八年级上册数学2.1 认识无理数 课堂练习1(精选)

合集下载

【红对勾45分钟】-八年级数学上册 2.1 认识无理数课时作业 (新版)北师大版

【红对勾45分钟】-八年级数学上册 2.1 认识无理数课时作业 (新版)北师大版

2.1 认识无理数1.下列说法正确的是( ) A .除不尽的分数是无理数 B .无限小数是无理数 C .无理数是无限循环小数 D .无限不循环小数是无理数2.在下列各数中,是无理数的是( )A .0.5·6·B .π C.227D .1.7323.正方形的面积为10,则它的边长x 是( ) A .分数 B .有限小数 C .无限循环小数D .无限不循环小数4.如图,图中有16个边长为1的小正方形拼成的大正方形,连接CA ,CB ,CD ,CE 四条线段,其中长度既不是整数也不是分数的有________条.5.在0.351,-23,4.969 696…,6.751 755 175 551…,0,-π2,5.411 010 010 001…中,无理数有________________________________________________________________________________________.6.一面长方形旗的长为240 cm ,宽为160 cm ,这面旗对角线的长可能是整数吗?可能是分数吗?可能是有理数吗?7.如图,直角三角形两直角边的长分别是2,3,阴影部分是一个正方形,设正方形的边长为a.(1)图中阴影部分的面积为多少?(2)a是有理数吗?8.(综合题)面积为7的正方形的边长为x,请回答下列问题:(1)x的整数部分是多少?(2)把x的值精确到十分位时是多少?精确到百分位呢?(3)x是有理数吗?请简要说明理由.9.如图,要从离地面5 m的电线杆上的B处向地面C处拉一条钢丝绳来固定电线杆,使固定点C到A的距离为3 m.求钢丝绳BC的长度.(精确到十分位)10.如图是五个同样大小,边长为1的正方形拼图.(1)你能否切割两次,将它重新拼成一个大的正方形吗?(2)这个大正方形的面积是多少?(3)大正方形的边长是有理数吗?11.(2013·长沙)下列实数是无理数的是( ) A.-1 B.0C.12D. 31.D 由无理数概念可知. 2.B π是无理数.3.D 边长是10,是无理数,即无限不循环小数. 4.3 AC =225,BC =32,CD =5,CE =17. 5.6.751 755 175 551…,-π2,5.411 010 010 001…6.解:由题意可知1602+2402=83 200,2882=82 944,2892=83 521.所以对角线长不是整数.因为分数的平方还是分数,所以对角线长不是分数,也不是有理数.因为整数的平方是整数,分数的平方是分数,整数和分数统称有理数,对角线的长既不是整数也不是分数,所以不是有理数.7.解:(1)由勾股定理得a 2=22+32=13,则阴影部分的面积为13.(2)a 不是有理数. 8.解:令该正方形的面积为S ,则S =x 2=7.当2<x <3时,4<S <9;当2.6<x <2.7时,6.76<S <7.29; 当2.64<x <2.65时,6.969 6<S <7.022 5; 当2.645<x <2.646时,6.996 025<S <7.001 316.则有(1)x 的整数部分为2;(2)精确到十分位时,x ≈2.6;精确到百分位时,x ≈2.65;(3)x 不是有理数,由计算可知,x 是无限不循环小数.9.解:由勾股定理得BC 2=AB 2+AC 2=34.当5<BC <6时,25<BC 2<36;当5.8<BC <5.9时,33.64<BC 2<34.81;当5.83<BC <5.84时,33.988 9<BC 2<34.105 6.则精确到十分位时,BC 约为5.8 m10.解:(1)可以拼成一个大正方形,如右图所示. (2) S 正方形=5 (3)边长不是有理数.11.D 3是无理数.。

2.1.1认识无理数

2.1.1认识无理数

随堂练习
如图,正三角形ABC的边长为2,高源自h, h可能是整数吗?可能是分数吗?那h是什 么数? 不可能
不可能 无理数
归纳提升
1.通过拼图活动,经历无理数产生的实 际背景和引入的必要性. 2.如何判断一个数是否为有理数.
每日一题
以下各正方形的边长不是有理数的是(C ) (A)面积为25的正方形; (B) 面积为的正方形; (C)面积为8的正方形; (D) 面积为1.44的正方形.
第二章
认识无理数(一)
北大附中河南分校
学习目标
1.通过拼图活动,感受无理数产生的实际 背景和引入的必要性.
2.能判断给出的数是否为有理数.
温故知新:(2分钟)
1、至今为止,我们都学过哪些数? 2、在初一发现非负数不能完全解决生活中 的实际问题,于是引入了负数,把数扩充到 有理数范围,那么有理数就能满足我们实际 生活的需要吗?
自主学习(5分钟)
(1)预习课本21页内容。 2 (2)思考在 a 2 中,a是有理数吗? (3)a是什么数呢?
假设拼成大正方形的边长为a, 则a应满足什么条件呢?
教师精讲
(1)假设拼成大正方形的边长为a, 则a应满足什么条件呢? a是正方形的边长,所以a肯定是正数. 因为两个小正方形面积之和等于 大正方形面积,所以根据正方形面积 2 公式可知 a 2
当堂检测(10分钟)
1.长,宽分别是3和2的长方形,它 的对角线的长可能是整数吗?可能 是分数吗?那它是什么数?
不可能
不可能
无理数
2.下图是由16个边长为1的小正方形拼成 的,任意连结这些小正方形的若干个顶 点,可得到一些线段,试分别找出两条 长度是有理数的线段和三条长度不是有 理数的线段.

北师大版八年级数学上册2.1 认识无理数同步测试题

北师大版八年级数学上册2.1 认识无理数同步测试题

2.1 认识无理数 同步测试题(满分100分;时间:90分钟)一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 , )1. 下列实数中,是无理数的是( )A.0B.−3C.13D.√3 2. 在实数√3,π,−37,3.5,√163,0,3.02002,√8中,无理数共有( )A.4个B.5个C.6个D.7个3. 下列各数中,3.14,√273,0.737737773⋯(相邻两个3之间7的个数逐次加1),−π,√25,−17,无理数的个数有( )A.1个B.2个C.3个D.4个4. 在−√83,√3,117,0.6˙,π,3.10这些数中,无理数的个数是( )A.1个B.2个C.3个D.4个5. 下列实数中无理数是( )A.−2B.227C.√2D.0.3˙6. 下列实数中,是无理数的为( )A.√4B.227C.πD.√−837. 下列实数中,属于无理数的是( )A.兀B.0C.√9D.—2 8. 下列实数中,不是无理数的是( )A.√2B.πC.√33D.−2二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )9. 已知数据:13,√3,0.19,π,−2.其中无理数有________个.10. 请写出一个大于3小于4的无理数,你写的这个数是________.11. 下列各数3.1415926,√9,1.212212221…,17,2−π,−2020,√43中,无理数的个数有________个.12. 在311,2π,−212,0,0.454454445⋯,√193中,无理数有________个.13. 在−8, π3,√7,227 ,0中,是无理数的有________个.14. 两个不相等的无理数,它们的乘积为有理数,这两个数可以是________.15. 在−2,π4,√2,−223,3.14中,是无理数的有________个.16. 在实数①13,②√5,③3.14,④√4,⑤π中,是无理数的有________;(填写序号)17. 有4张背面完全相同的卡片,卡片的正面分别写有1,27,√16,√3这四个实数,把四张卡片背面朝上洗匀,从中随机抽取一张,卡片正面的实数恰好是无理数的概率是________.18. 如图,在边长为1的正方形网格中,从点A 出发,连结AB 、AC 、AD 、AE 、AF ,其中B 、C 、D 、E 、F 都是网格上的点,在以上五条线段中,长度是无理数的线段有________.三、 解答题 (本题共计 5 小题 ,共计46分 , )19. 计算:|x|=23,|y|=12且x <0<y ,求6÷(x −y).20. 将下列各数填入相应的集合内.−7,0.32,13,0,√8,√12,√1253,π,0.1010010001⋯ ①有理数集合{ };②无理数集合{};③负实数集合{}.21. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.22. 如图,A,B,C,D四张卡片上分别写有−2,√3,5,π四个实数,从中任取两张卡片.7(1)请用适当的方法列举出所有可能的结果(用字母A,B,C,D表示);(2)求取到的两张卡片上的两个数都是无理数的概率.23. 如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合.(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是________数(填有理或无理),这个数是________.(2)把圆片沿数轴按同一方向滚动2周,点Q到达数轴上的点B的位置,点B表示的数________.(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下: +2,−1,+3,−6,−1①第几次滚动后,Q 点距离原点最近?第几次滚动后,Q 点距离原点最远?②当圆片结束运动时,Q 点运动的路程共有多少?此时点Q 所表示的数是多少?1、最困难的事就是认识自己。

北师大版八年级数学上册《2.1 认识无理数》课时作业(含答案)

北师大版八年级数学上册《2.1  认识无理数》课时作业(含答案)

2.1 认识无理数1、在实数3.14,25,3.3333L ,0.412⋅⋅,0.10110111011110…,π,中,有( )个无理数?A .2个B .3个C .4个D .5个2、下列说法中,正确的是( )A .带根号的数是无理数B .无理数都是开不尽方的数C .无限小数都是无理数D .无限不循环小数是无理数3.下列命题中,正确的个数是( )①两个有理数的和是有理数; ②两个无理数的和是无理数; ③两个无理数的积是无理数;④无理数乘以有理数是无理数; ⑤无理数除以有理数是无理数; ⑥有理数除以无理数是无理数。

A .0个B .2个C .4个D .6个4.判断(正确的打“√”,错误的打“×”)①带根号的数是无理数;( ) 一定没有意义;( ) ③绝对值最小的实数是0;( )④平方等于3;( ) ⑤有理数、无理数统称为实数;( ) ⑥1的平方根与1的立方根相等;( )⑦无理数与有理数的和为无理数;( ) ⑧无理数中没有最小的数,也没有最大的数。

( )5.a )A .有理数B .正无理数C .正实数D .正有理数6.下列四个命题中,正确的是( )A .倒数等于本身的数只有1B .绝对值等于本身的数只有0C .相反数等于本身的数只有0D .算术平方根等于本身的数只有17.下列说法不正确的是( )A .有限小数和无限循环小数都能化成分数B .整数可以看成是分母为1的分数C .有理数都可以化为分数D .无理数是开方开不尽的数8.代数式21a +y ,()21a -中一定是正数的有( ) A .1个 B .2个 C .3个 D .4个9 )A .m 是完全平方数B .m 是负有理数C .m 是一个完全平方数的相反数D .m 是一个负整数10.已知a 为有理数,b 为无理数,则a+b 为( )A .整数B .分数C .有理数D .无理数11215的大小关系是( )A .215< B .215<< C .215<<D 215<<12的相反数之和的倒数的平方为 。

北师大版初中数学八年级(上)2-1 认识无理数(第1课时)(学案+练习)

北师大版初中数学八年级(上)2-1 认识无理数(第1课时)(学案+练习)

第二章 实 数1 认识无理数(第1课时)学习目标1.通过拼图活动,感受客观世界中无理数的存在.(难点)2.能判断三角形的某边长是否为有理数.3.会判断一个数是否为有理数.(重点)自主学习学习任务一 认识无理数的存在1.如图1所示,边长为1的两个正方形M ,N 可以分割成四个全等的等腰直角三角形,它们又可以拼凑成一个更大的正方形ABCD .(还有其他方法,鼓励学生探究)图1(1)大正方形的面积是 .(2)设大正方形的边长是x ,则x 2= ,x 在 和 之间(填整数). 结论:a 既 整数,也 分数,即a 有理数. 学习任务二 判断一个数是否为有理数 思考:如图2,(1)以直角三角形的斜边为边的正方形的面积是 . (2)设该正方形的边长为b ,b 满足 . (3)b 是有理数吗?图2合作探究例1 在△ABC 中,AB =AC ,AD 是底边上的高,如图3,若AC =10,BC =8. (1)求以AD 的长为边长的正方形的面积; (2)判断AD 是否为有理数,并说明理由.例2你会在如图4所示的正方形网格中画出面积为10的正方形吗?试一试.图4当堂达标1.在直角三角形中两条直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.为42.下列面积的正方形,边长不是有理数的是()A.16B.25C.8D.43.如图5,在5×5的正方形网格中,以AB为边画直角三角形ABC,使点C在格点上,且另外两条边长均不是有理数,满足这样条件的点C4.在如图6(1)长度是有理数的线段l1;(2)长度不是有理数的线段l2.课后提升Array在如图7所示的正方形网格中画出四个三角形.(1)三边长都是有理数.(2)只有两边长是有理数.(3)只有一边长是有理数.(4)三边长都不是有理数.反思感悟我的收获:我的易错点:参考答案当堂达标1.B2.C3.解:如图8,共4个.4.解:如图9(答案不唯一).课后提升解:如图10(答案不唯一).。

八年级数学上册 2.1 认识无理数同步测试 (新版)北师大版-(新版)北师大版初中八年级上册数学试题

八年级数学上册 2.1 认识无理数同步测试 (新版)北师大版-(新版)北师大版初中八年级上册数学试题

认识无理数一、选择题(共28小题)1.在下列实数中,无理数是()A.2 B.3.14 C.D.2.四个数﹣1,0,,中为无理数的是()A.﹣1 B.0 C.D.3.下列实数是无理数的是()A.﹣1 B.0 C.D.4.实数π,,0,﹣1中,无理数是()A.πB.C.0 D.﹣15.在下列实数中,无理数是()A.0 B.C.D.66.下列实数属于无理数的是()A.0 B.πC.D.﹣7.下列选项中,属于无理数的是()A.2 B.πC.D.﹣28.下列各数中是无理数的是()A.B.﹣2 C.0 D.9.下列实数是无理数的是()A.﹣1 B.0 C.πD.10.下列实数是无理数的是()A.B.1 C.0 D.﹣111.下列实数是无理数的是()A.﹣2 B.C.D.12.下列实数中,是无理数的为()A.﹣1 B.﹣ C.13.实数(相邻两个1之间依次多一个0),其中无理数是()个.A.1 B.2 C.3 D.414.下列四个实数中,是无理数的为()A.0 B.﹣3 C.D.15.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个16.下列实数中,属于无理数的是()A.﹣3 B.3.14 C.D.17.下列实数中,是无理数的为()A.B.C.0 D.﹣318.在实数0,π,,,中,无理数的个数有()A.1个B.2个C.3个D.4个19.下列各数中,属于无理数的是()A.B.﹣2 C.0 D.20.下列各数是无理数的是()A.B.C.πD.﹣121.下列实数中,为无理数的是()A.0.2 B.C.D.﹣522.下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()023.实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.324.下列四个实数中,无理数是()A.2 B.C.0 D.﹣125.下列实数中是无理数的是()A.B.2﹣2C.5.D.sin45°26.下列实数中,无理数是()A.﹣1 B.C.5 D.27.下列实数是无理数的是()A.5 B.0 C.D.28.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个二、填空题(共2小题)29.实数中的无理数是______.30.请你写出一个无理数______.答案一、选择题(共28小题)1.D;2.D;3.D;4.A;5.C;6.B;7.B;8.A;9.C;10.A;11.D;12.C;13.B;14.C;15.B;16.D;17.A;18.B;19.A;20.C;21.C;22.C;23.D;24.B;25.D;26.D;27.D;28.B;二、填空题(共2小题)29.;30.π;。

八年级数学上册 2.1 认识无理数课时练 (新版)北师大版

认识无理数【教材训练】 5分钟1.无理数的概念无限不循环小数称为无理数,如π是无限不循环小数,故它是无理数;0.4656656665…(相邻的两个5之间6的个数逐次加1)是无限不循环小数,也是无理数;a2=3中,a是无限不循环小数,故a也是无理数.2.无理数与有理数的区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化成分数的形式,而无理数则不能.3.估算法在探索x2=a(a≥0)中x的值时,先估计x的整数部分,看它在哪两个连续整数之间,较小数即为其整数部分.其次,确定x的十分位上的数,同样寻找它在哪两个连续整数之间.按照上述方法依次确定x的百分位、千分位……的值,从而确定x的值.4.判断训练(打“√”或“×”)(1)无限小数包括无限循环小数与无限不循环小数. (√)(2)面积为5cm2的正方形边长b是一个有理数. (×)(3)边长为4的正方形的对角线的长度一定是无理数. (√)(4)无理数一定是无限不循环小数. (√)【课堂达标】 20分钟训练点一:有理数和无理数的概念及辨析1.(2分)下列说法正确的是( )A.有理数都是有限小数B.-π是无理数C.不循环小数是无理数D.有理数是整数,无理数是分数【解析】选B.根据有理数和无理数的概念可知,-π是无理数.2.(2分)下列各数中:-3,,π,,0.536,2. 4&,1.52552555255552…(相邻两个2之间5的个数逐次加1),无理数有( )A.2个B.3个C.4个D.5个【解析】选B.所有分数、整数、无限循环小数都是有理数,π是无理数,所以无理数有π,和1.52552555255552…(相邻两个2之间5的个数逐次加1),共3个.3.(2分)面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定【解析】选C.设宽为x,则长为2x.即有2x2=6,x2=3.而没有任何有理数的平方等于3.所以x 为无理数.4.(6分)把下列各数填在相应的括号里.0,3,2.75,-6,,1.,,-1.010010001.自然数{ …};有理数{ …};整数{ …};分数{ …};无理数{ …}.【解析】由自然数、有理数、整数、分数和无理数的概念知自然数{0,3,…};有理数{0,3,2.75,-6,1.,,-1.010010001,…};整数{0,3,-6,…};分数{2.75,1.,,-1.010010001,…};无理数{,…}.训练点二:估计无理数的近似值1.(2分)正数m满足m2=39,则m的整数部分为( )A.6B.7C.8D.9【解析】选A.因为62<m2<72,所以6<m<7.故m的整数部分为6.2.(2分)已知Rt△ABC中,∠C=90°,AC=1,BC=3,则AB的取值范围是( )A.3.0<AB<3.1B.3.1<AB<3.2C.3.2<AB<3.3D.3.3<AB<3.4【解析】选B.在Rt△ABC中,由勾股定理得AB2=AC2+BC2=12+32=10.因为32<10<42,所以3<AB<4.而3.12=9.61,3.22=10.24.所以3.1<AB<3.2.3.(6分)面积为7的正方形的边长为x.请你回答下列问题:(1)x的整数部分是多少?(2)把x的值精确到十分位时是多少?精确到百分位呢?(3)x是有理数吗?并说明理由.【解析】设正方形的面积为S,则S=x2=7.当2<x<3时,4<S<9;当2.6<x<2.7时,6.76<S<7.29;当2.64<x<2.65时,6.9696<S<7.0225;当2.645<x<2.646时,6.996025<S<7.001316.则(1)x的整数部分是2.(2)把x的值精确到十分位时,x≈2.6.精确到百分位时,x≈2.65.(3)x不是有理数.理由是:由计算可知,x是无限不循环小数.4.(8分)如图,在棱长为4cm的正方体箱子中,想放入一根细长的玻璃棒,则这根玻璃棒的最大长度可能是多少?你能估算出来吗?(结果保留3位有效数字)【解析】因为BC2=BD2+CD2=42+42=32,所以AC2=AB2+BC2=42+32=48.而6.932≈48.025,6.922≈47.886,所以6.92<AC<6.93.设能放进的玻璃棒的最大长度为l,则l2不能超过48,所以l≈6.92(cm).答:能放进的玻璃棒的最大长度约为6.92cm.【课后作业】 30分钟一、选择题(每小题4分,共12分)1.下列说法正确的有( )①有理数与无理数的差都是有理数;②无限小数都是无理数;③无理数都是无限小数;④0既不是无理数,也不是有理数;⑤6.010060006是无理数.A.1个B.2个C.3个D.4个【解析】选A.有理数与无理数的差都是无理数,故①错误;无限不循环小数是无理数,所以无理数都是无限小数,故②错误,③正确;0是有理数,故④错误;6.010060006是有限小数,所以是有理数,故⑤错误.2.一个正方形的面积是15,估计它的边长大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间【解析】选B.设正方形的边长为x,则有x2=15,因为9<15<16,所以3<x<4.3.如图所示的正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )A.0B.1C.2D.3【解析】选C.因为AB2=52+12=26,BC2=32+22=13,AC2=42+32=25,所以AB和BC的长为无理数.二、填空题(每小题4分,共12分)4.写出一个比4小的正无理数__________.【解析】此题答案不唯一,如3.030030003…(每两个3之间的0依次增加1个)等.答案:3.030030003…(每两个3之间的0依次增加1个)(答案不唯一)5.有六个数:0.1427,(-0.5)3,3.1416,,-2π,0.1020020002…(相邻两个2之间0的个数逐次加1),其中是无理数的有________;若无理数的个数为x,整数的个数为y,非负数的个数为z,那么x+y+z等于________.【解析】(-0.5)3=-0.125,所给的数中无理数有-2π,0.1020020002…(相邻两个2之间0的个数逐次加1),共有2个,所以x=2,没有整数,所以y=0,非负数有0.1427,3.1416,,0.1020020002…(相邻两个2之间0的个数逐次加1),共有4个,所以z=4.所以x+y+z=2+0+4=6.答案:-2π,0.1020020002…(相邻两个2之间0的个数逐次加1) 66.如图,正方形面积(阴影部分)为______,正方形边长是______(精确到个位).【解析】设三角形斜边长为c,则c2=42+52=41,故正方形面积(阴影部分)为41.又6.42=40.96,6.52=42.25,所以6.42<c2<6.52,即6.4<c<6.5,故c≈6.答案:41 6三、解答题(共26分)7.(8分)如图,在△ABC中,AB=AC,AD是底边上的高,若AC=6cm,AD=5cm,求BD的值(精确到0.01cm).【解析】因为AB=AC,AD是底边上的高,AC=6cm,所以AB=6cm,△ABD是直角三角形.在Rt△ABD 中,BD2=AB2-AD2=62-52=11.利用计算器可得3.3162=10.995856,3.3172=11.002489,而10.995856<11<11.002489,所以BD≈3.32cm.8.(8分)如图是由边长为1的小正方形拼成的.(1)把图中各阴影部分分别剪拼成大正方形,这些大正方形的面积一样大吗?(2)这些大正方形的边长是有理数吗?说明理由.(3)试画出同样的网络,并在上面画出甲阴影部分剪拼成的“大正方形”.【解析】(1)不一样大.甲、乙、丙中阴影剪拼成的正方形的面积依次为5,6,7.(2)这些大正方形的边长都不是有理数.设大正方形的边长为x,当x2=5时,x不是整数;因为分数的平方为分数,所以x不是分数.所以x既不是整数,也不是分数,即x不是有理数.同理,当x2=6,x2=7时,x均不是有理数.综上所述,这些正方形的边长都不是有理数.(3)如图:9.(10分)(能力拔高题)乔迁新居,小明家买了一张边长是1.3m的正方形新桌子,原有的边长是1米的两块台布都不适用了,丢掉又太可惜了.如图,小明的姥姥按下列方法,将两张台布拼成一块正方形大台布,你帮小明的姥姥算一算,这块大台布能盖住现在的新桌子吗?【解析】设大台布边长为xm,则x2=2.又1.32=1.69<2,即x2>1.32,故x>1.3,即大台布的边长大于新桌子的边长,所以大台布能盖住现在的新桌子.。

2.1 认识无理数 北师大版数学八年级上册堂堂练(含答案)

2.1认识无理数—2023-2024学年北师大版数学八年级上册堂堂练1.下列数中是无理数的是( )A. B. C. D.2.下列实数中,是无理数的为( )A.0B.-1.5C.D.3.下列八个数:-8,2.7,-2,,,0,,0.8080080008…(每两个8之间逐次增加一个0),无理数的个数有( )A.0个B.1个C.2个D.3个4.在下列各数,,0,,,0.10110111011110中,无理数的个数有( )A.1个B.2个C.3个D.4个5.下列一组数:-8,2.7,,,0.66666…,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数的有( )A.0个B.1个C.2个D.3个6.下列各数:3.14,,0.010010001,,.其中是无理数的为__________.7.在数0,0.1010010001…(两个1之间0的个数逐渐增加),中无理数有_____个.8.已知,,π,3.1416,0,,-1.4242242224…(相邻两个4之间2的个数逐次加1).(1)写出这些数中所有的有理数;(2)写出这些数中所有的无理数;(3)把这些数按由小到大的顺序排列起来,并用“<”连接.答案以及解析1.答案:A解析:在,,,中,,,是有理数,是无理数,,故选A2.答案:C解析:A、B、D选项中的数均为有理数,故不符合要求;故选C.3.答案:C解析:-8,2.7,-2,,0,是有理数;,0.8080080008…是无理数;共2个;故选C.4.答案:A解析:3.14,0.10110111011110是有限小数,不是无理数,是无限循环小数,不是无理数,是分数,不是无理数,0是整数,不是无理数,无理数有:,只有1个.故选A.5.答案:C解析:-8,2.7,,,0.66666…,0,2,0.080080008…(相邻两个8之间依次增加一个0)这些数中的,(相邻两个8之间依次增加一个是无理数,共2个,故选C.6.答案:解析:无理数为.7.答案:2解析:无理数0.1010010001…8.答案:(1),,3.1416,,0,.(2)π,-1.4242242224…(相邻两个4之间2的个数逐次加1).(3)…(相邻两个4之间2的个数逐次加1).。

八年级上册数学2-1认识无理数课堂练习1(精选)

2.1 认识无理数
一.说说谁“有理”,谁“无理”
以下各数:-1,23,3.14,-π,3. 3,0,2,27,2
4,-0.2020020002……(相邻两个2之间0的个数逐次加1) 其中,是有理数的是_____________,是无理数的是_______________.
在上面的有理数中,分数有______________,整数有______________.
二.请你辨别:
如图1是面积分别为1,2,3,4,5,6,7,8,9的正方形
图1
边长是有理数的正方形有________个,边长是无理数的正方形有________个.
三、我国国旗旗面为长方形,长与宽之比为3∶2,国旗通用制作尺寸为长24dm ,宽16dm ,国旗对角线的长可能是整数吗?可能是分数吗?可能是有理数吗?学学老师怎么分析的。

四.请你算一算:
在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:
(1)如果精确到十分位,正方形的边长是多少?
(2)如果精确到百分位呢?
参考答案
一.有理数:-1,23,3.14, 3.⋅3,0,2,27,2
4. 无理数:-π,-0.2020020002…… 分数:23,3.⋅3 ,2
7 整数:-1,0,2,2
4 二.边长为有理数的正方形有 3 个,边长为无理数的有 6 个
三、解:a 2=2402+1602=83200
故a 不可能是整数,也不可能是分数,更不可能是有理数.
四.(1)1.7米 (2)1.73米。

八年级数学上册 2.1 认识无理数课时练 (新版)北师大版

认识无理数【教材训练】 5分钟1.无理数的概念无限不循环小数称为无理数,如π是无限不循环小数,故它是无理数;0.4656656665…(相邻的两个5之间6的个数逐次加1)是无限不循环小数,也是无理数;a2=3中,a是无限不循环小数,故a也是无理数.2.无理数与有理数的区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化成分数的形式,而无理数则不能.3.估算法在探索x2=a(a≥0)中x的值时,先估计x的整数部分,看它在哪两个连续整数之间,较小数即为其整数部分.其次,确定x的十分位上的数,同样寻找它在哪两个连续整数之间.按照上述方法依次确定x的百分位、千分位……的值,从而确定x的值.4.判断训练(打“√”或“×”)(1)无限小数包括无限循环小数与无限不循环小数. (√)(2)面积为5cm2的正方形边长b是一个有理数. (×)(3)边长为4的正方形的对角线的长度一定是无理数. (√)(4)无理数一定是无限不循环小数. (√)【课堂达标】 20分钟训练点一:有理数和无理数的概念及辨析1.(2分)下列说法正确的是( )A.有理数都是有限小数B.-π是无理数C.不循环小数是无理数D.有理数是整数,无理数是分数【解析】选B.根据有理数和无理数的概念可知,-π是无理数.2.(2分)下列各数中:-3,,π,,0.536,2. 4&,1.52552555255552…(相邻两个2之间5的个数逐次加1),无理数有( )A.2个B.3个C.4个D.5个【解析】选B.所有分数、整数、无限循环小数都是有理数,π是无理数,所以无理数有π,和1.52552555255552…(相邻两个2之间5的个数逐次加1),共3个.3.(2分)面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定【解析】选C.设宽为x,则长为2x.即有2x2=6,x2=3.而没有任何有理数的平方等于3.所以x 为无理数.4.(6分)把下列各数填在相应的括号里.0,3,2.75,-6,,1.,,-1.010010001.自然数{ …};有理数{ …};整数{ …};分数{ …};无理数{ …}.【解析】由自然数、有理数、整数、分数和无理数的概念知自然数{0,3,…};有理数{0,3,2.75,-6,1.,,-1.010010001,…};整数{0,3,-6,…};分数{2.75,1.,,-1.010010001,…};无理数{,…}.训练点二:估计无理数的近似值1.(2分)正数m满足m2=39,则m的整数部分为( )A.6B.7C.8D.9【解析】选A.因为62<m2<72,所以6<m<7.故m的整数部分为6.2.(2分)已知Rt△ABC中,∠C=90°,AC=1,BC=3,则AB的取值范围是( )A.3.0<AB<3.1B.3.1<AB<3.2C.3.2<AB<3.3D.3.3<AB<3.4【解析】选B.在Rt△ABC中,由勾股定理得AB2=AC2+BC2=12+32=10.因为32<10<42,所以3<AB<4.而3.12=9.61,3.22=10.24.所以3.1<AB<3.2.3.(6分)面积为7的正方形的边长为x.请你回答下列问题:(1)x的整数部分是多少?(2)把x的值精确到十分位时是多少?精确到百分位呢?(3)x是有理数吗?并说明理由.【解析】设正方形的面积为S,则S=x2=7.当2<x<3时,4<S<9;当2.6<x<2.7时,6.76<S<7.29;当2.64<x<2.65时,6.9696<S<7.0225;当2.645<x<2.646时,6.996025<S<7.001316.则(1)x的整数部分是2.(2)把x的值精确到十分位时,x≈2.6.精确到百分位时,x≈2.65.(3)x不是有理数.理由是:由计算可知,x是无限不循环小数.4.(8分)如图,在棱长为4cm的正方体箱子中,想放入一根细长的玻璃棒,则这根玻璃棒的最大长度可能是多少?你能估算出来吗?(结果保留3位有效数字)【解析】因为BC2=BD2+CD2=42+42=32,所以AC2=AB2+BC2=42+32=48.而6.932≈48.025,6.922≈47.886,所以6.92<AC<6.93.设能放进的玻璃棒的最大长度为l,则l2不能超过48,所以l≈6.92(cm).答:能放进的玻璃棒的最大长度约为6.92cm.【课后作业】 30分钟一、选择题(每小题4分,共12分)1.下列说法正确的有( )①有理数与无理数的差都是有理数;②无限小数都是无理数;③无理数都是无限小数;④0既不是无理数,也不是有理数;⑤6.010060006是无理数.A.1个B.2个C.3个D.4个【解析】选A.有理数与无理数的差都是无理数,故①错误;无限不循环小数是无理数,所以无理数都是无限小数,故②错误,③正确;0是有理数,故④错误;6.010060006是有限小数,所以是有理数,故⑤错误.2.一个正方形的面积是15,估计它的边长大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间【解析】选B.设正方形的边长为x,则有x2=15,因为9<15<16,所以3<x<4.3.如图所示的正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )A.0B.1C.2D.3【解析】选C.因为AB2=52+12=26,BC2=32+22=13,AC2=42+32=25,所以AB和BC的长为无理数.二、填空题(每小题4分,共12分)4.写出一个比4小的正无理数__________.【解析】此题答案不唯一,如3.030030003…(每两个3之间的0依次增加1个)等.答案:3.030030003…(每两个3之间的0依次增加1个)(答案不唯一)5.有六个数:0.1427,(-0.5)3,3.1416,,-2π,0.1020020002…(相邻两个2之间0的个数逐次加1),其中是无理数的有________;若无理数的个数为x,整数的个数为y,非负数的个数为z,那么x+y+z等于________.【解析】(-0.5)3=-0.125,所给的数中无理数有-2π,0.1020020002…(相邻两个2之间0的个数逐次加1),共有2个,所以x=2,没有整数,所以y=0,非负数有0.1427,3.1416,,0.1020020002…(相邻两个2之间0的个数逐次加1),共有4个,所以z=4.所以x+y+z=2+0+4=6.答案:-2π,0.1020020002…(相邻两个2之间0的个数逐次加1) 66.如图,正方形面积(阴影部分)为______,正方形边长是______(精确到个位).【解析】设三角形斜边长为c,则c2=42+52=41,故正方形面积(阴影部分)为41.又6.42=40.96,6.52=42.25,所以6.42<c2<6.52,即6.4<c<6.5,故c≈6.答案:41 6三、解答题(共26分)7.(8分)如图,在△ABC中,AB=AC,AD是底边上的高,若AC=6cm,AD=5cm,求BD的值(精确到0.01cm).【解析】因为AB=AC,AD是底边上的高,AC=6cm,所以AB=6cm,△ABD是直角三角形.在Rt△ABD 中,BD2=AB2-AD2=62-52=11.利用计算器可得3.3162=10.995856,3.3172=11.002489,而10.995856<11<11.002489,所以BD≈3.32cm.8.(8分)如图是由边长为1的小正方形拼成的.(1)把图中各阴影部分分别剪拼成大正方形,这些大正方形的面积一样大吗?(2)这些大正方形的边长是有理数吗?说明理由.(3)试画出同样的网络,并在上面画出甲阴影部分剪拼成的“大正方形”.【解析】(1)不一样大.甲、乙、丙中阴影剪拼成的正方形的面积依次为5,6,7.(2)这些大正方形的边长都不是有理数.设大正方形的边长为x,当x2=5时,x不是整数;因为分数的平方为分数,所以x不是分数.所以x既不是整数,也不是分数,即x不是有理数.同理,当x2=6,x2=7时,x均不是有理数.综上所述,这些正方形的边长都不是有理数.(3)如图:9.(10分)(能力拔高题)乔迁新居,小明家买了一张边长是1.3m的正方形新桌子,原有的边长是1米的两块台布都不适用了,丢掉又太可惜了.如图,小明的姥姥按下列方法,将两张台布拼成一块正方形大台布,你帮小明的姥姥算一算,这块大台布能盖住现在的新桌子吗?【解析】设大台布边长为xm,则x2=2.又1.32=1.69<2,即x2>1.32,故x>1.3,即大台布的边长大于新桌子的边长,所以大台布能盖住现在的新桌子.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 认识无理数
一.说说谁“有理”,谁“无理”
以下各数:-1,23,3.14,-π,3. 3,0,2,27,2
4,-0.2020020002……(相邻两个2之间0的个数逐次加1) 其中,是有理数的是_____________,是无理数的是_______________.
在上面的有理数中,分数有______________,整数有______________.
二.请你辨别:
如图1是面积分别为1,2,3,4,5,6,7,8,9的正方形
图1
边长是有理数的正方形有________个,边长是无理数的正方形有________个.
三、我国国旗旗面为长方形,长与宽之比为3∶2,国旗通用制作尺寸为长24dm ,宽16dm ,国旗对角线的长可能是整数吗?可能是分数吗?可能是有理数吗?学学老师怎么分析的。

四.请你算一算:
在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:
(1)如果精确到十分位,正方形的边长是多少?
(2)如果精确到百分位呢?
参考答案
一.有理数:-1,23,3.14, 3.⋅3,0,2,27,2
4. 无理数:-π,-0.2020020002…… 分数:23,3.⋅3 ,2
7 整数:-1,0,2,2
4 二.边长为有理数的正方形有 3 个,边长为无理数的有 6 个
三、解:a 2=2402+1602=83200
故a 不可能是整数,也不可能是分数,更不可能是有理数.
四.(1)1.7米 (2)1.73米。

相关文档
最新文档