码原理:线性分组码是一 种将信息序列划分为等长的组,然 后对每组信息进行线性变换得到相 应监督位的编码方式。
具有严谨的代数结构,易于分析和 设计;
具有一定的检错和纠错能力,适用 于各种通信和存储系统。
循环码原理及特点
循环码原理:循环码是一种特殊的线 性分组码,其任意两个码字循环移位
后仍为该码的码字。
03
编码理论基础
Chapter
编码的基本概念与分类
编码的基本概念
编码是将信息从一种形式或格式转换为另一种形式的过程,以 满足传输、存储或处理的需要。
编码的分类
根据编码的目的和原理,可分为信源编码、信道编码、加密编 码等。
线性分组码原理及特点
线性分组码特点
监督位与信息位之间呈线性关系, 编码和解码电路简单;

陈运信息论与编码序论PPT学习教案

陈运信息论与编码序论PPT学习教案

这一思想提
出了宽频移的频率调制方法。
第34页/共55页
1939 年 , 达 得 利 ( Homer
Dudley)发
明了带通声码
器,指出通
信所需带宽至
少同待传送
消息的带宽应
该一样。声码器是最早的语音数据压
缩系统。这一时期还诞生了无线电广
播和电视广播。
第35页/共55页
1928年,哈特莱(Hartley)首先 提出了用对数度量信息的概念。
综合起来,信息有以下主要特征 :
1 信息来源于物质,又不是物质本 身;它从物质的运动中产生出来,又可 以脱离源物质而相对独立地存在。
2 信息来源于精神世界,但又不局 限于精神领域。
第15页/共55页
3 信息与能量息息相关,但又与 能量有本质的区别。
4 信息具有知识的本性,但又比 知识的内涵更广泛。
出了信息率失真理论(rate-distortion theory)。为信源压缩编码的研究奠定
了理论基础。
第39页/共55页
60 年代,信道编码技术有了较
大发展,使它成为信息论的又一重要 分支。
1961年,香农的重要论文“双
路通信信道”开拓了多用户信息理论
的研究。
第40页/共55页
70年代以后,多用户信息论成为 中心研究课题之一。
3 指出通信系统的中心问题;
4 指明了解决问题的方法。
第37页/共55页
以上这些成果1948年以“通信的 数学理论”(A mathematical theory of communication)为题公开发表, 标志着信息论的正式诞生。
维纳(Wiener)在研究火控系统 和人体神经系统时,提出了在干扰作用 下的信息最佳滤波理论,成为信息论的 一个重要分支。

《信息论与编码》陈运部分作业详解资料

第2章 信源熵2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?答:2倍,3倍。

2.2 一副充分洗乱了的牌(含52张牌),试问 (1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同, 能得到多少信息量?解:(1) !52log 2(2) 任取13张,各点数不同的概率为1352!13C ,信息量:9.4793(比特/符号)2.3 居住某地区的女孩子有%25是大学生,在女大学生中有75%是身高160厘米上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?答案:1.415比特/符号。

提示:设事件A 表示女大学生,事件C 表示160CM 以上的女孩,则问题就是求p(A|C),83214341)()|()()()()|(=⨯===C p A C p A p C p AC p C A p22log (/)log 3/8 1.415p A C -=-=2.4 设离散无忆信源()123401233/81/41/41/8X a a a a P X ====⎛⎫⎧⎫=⎨⎬⎪⎩⎭⎝⎭,其发出的消息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 在此消息中平均每个符号携带的信息量是多少?解:(1)信源符号的自信息量为I (a i )=-log 2p (a i ),故0,1,2,3的自信息量分别为1.415、 2、 2、 3。

消息序列中0,1,2,3的数目分别为14,13,12,6,故此消息的自信息量为1.415*14+2*13+2*12+3*6=87.81比特, (2)87.81/45=1.951比特。

2.6 设信源()1234560.20.190.180.170.160.17X a a a a a a P X ⎛⎫⎧⎫=⎨⎬⎪⎩⎭⎝⎭,求这信源的熵,并解释为什么()log6H X >不满足信源熵的极值性。

《信息论与编码》课件


发展趋势与未来挑战
探讨信息论和编码学领域面临的未 来挑战。
介绍多媒体数字信号压缩和编码技术的发展和应用。
可靠的存储与传输控制技术
解释可靠存储和传输控制技术在信息论中的重要性。
生物信息学中的应用
探讨信息论在生物信息学领域的应用和突破。
总结与展望
信息论与编码的发展历程
回顾信息论和编码学的发展历程和 里程碑。
信息技术的应用前景
展望信息技术在未来的应用前景和 可能性。
介绍误码率和信噪比的定义和关系。
2
码率与修正码率的概念
解释码率和修正码率在信道编码中的重要性。
3
线性码的原理与性质
探讨线性码的原理、特点和应用。
4
编码与译码算法的实现
详细介绍信道编码和译码算法的实现方法。
第四章 信息论应用
无线通信中的信道编码应用
探索无线通信领域中信道编码的应用和进展。
多媒体数字信号的压缩与编码技术
《信息论与编码》T课 件
# 信息论与编码 PPT课件
第一章 信息的度量与表示
信息的概念与来源
介绍信息的定义,以及信息在各个领域中的来源和 应用。
香农信息熵的定义与性质
介绍香农信息熵的概念和其在信息论中的重要性。
信息量的度量方法
详细解释如何度量信息的数量和质量。
信息压缩的基本思路
探讨信息压缩的原理和常用方法。
第二章 信源编码
等长编码与不等长编码
讨论等长编码和不等长编码的特点 和应用领域。
霍夫曼编码的构造方法与 性质
详细介绍霍夫曼编码的构造和优越 性。
香农第一定理与香农第二 定理
解释香农第一定理和香农第二定理 在信源编码中的应用。

《信息论、编码及应用》课件第2章


r
H (X ) P(ai )logP(ai )
i1
H[P(a1), P(a2 ),, P(ar )]
H(P)
(2-11)
第2章 离散信源及其信息测度
2.4.2 对称性 根据式(2-11),并根据加法交换律可知,当变量P1,
P2,…,Pr的顺序任意互换时,熵函数的值保持不变,即 H (P1, P2 ,, Pr ) H (P2 , P1,, Pr ) H (Pr , Pr1,, P1) (2-12)
在数学上可证明,同时满足以上四个公理条件的函数形 式为
I (ai )
f
[P(ai
)]
l
b
1 P(ai
)
lb P(ai )
(2-7)
在式(2-7)和后面的章节中,采用以2为底的对数,所得信息量的 单位为比特。
第2章 离散信源及其信息测度
2.3 信 息 熵
2.3.1 信息熵的数学表达式 为了求得整个信源所提供的平均信息量,首先,我们应
存在的平均不确定性。例如有三个信源X1,X2,X3,它们的 信源空间分别是:
X1
P(
X
1
)
a1 0.5
0a.25,
X2
P(
X
2
)
a1 0.7
0a.23,
X3 P( X 3
)
a1 0.99
a2 0.01
(3) 用信息熵H(X)来表示随机变量X的随机性。
第2章 离散信源及其信息测度
第2章 离散信源及其信息测度
第2章 离散信源及其信息测度
2.1 单符号离散信源的数学模型 2.2 自信息和信息函数 2.3 信息熵 2.4 信息熵的基本性质 2.5 联合熵和条件熵的分解与计算 2.6 信息熵的解析性质 2.7 离散信源的最大熵值 2.8 多符号离散平稳信源 2.9 多符号离散平稳无记忆信源及其信息熵 2.10 多符号离散平稳有记忆信源及其信息熵 2.11 信源的相关性与冗余度

信息论与编码课件(全部课程内容)


P(b1 | a1 ) P(b2 | a1 ) P(b | a ) P(b | a ) 2 2 [ PY | X ] 1 2 P(b1 | ar ) P(b2 | ar )
一.1.”输入符号 a,输出符号 b”的联合概率 i j
P{X a i ,Y=b j } p a i ,b j p a i p b j /a i
1。当p (ai / b j ) 1时, 1 I (ai ; b j ) log I (ai )(i 1, 2, , r; b 1, 2, , s) p (ai )
信号 a i .
收信者收到输出符号 bj 后,推测信源以概率1发
2。当p (ai〈p (ai / b j〈1时, ) ) I (ai ; b j ) log p (ai / b j ) p (ai ) 〉 i 1, 2, , r ; b 1, 2, , s ) 0(
此式称为符号 a i 和 bj 之间的互信函数. 我们把信宿收到 bj 后,从 bj 中获取关于 a i 的信 息量 I (ai ; bj ) 称为输入符号 a i 和输出符号 bj 之间 的交互信息量,简称互信息.它表示信道在把 输入符号 a i 传递为输出符号 bj 的过程中,信道 所传递的信息量.
收信者收到 b j后,推测信源发信号 a i的后验概率,反而小于 收到 b j 前推测信源发信号 a i的先验概率.
例2.3 表2.1中列出某信源发出的八种不同消息ai(i=1,2,…,8),相应的
先验概率p(ai)(i=1,2,…,8),与消息ai(i=1,2,…,8)一一对应的码字wi
(i=1,2,…,8).同时给出输出第一个码符号“0”后,再输出消息a1,a2,a3,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息论与编码
Information Theory and coding
内蒙古工业大学 电子信息工程系 宋丽丽
Email: songlili@
有记忆的特点:
1
2 3
有限记忆长度; 信源输出不仅与符号集有关,而且与状态有限的相关符号组构成的序列


?
冗余度与传输效率 冗余度与传输可靠性 冗余度与英语学习
对英语信源: 信息变差:
I 0 H 0 H
对离散信源,信源符号等概率分布时熵最大,其平 均自信息量记为: H0=log q 由于信源符号间的依赖关系使信源的熵减小,使下 式成立:

log q H 0 H1 H 2 ... H m1 ... H
信源符号之间依赖关系越强,每个符导提供的平均 信息量越小。 为此,引入信源的冗余度来衡量信源的相关程度(有 时也称为多余度)。
H 3 0.801(bit sign )
ej
1
H 并非在任何情况下都存在,对n元 m阶马尔可夫信源
1
平稳信源(如果不平稳则先把其变成分段平
稳的)。
2
p(e j )存在,j 1, 2, , n
m
2
m阶马尔可夫与一般记忆长度为m的有记忆信源 的区别:
马尔可夫信源发出一个个符号,有限长度有记忆 1 信源发出一组组符号;
N


k N m 1 n k N 1
n
p ( ak ak
N m
ak
N m 1
ak a k
N m
)}
N 1



k1 1 k m1 1
n
n
p (ak ak ) log p(
1 m 1
ak
m 1
ak ak
1
)
m
H(
n
X m 1
X1 X m ak p (ei ) p (
H lim H (
N
n n
XN X 1 X 2 X N 1
n
1 2 N
)
ak
N
lim{
N


n k1 1 k 2 1 k N 1
p(ak ak ak ) log p( ak ) log p(
N
ak ak ak
1 2 N
)}
N 1
lim{
m
lim
1 m

H(X )
§2.2.5 信源冗余度
例 2.2.5
英文各个字符的统计概率如下:
空格:0.2 E:0.105 O:0.0654 A:0.063 I:0.055 R:0.054 H:0.047 D:0.035 C:0.023 F、U:0.025 M:0.021 P:0.175 Y、W:0.012 G:0.011 V:0.008 K:0.003 J、Q:0.001 Z:0.001 T:0.072 N:0.059 S:0.052 L:0.029
2
一般有记忆信源用联合概率描述符号间的关联关
系,马尔可夫信源用条件概率(状态转移概率)
来描述符号间的关联关系;
3
马尔可夫信源记忆长度虽然有限,但依赖关系延 伸到无穷远。长为m的有限记忆信源符号间的依 赖关系仅限于每组内,组与组之间没有依赖关系;
4
马尔可夫信源的极限熵H m 1是条件熵, m长有记忆信源的极限熵是平均符号熵
面m个符号有关的马尔可夫信源。
m阶马尔可夫信源的数学模型 :
x1 x2 xn X P( X m1 xkm1 ) p( ) X1 X m xk1 xkm
k1 , k2 ,, km1 ,2,, n 1
B:0.0105 X:0.002
0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0
a
d
g
j
m
p
s
v
y
英文字母出现概率统计
信息熵的相对率:
H H0
信源的冗余度:
H H0 H 1 1 H0 H0
4.76 1.4 0.71 4.76
11
0.8
0.5
10
0.2
p(e j ) p(ei ) p( ) ei i e1 ) p(e ) p(e1 ) p(e1 ) p(e1 ) p( 2 e1 e2 e1 ) p(e ) p(e1 ) p(e3 ) p( 4 e3 e4 0.8 p(e1 ) 0.5 p(e3 ) 2 5 p (e2 ) p(e3 ) p(e1 ) p(e4 ) 14 14
m
) H m 1
ei ) log p ( ak ei )
i 1 k 1
状态极限概率
马尔可夫信源稳定后各状态的极
限概率( N )
各态历经定理
P61
状态极限概率的求法,状态转移图
例 2.2.4
二阶马尔可夫信源{00 01 10 11} 香农线图:
0.2 01 0.5
0.8
00
0.5
0.5
马尔可夫信源
以信源输出符号序列内各符号
间条件概率来反映记忆特性的一类信源。 某时刻输出符号仅与此刻信源所处的状态有 关; 某时刻所处状态由当前输出符号和前一时刻信 源状态唯一确定。
1
2
输出符号序列:X 1 X 2 X l 1 X l 输出状态序列:S1S2 Sl 1Sl 设l时刻信源处于ei , 输出xk
pl ( xk ei ) P( X l xk S l ei )
pl (
ej ei
xk
) P(
Sl e j
S l 1 ei
)
如果条件概率与l 无关, 称为时齐的。P 59
pl (
ei
) p(
xk
ei
)
pl (
ej
ei
) p(
ej ei
)
m阶马尔可夫信源
信源输出当前符号仅与前
熵的相对率:=0.29 信源剩余度:=0.71
1 1
H H0

英文信源的剩余度说明:
文中有71%是由语言结构定好的;
只有29%是写文字的人可以自由选择的。 在传递或存储英语信息时,那些有关联的字母可进 行大幅度地压缩。 例如100页的书,大约只要存储29页就可以了,其 中71页可以压缩掉。 信源的剩余度表示这种信源可压缩的程度。 德语、法语等自然语言与英语类似,而汉语信源则 复杂得多。

例1:英语----字母表
以英文字母组成的信源为例,信源的输出是英文字母组成的序 列。英文字母共26个加上空格共27个符号。所以由英文字母组成的 信源的最大熵: H0=log 27=4.76(比特/符号) 考虑到字母之间的依赖关系,可以把英文信源作进一步的近似, 看作为M阶马尔可夫信源。这样可以求得: H1=4.03 比特/符号 H2=3.32 比特/符号 H H3=3.1 比特/符号 H0 …… H=1.4 比特/符号
相关文档
最新文档