大一上学期同济版高数第五章定积分.

合集下载

高等数学(同济版)第五章复习资料

高等数学(同济版)第五章复习资料

第五章 定积分 第一节 定积分的概念与性质一、定积分问题举例1. 曲边梯形的面积:设曲边梯形是由连续曲线)0)(()(≥=x f x f y 、x 轴以及两条直线a x =、b x =所围成,求其面积A . ①.大化小(分割):在区间],[b a 内任意插入1-n 个分点b x x x x x a n n =<<<<<=-1210 ,用直线i x x =将曲边梯形分成n 个小曲边梯形,用i A ∆表示第i 个曲边梯形的面积; ②.常代变(近似代替):在第i 个窄曲边梯形的底上任取],[1i i i x x -∈ξ,有i i i x f A ∆ξ∆)(≈. ③.近似和(求和):∑==ni i A A 1∆∑=≈ni i i x f 1)(∆ξ.④.取极限:令}{max 1i ni x ∆λ≤≤=,则∑=→=n i i A A 1lim ∆λ∑=→=ni i i x f 1)(lim ∆ξλ.2. 变速直线运动的路程:设某物体作直线运动,已知速度)(t v v =在时间间隔],[21T T 上连续,且0)(≥t v ,求在运动时间内物体所经过的路程s .①.大化小(分割):在区间],[21T T 内任意插入1-n 个分点b t t t t t a n n =<<<<<=-1210 , 将它分成n 个小段),,2,1(],[1n i t t i i =-,用i s ∆表示物体第i 个小段上经过的路程; ②.常代变(近似代替):在第i 个小段上经过的路程任取],[1i i i t t -∈ξ,有i i i t v s ∆ξ∆)(≈. ③.近似和(求和): i ni i t v s ∆ξ∑=≈1)(.④.取极限:令}{max 1i ni t ∆λ≤≤=,则i ni i t v s ∆ξλ∑=→=1)(lim .这两个具体问题来自两个不同的学科,但它们都可一归结为具有相同结构的确定和式的极限,抽去它们的具体意义,就得到数学上定积分的概念. 二、定积分的相关概念1.定积分 :设函数)(x f 在区间],[b a 上有界,若在区间],[b a 内任意插入1-n 个分点b x x x x a n =<<<<= 210,任取],[1-∈i i i x x ξ,记1--=i i i x x x ∆,只要0}{max 1→=≤≤i ni x ∆λ,和式极限i ni i x f ∆ξλ∑=→1)(lim 总存在,则称此极限为)(x f 在],[b a 上的定积分,记作⎰bax d x f )(,即=⎰bax d x f )(i ni i x f ∆ξλ∑=→1)(lim ,此时也称)(x f 在区间],[b a 上黎曼可积. 注:1°.引例中,曲边梯形的面积A ⎰=bax d x f )(;路程⎰=21)(T T t d t v s .2°.定积分仅与被积函数及积分区间有关, 而与积分变量用什么字母表示无关, 即⎰b ax d x f )(⎰=b at d t f )(⎰=ba u d u f )(.3°.在定积分定义中,要求积分上限b 大于积分下限a ,为了方便起见,规定: 当b a >时,⎰b ax d x f )(⎰-=abx d x f )(;当b a =时,⎰bax d x f )(0=.4°.定积分定义中0→λ意味着区间的分割越来越细.0→λ时必有小区间的个数∞→n ,但∞→n 并不能保证0→λ(不等分的时候,当等分的时候∞→⇔→n 0λ.)5°.若已知)(x f 在],[b a 上可积,则可以通过特殊的分法分割区间(例如n 等分)和特殊的取点i ξ(例如取i i x =ξ或1-=i i x ξ)来计算定积分.2.定积分的几何意义:曲边梯形的“面积”. 3. 函数可积的条件 (1). 必要条件:定理1.若)(x f 在],[b a 上可积,则)(x f 在],[b a 上有界.反之未必,例如:狄利克雷函数⎩⎨⎧∉∈=Q x Q x x f ,0,1)(在]1,0[上有界,但不可积,因为定义中的积分和的极限不总存在. (2). 充分条件:定理2. 若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积.反之未必,例如⎩⎨⎧≤<≤≤=21,110,0)(x x x f 在]2,0[上可积,但)(x f 在]2,0[上有一个间断点1=x .定理3. 若)(x f 在],[b a 上有界,并且只有有限个间断点,则)(x f 在],[b a 上可积.定理4. 若)(x f 在],[b a 上单调且有界,则)(x f 在],[b a 上可积. 例1. 利用定义计算定积分x d x ⎰102.解:将区间]1,0[进行n 等分, 分点为n i x i =),,1,0(n i =,取n i i =ξ,nx i 1=∆,),,2,1(n i =.则i ii i x x f ∆ξ∆ξ2)(=32ni =,于是i i ni x f ∆ξ)(1∑=∑==n i i n 1231)12)(1(6113++⋅=n n n n ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=n n 121161,所以 i ni i x x d x ∆ξλ∑⎰=→=120102lim ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=∞→n n n 121161lim 31=.例2. 用定积分表示下列极限:1.∑=∞→+n i n n i n 111lim n n i n i n 11lim 1⋅+=∑=∞→x d x ⎰+=101.2. 121lim +∞→+++p p p p n n n n n i n i pn 1lim 1∑=∞→⎪⎭⎫ ⎝⎛=x d x p⎰=10. 三、定积分的性质(设所列定积分都存在) 1.线性性质1. xd x f k x d x f k baba)()(⎰⎰=( k 为常数).性质2.⎰⎰⎰±=±b a ba b ax d x g x d x f x d x g x f )()()]()([.2.积分区间的可加性性质3. 设b c a <<,则有⎰⎰⎰+=bccabax d x f x d x f x d x f )()()(.3.保序性性质4. 若在],[b a ,0)(≥x f ,则0)(≥⎰x d x f ba .性质5. 若在],[b a ,)()(x g x f ≤,则x d x g x d x f bab a)()(⎰⎰≤.4.绝对不等式性 性质6.x d x f b a)(⎰x d x f ba⎰≤)(.5.介值性性质7.设M 和m 是)(x f 在],[b a 上的最大值和最小值,则)()()(a b M x d x f a b m ba-≤≤-⎰.性质8.a b x d ba-=⎰1.6.中值性性质9.(积分中值定理) 若)(x f 在],[b a 上连续,则至少存在一点],[b a ∈ξ,使得))(()(a b f x d x f b a-=⎰ξ.证明:设)(x f 在],[b a 上的最大值和最小值为M 和m ,则由介值性得M x d x f a b m b a≤-≤⎰)(1,再由闭区间上连续函数的介值定理, 至少存在一点],[b a ∈ξ,使x d x f a b f b a)(1)(⎰-=ξ. 注:1°.积分中值定理对b •a <或b a >的情形都成立. 2°.称x d x f ab f b a )(1)(⎰-=ξ为)(x f 在],[b a 上的平均值. 因为 ab x d x f b a-⎰)(n a b f a b ni i n -⋅-=∑=∞→)(lim 11ξ)(1lim 1∑=∞→=n i i n f n ξ,故它是有限个数的平均值概念的推广.3°.积分中值定理的几何意义: 以)(x f y =为曲边的曲边梯形的面积等于同底的且以)(ξf 为的矩形的面积.第二节 微积分基本公式一、引例:变速直线运动中位臵函数与速度函数之间的联系在变速直线运动中, 已知位臵函数)(t s 与速度函数)(t v 之间满足:)()(t v t s =',即)(t s 是)(t v 的原函数.又物体在时间间隔],[21T T 内经过的路程为)()()(1221T s T s t d t v s T T -==⎰,即速度函数)(t v 在区间],[21T T 上的定积分t d t v T T ⎰21)(等于)(t v 的原函数在],[21T T 上的增量.这种定积分与原函数的关系在一定条件下具有普遍性. 二、积分上限函数及其导数1.积分上限函数:若函数)(x f 区间],[b a 上可积,则称函数]),[()()(b a x t d t f x xa ∈=⎰Φ为积分上限函数,或变上限积分.注:积分上限函数t d t f x xa⎰=)()(Φ在],[b a 上连续.推导:],[0b a x ∈∀,有t d t f t d t f x xx x a⎰⎰+=00)()()(Φ,当0x x →时,0)(0→⎰t d t f x x ,于是)()()(lim 000x t d t f x x ax x ΦΦ==⎰→,即t d t f x x a⎰=)()(Φ在],[b a 上连续.2.积分上限函数的导数:定理1.若函数)(x f 在区间],[b a 上连续,则积分上限函数t d t f x xa⎰=)()(Φ在],[b a 上可导,并且 )()()('x f t d t f x d d x d d x xa =⎪⎭⎫ ⎝⎛==⎰ΦΦ )(b x a ≤≤. 证明: ),(,b a x x x ∈+∀∆,则有x x x x ∆Φ∆Φ)()(-+⎥⎦⎤⎢⎣⎡-=⎰⎰+x a x x a t d t f t d t f x )()(1∆∆⎰+=x x x t d t f x ∆∆)(1)(ξf =)(x x x ∆ξ+<<(积分中值定理),又)(x f 在],[b a 上连续,故有xx x x x x ∆Φ∆ΦΦ∆)()(lim)('0-+=→)(lim 0ξ∆f x →=)(x f =. 若a x =,取0>x ∆,可证)('a +Φ)(a f =;若b x =,取0<x ∆,可证)('b -Φ)(b f =. 注:其它变限积分求导: 1°.⎰bx t d t f xd d )( ⎪⎭⎫ ⎝⎛-=⎰x b t d t f x d d )( )(x f -=; 2°.⎰)()(x at d t f x d d ϕ )()]([x x f ϕϕ'=;3°.⎰)()()(x x t d t f x d d ϕψ ⎥⎦⎤⎢⎣⎡+=⎰⎰)()()()(x a a x t d t f t d t f x d d ϕψ )()]([)()]([x x f x x f ψψϕϕ'-'=. 3.原函数存在定理:定理2.若函数)(x f 在区间],[b a 上连续,则积分上限函数td t f x xa ⎰=)()(Φ)],[(b a x ∈就是)(x f 在],[b a 上的一个原函数.注:这个定理一方面肯定了连续函数的原函数的存在性,另一方面初步地揭示了在被积函数连续的前提下,定积分与原函数之间的联系,为使用原函数计算定积分开辟了道路.例1. x x e •x t d e •x t d e •x x x t x x t x 2)(cos lim )'(lim lim 222cos 02'1cos 0021cos 0-→-→-→-=⎪⎭⎫ ⎝⎛=⎰⎰x•e x •x x 2sin lim 2cos 0-→⋅=e•e •x x ••x x x 21lim sin lim 212cos 00=⋅=-→→.例2.设)(x f 在),0[∞+内连续且0)(>x f ,证明td t f t d t f t x F x x⎰⎰=00)()()(在),0[∞+内单调增加.证明:由于=')(x F ()200)()()()()(t d t f td t f t x f t d t f x f x xxx ⎰⎰⎰-()200)()()()()(t d t f td t f t x f t d t xf x f xxx ⎰⎰⎰-=()200)()()()(t d t f td t f t x x f xx ⎰⎰-=()20)()())((t d t f xf x x f x⎰⋅-=ξξ )0(x <<ξ(积分中值定理)0>,所以)(x F 在),0[∞+内单调增加. 4.函数存在原函数与函数可积的关系: (1).函数存在原函数,但不一定可积.例如:对函数⎪⎩⎪⎨⎧=≠=0,00,1s i n )(22x x x x x f ,由于⎪⎪⎩⎪⎪⎨⎧==--≠-=→0,0001s i n l i m 0,1c o s 21s i n 2)('22022x x x x x •x x x x x f x ,令)(')(x f x g =,即函数)(x g 在区间],[a a -上具有原函数,但由于)(x g 在],[a a -无界,所以)(x g 在],[a a -不可积, 事实上,取021→=πn x )(∞→n ,有 )2cos(22)2sin(2221πππππn n n n n g -=⎪⎭⎫⎝⎛-∞→-=πn 220 )(+∞→n , 即)(x g 在],[a a -无界.(2).函数可积,但不一定存在原函数.例如:函数⎩⎨⎧≤<≤≤=21,110,0)(x x x f 在]2,0[除了一个间断点1=x 外都连续,所以)(x f 在]2,0[上可积,但)(x f 在]2,0[上不存在原函数.(3).存在既不存在原函数又不可积的函数,例如:狄利克雷函数:⎩⎨⎧∉∈=Q x Qx x f ,0,1)(.三、微积分基本公式——牛顿—莱布尼茨公式定理3. (微积分基本定理)设函数)(x f 在区间],[b a 上连续,若函数)(x F 是)(x f 在],[b a 上的任一原函数,则)()()(a F b F x d x f b a-=⎰.证明:由于积分上限函数t d t f x a⎰)(是)(x f 的一个原函数,故)(x F C t d t f x a+=⎰)(, 令a x =,得)(a F C =,因此)()()(a F x F x d x f xa-=⎰;再令b x =,得)()()(a F b F x d x f ba-=⎰ba x F )(= .注:微积分基本公式进一步揭示了定积分与被积函数的原函数之间的关系.它表明:连续函数)(x f 在],[b a 上的定积分等于它的任意一个原函数)(x F 在],[b a 上的增量.微积分基本公式是对被积函数连续时给出的计算定积分的公式,若函数)(x f 在],[b a 上不连续,但满足一定的条件,也有相同的公式:定理3’ 设函数)(x f 在区间],[b a 上有界,且有有限多个间断点,若存在连续函数)(x F ,在)(x f 的间断点外,有)()('x f x F =,则)()()(a F b F x d x f b a-=⎰.证明:假设)(x f 在b x =不连续,不满足)()('b f b F =,),(b a x ∈∀,有)(t f 在区间],[x a 上连续,且满足)()('t f t F =,从而有)()()(a F x F t d t f xa -=⎰,由)(x F 以及积分上限函数t d t f x a⎰)(的连续,有)]()([lim )(lim )(a F x F t d t f t d t f bx xabx b a-==--→→⎰⎰)()(a F b F -=. 例3.⎰102x d x 123x = 31031=-=.例4.⎰-+31211x •d x 31arctan t =12743)1arctan(3arctan πππ=⎪⎭⎫ ⎝⎛--=--=. 例5.⎰--121x d x12||ln --=x 2ln 2ln 1ln -=-=. 例6.计算正弦曲线x y sin =在π],0[与x 轴所围成的平面图形的面积.解:⎰=πsin x d x A π0cos x -=2)11(=---=.例7.用微积分基本定理证明积分中值定理:若)(x f 在],[b a 上连续,则至少存一点),(b a ∈ξ,使得)())(()(b a a b f x d x f ba<<-=⎰ξξ.证明:因为)(x f 连续,故)(x f 具有原函数,设)(x F 为它的一个原函数,即)()('x f x F =,由牛顿—莱布尼茨公式有)()()(a F b F x d x f ba -=⎰.由)(x F 在],[b a 上满足拉格朗日中值定理的条件,故至少存一点),(b a ∈ξ,使得)())(())((')()(b a a b f a b F a F b F <<-=-=-ξξξ,故)())(()(b a a b f x d x f ba<<-=⎰ξξ.第三节 定积分的换元积分法和分部积分法一、定积分的换元法:定理1.设函数)(x f 在区间],[b a 上连续,函数)(t x ϕ=满足:(1). a =)(αϕ, b =)(βϕ,并且当t 从α变到β时,对应的x 单调地从a 变到b ; (2). 函数)(t x ϕ=在],[βα或],[αβ上具有连续导数, 则有 t d t t f x d x f ba )(')]([)(ϕϕβα⎰⎰=.证明:所证等式两边被积函数都连续,因此积分都存在,且它们的原函数也存在. 设)(x F 是)(x f 的一个原函数,则)]([t F ϕ是)(')]([t t f ϕϕ的原函数,于是由牛顿—莱布尼茨公式,有⎰bax d x f )()()(a F b F -=)]([)]([αϕβϕF F -=t d t t f )(')]([ϕϕβα⎰=.注:1°.换元必换限, 原函数中的变量不必代回.2°.换元公式也可以这样使用, 即凑元法)]([)]([)(')]([x d x f x d x x f babaϕϕϕϕ⎰⎰=,积分限不换.这相当于不定积分的第一换元积分法. 例1. 计算)0(022>-⎰a x d x a a .解:令t a x sin =,则t d t a x d cos =,当0=x 时,0=t ;a x =时,2/π=t ,于是x d x a a⎰-022t d t a •⎰=2022cos πt d t a )2cos 1(2202⎰+=π2/022sin 212π⎪⎭⎫ ⎝⎛+=t t a 4π2a =.例2.x d x x •⎰25sin cos πx d x x •')cos (cos 205⎰-=π⎰-=205)cos (cos π•x d x 2/066cos πx -=61610=⎪⎭⎫ ⎝⎛--=.例3.x d x x ⎰-π53sin sin x d x x ⎰-=π023)sin 1(sin x d x x ⎰=π23cos sin x d x x ⎰=π2/3|cos |sinx d x x x d x x ⎰⎰-+=πππ22/3202/3)cos (sincos sin⎰⎰-=πππ22/3202/3sin sin sin sin x d x x d xπππ2/2/52/02/5sin 52sin 52xx -=⎪⎭⎫ ⎝⎛--=525254=. 例4.计算x d x x ⎰++40122. 解:令12+=x t ,则212-=t x ,t d t x d =,且当0=x 时,1=t ;当4=x 时,3=t ,于是x d x x ⎰++40122t d t t t ⎰+-=312221t d t )3(21312⎰+=31333121⎪⎭⎫ ⎝⎛+=t t 322=. 另解:x d x x ⎰++40122x d x x ⎰++=40124221x d x x ⎰++=40121221x d x ⎰++4012321x d x ⎰+=401221⎰+++4012)12(43x x d )12(124140++=⎰x d x ⎰+++4012)12(43x x d 4023)12(3241+⋅=x +421)12(243+⋅x 3313+=322= 例5. 设•x f )(为],[a a -上的连续函数,(1). 若)()(x f x f =-,则⎰⎰-=aaax d x f x d x f 0)(2)(.(偶倍)(2). 若)()(x f x f -=-,则0)(=⎰-aax d x f .(奇零)证明: 由于=⎰-x d x f aa)(x d x f a⎰-0)(x d x f a ⎰+0)(,对积分x d x f a⎰-0)(作变换,令t x -=,则有x d x f a⎰-0)(t d t f a⎰--=0)(t d t f a⎰-=0)(x d x f a⎰-=0)(,于是=⎰-x d x f aa)(x d x f x f a])()([0⎰+-=⎪⎩⎪⎨⎧-=-=-=⎰)()(,0)()(,d )(20x f x f x f x f x x f a 例6.若•x f )(在]1,0[上连续,证明 (1). ⎰⎰=2/02/0)(cos )(sin ππx d x f x d x f ;(2). ⎰⎰=πππ)(sin 2)(sin x d x f x d x xf ,并由此计算⎰+π02cos 1sin x d xxx .证明: (1).令t x -=2π,则t d x d -=,且当0=x 时,2π=t ;当2π=x 时,0=t ,于是 ⎰⎰⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=02/2/02sin )(sin πππt d t -f x d x f ⎰⎰==2/02/0)(cos )(cos ππx d x f t d t f . (2). 令t x -=π,则t d x d -=,且当0=x 时,π=t ;当π=x 时,0=t ,于是⎰⎰---=00)][sin()()(sin ππππt d t f t x d x xf ⎰-=ππ0)(sin )(t d t f t⎰⎰⋅-=πππ0)(sin )(sin t d t f t t d t f ⎰⎰⋅-=πππ0)(sin )(sin x d x f x x d x f ,整理得⎰⎰=πππ)(sin 2)(sin x d x f x d x xf .由此⎰+π02cos 1sin x d x x x ⎰+=ππ02cos 1sin 2x d x x ⎰+-=ππ02cos 1)(cos 2xx dππ0)arctan(cos 2x -=ππ0)arctan(cos 2x -=⎪⎭⎫⎝⎛---=442πππ22π=.例7. 设)(x f 是连续的周期函数,周期为T ,证明: (1). x d x f x d x f TT a a ⎰⎰=+0)()(;(2). )()()(0N n x d x f n x d x f T nT a a∈=⎰⎰+,并由此计算x d x n ⎰+π02sin 1.证明: (1).记x d x f a T a a⎰+=)()(Φ,则0)()()(=-+='a f T a f a Φ,即)(a Φ与a 无关,因此)0()(ΦΦ=a ,于是x d x f x d x f TT a a⎰⎰=+0)()(.(2).由于x d x f nT a a⎰+)( x d x f T kT a kTa n k ⎰∑+++-==)(1,又由(1)知x d x f x d x f TT kT a kTa ⎰⎰=+++0)()(,因此x d x f nT a a⎰+)(x d x f n T⎰=0)(.由于x 2sin 1+是以π为周期的周期函数,于是x d x n ⎰+π02sin 1x d x n ⎰+=π2sin 1x d x x n ⎰+=π2)sin (cos x d x x n ⎰+=πsin cosx d x n ⎰⎪⎭⎫ ⎝⎛+=ππ04sin 2 (令4π+=x t )t d t n ⎰+=πππ4/4/sin 2t d t n ⎰=π0sin 2t d t n ⎰=π0sin 2πcos 2x n -=n 22=.例8. 计算x d x x x ⎰+-30222)33(.解:由于x d x x x ⎰+-30222)33(x d x x ⎰+-=30222)]2/3()2/3[(,令t x tan 2323=-,⎪⎭⎫⎝⎛-∈2,2ππt , 则t td x d 2sec 23=,t t x x 42222sec 169sec 43)33(=⎪⎭⎫⎝⎛=+-.当0=x 时,3π-=t ;3=x 时,3π=t , 于是x d x x x ⎰+-30222)33(t d t t t t 243/3/2sec 23sec 91649tan 233tan 43⋅⎪⎪⎭⎫ ⎝⎛++=--⎰ππ t d t t t 23/3/2cos 49tan 233tan 43938⎰-⎪⎪⎭⎫ ⎝⎛++=ππ (偶倍奇零) t d t t 23/02cos 49tan 439316⎰⎪⎭⎫ ⎝⎛+=πt d t t ⎰⎪⎭⎫ ⎝⎛+=3/022cos 49sin 439316π ()t d t t ⎰+=3/022cos 3sin 334π()t d t ⎰+=3/02cos 21334π()t d t ⎰+=3/02cos 2334ππ2sin 212334⎪⎭⎫⎝⎛+=t t 1338+=π. 例9.设函数⎪⎩⎪⎨⎧<<-+≥=-0,cos 11,0,)(2x xx xe x f x π ,计算x d x f ⎰-41)2(.解:设t x =-2,则t d x d =,且当1=x 时,1-=t ;4=x 时,2=t ,于是x d x f ⎰-41)2( (由于)2/(tan 1)2/(tan 1cos 22t t t +-=)t d t f ⎰-=21)(t d t ⎰-+=01cos 11t d e t t ⎰-+202t d t ⎰-⎪⎭⎫ ⎝⎛+=0122tan 121)(212202t d e t t --⎰- 22sec 012t d t ⎰-=)(212202t d e t t --⎰-012tan -⎪⎭⎫⎝⎛=t 2221t e --⎪⎭⎫ ⎝⎛=21tan 21214+--e .二、定积分的分部积分法定理2. 设函数)(x u 、)(x v 在区间],[b a 上连续,则有定积分的分部积分公式:ba bax v x u x d x v x u )()()()(='⎰⎰'-bax d x v x u )()(.证明:由于)()()()(])()([x v x u x v x u x v x u '+'=',两端在],[b a 上积分得,ba x v x u )()( x d x v x u x d x v x u bab a)()()()('+'=⎰⎰,整理得ba bax v x u x d x v x u )()()()(='⎰⎰'-bax d x v x u )()(.例10. 计算⎰2/10arcsin x d x .解:⎰2/10)'(arcsin x d x x 2/10arcsin xx =⎰-2/10)(arcsin x d x 2/10arcsin xx =⎰--2/1021x d xx2/10arcsin xx =⎰--+2/1022)1(11x d x2/10arcsin xx =2/1021x -+12312-+=π. 例11. 计算⎰1x d ex.解:令x t =,则2t x =,t d t x d 2=,于是⎰1x d ex⎰=102t d e t t⎰=10)'(2t d e t t102tte =⎰-102t d e t 102tte =102te -2=.思考题:x t d t x x d d x 1000100sin )(sin =-⎰. 提示: 令t x u -=,则t d t x x⎰-0100)(sin u d u x⎰-=0100sinu d u x⎰=0100sin .第四节 反常积分一、无穷积分 1.引例:曲线21x y =和直线1=x 及x 轴所围成的开口曲边梯形的面积可记作⎰+∞=12x x d A ,其含义可理解为⎰∞+→=bb x x d A 12lim 11lim bb x ⎪⎭⎫ ⎝⎛-=∞+→ ⎪⎭⎫ ⎝⎛-=∞+→b b 11lim 1= 将⎰∞+→=bb x xd A 12lim记作⎰∞+12xx d ,因其积分区间时无穷区间,故称其为无穷积分. 2.无穷积分:设函数)(x f 在区间),[∞+a 上连续,取a b >,若x d x f bab )(lim ⎰∞+→存在 ,则称此极限为)(x f 在无穷区间),[∞+a 上无穷积分,记作x d x f x d x f bab a)(lim)(⎰⎰∞+→∞+=,此时也称为无穷积分x d x f a)(⎰∞+收敛;若上述极限不存在,则称无穷积分x d x f a)(⎰∞+发散,可类似定义:)(x f 在无穷区间),(b -∞上的无穷积分:x d x f x d x f baa b)(lim)(⎰⎰∞-→∞-=.)(x f 在无穷区间),(∞+-∞上的无穷积分:=⎰∞+∞-x d x f )(x d x f caa )(lim⎰∞-→x d x f bcb )(lim⎰∞+→+.注:上述定义中若出现∞-∞,并非不定型,它表明该无穷积分发散. 无穷积分也称为第一类反常积分.3.无穷积分的计算:设)(x F 是)(x f 在),[∞+a 上的一个原函数,引入记号:)(lim )(x F F x ∞+→=+∞;)(lim )(x F F x ∞-→=-∞,则有类似牛——莱公式的计算表达式:x d x f a )(⎰∞+∞+=a x F )()()(a F F -+∞=; x d x f b)(⎰∞-b x F ∞-=)()()(-∞-=F b F ; x d x f )(⎰∞+∞-∞+∞-=)(x F )()(-∞-+∞=F F .例1. 计算反常积分⎰+∞∞-+21x xd .解:⎰+∞∞-+21x xd ∞+∞-=xarctan π2π2π=⎪⎭⎫⎝⎛--=. 另解:⎰+∞∞-+21x xd ⎰+∞+=0212x x d ∞+=0arctan 2x π02π2=⎪⎭⎫⎝⎛-=. 注:012=+⎰+∞∞-x xd x 是否正确?因为∞-+∞∞+∞-+=+⎰)1ln(21122x x x d x ,故原积分发散,所以对反常积分, 只有在收敛的条件下才能使用“偶倍奇零”的性质, 否则会出现错误 .例2. 计算反常积分)0(0>⎰+∞-p t d e t t p .解:⎰+∞-0t d e t t p ⎰+∞--=0)(1tp e d t p ∞+--=0pt e pt ⎰+∞-+01t d e ptp ∞+--=0pte p t)(102⎰+∞---t p d e pt p ∞+-⎪⎪⎭⎫⎝⎛-=0pt e p t ∞+-⎪⎪⎭⎫⎝⎛-021pt e p())10(110lim 12--⋅--=-+∞→p te p pt t 21lim 1p e t p pt t +-=+∞→ 211lim 1p pe p pt t +-=+∞→21p =. 例3. 证明p 积分⎰+∞a px xd )0(>a 当1>p 时收敛; 1≤p 时发散. 证明:当1=p 时,有⎰+∞a px x d ()∞+=a x ||ln +∞=, 当1≠p 时,有⎰+∞ap x x d ∞+-⎪⎪⎭⎫ ⎝⎛-=app x 11⎪⎩⎪⎨⎧>-<∞+=-.1,1,1,1p p a p p因此当1>p 时, 反常积分收敛, 其值为11--p a p;当1≤p 时, 反常积分发散.二、瑕积分 1.引例:曲线xy 1=与x 轴及y 轴和直线1=x 所围成的开口曲边梯形的面积可记作⎰=10xxd A ,其含义可理解为⎰+→=10lim εεx x d A 102lim εεx +→= )1(2lim 0εε-=+→ 2=.将⎰+→=1lim εεx xd A 记作⎰10xx d ,因其被积函数在积分区间内无界,也称为无界函数的反常积分.易知左端点0是被积函数x /1的无界间断点,称其为被积函数的瑕点,因此无界函数的反常积分也称为瑕积分.2.瑕点:若函数)(x f 在点a 的任意邻域内都无界,则称a 为)(x f 的无界间断点,又称为瑕点.3.瑕积分:设函数)(x f 在区间],(b a 上连续,点a 为)(x f 的瑕点,取0>ε,若xd x f ba )(lim 0⎰+→+εε存在 ,则称此极限为)(x f 在区间],(b a 上的瑕积分,记作x d x f ba)(⎰x d x f ba )(lim 0⎰+→+=εε,此时也称瑕积分x d x f b a)(⎰收敛;若上述极限不存在,就称瑕积分x d x f ba)(⎰发散,可类似定义:若)(x f 在区间),[b a 内连续,b 为)(x f 的瑕点,则有:x d x f x d x f b aba )(lim )(0⎰⎰-→+=εε.若)(x f 在区间],[b a 上除了点c 外连续,c 为)(x f 的瑕点,则有:=⎰x d x f ba)(x d x f c a)(⎰x d x f bc)(⎰+x d x f c a)(lim 110⎰-→+=εεx d x f bc )(lim 220⎰+→++εε.注:若出现∞-∞,并非不定型,它表明该反常积分发散. 若也称为第二类反常积分. 注:1°.若被积函数在积分区间上仅存在有限个第一类间断点,则本质上是常义积分, 而不是反常积分. 例如: x d x x ⎰---11211x d x ⎰-+=11)1(. 2°.有时通过换元,反常积分和常义积分可以互相转化. 例如⎰-1021xx d ⎰=2/0πt d (令t x sin =)x d x x ⎰++104211⎰++=10222/1/11x d x x x ⎰+--=1022)/1()/1(x x x x d ⎰∞-+=022t t d (令xx t 1-=) 3°.当一题同时含两类反常积分时,应划分积分区间,分别讨论每一区间上的反常积分. 3.瑕积分的计算:设)(x F 是)(x f 的一个原函数, 则有类似牛——莱公式的计算表达式:若b 为瑕点, 则x d x f ba)(⎰)()(lim a F x F bx -=-→)()(a F b F -=-;若a 为瑕点, 则x d x f ba)(⎰)(lim )(x F b F ax +→-=)()(+-=a F b F ;若a 和b 都为瑕点, 则x x f bad )(⎰)(lim )(lim x F b F ax bx +-→→-=)()(+--=a F b F . 思考题:若瑕点),(b a c ∈,则=⎰x x f bad )()()(+-c F b F )()(a F c F -+-)()(a F b F -=是否正确?提示:)(+c F 和)(-c F 不一定相等. 例4.)0(022>-⎰a x a x d a-=a axarcsin1arcsin =2π=. 例5. 讨论反常积分⎰-112x xd 的收敛性.解:由于⎰-112x x d ⎰-=012x x d ⎰+102x x d --⎪⎭⎫⎝⎛-=011x 101+⎪⎭⎫⎝⎛-+x ∞=,所以反常积分⎰-112x xd 发散. 例6. 证明反常积分⎰-ba qa x xd )(当1<q 时收敛; 1≥q 时发散.证明:当1=p 时,a 为被积函数的瑕点,有⎰-ba qa x xd )(()b a x +-=|1|ln +∞=,当1≠p 时,有⎰-ba qa x xd )(ba qq a x +⎪⎪⎭⎫ ⎝⎛--=-1)(1⎪⎩⎪⎨⎧>∞+<<--=-.1,,10,1)(1q q q a b q因此当1<q 时, 反常积分收敛, 其值为q a b q---1)(1;当1≥q 时, 反常积分发散.例7. 计算反常积分⎰∞++03)1(x x x d .解:注意到这是一个无穷限和瑕点都出现的反常积分.令t x =,则2t x =,t d t dx 2=,当+→0x 时,0→t ;当+∞→x 时,+∞→t ,于是⎰∞++03)1(x x x d ⎰∞++=02/32)1(2t t t d t ⎰∞++=02/32)1(2t t d . 再令u t tan =,()2/,0π∈u ,u d u dt 2sec =,t u arctan =,当0=t 时,0=u ;当+∞→t 时,2/π→u ,于是⎰∞++03)1(x x x d ⎰=2/032sec sec 2πuud u ⎰=2/0cos 2πu d u 2=. 三.两类反常积分之间的关系:瑕积分积分可转化为无穷积分,例如:设函数)(x f 在区间],(b a 上连续,a 为)(x f 的瑕点,由定义有⎰⎰+→+=b a ba x d x f x d x f εε)(lim )(0,令ta x 1+=,有⎰⎰-→⎪⎭⎫ ⎝⎛+=+εε/1)/(12011lim )(a b b at d t t a f x d x f t d t t a f a b ⎰∞+-⎪⎭⎫ ⎝⎛+=)/(1211.第五节 反常积分的审敛法 Γ函数一、无穷积分的审敛法由于无穷积分的收敛性问题实质上上是一个极限的存在性问题,于是根据函数极限的理论,不难得出无穷积分的收敛准则: 1.柯西收敛准则:定理1. 无穷积分x d x f a⎰+∞)(收敛的充要条件是:对0>∀ε,0>∃A ,当A A A >'','时,有ε<⎰x d x f A A ''')(成立.下面讨论无穷积分x d x f a⎰+∞)(的另外几种收敛判别法,首先考虑非负函数的无穷积分.2.有界审敛法:定理2. 设非负函数)(x f 在区间),[∞+a 上连续,若函数t d t f x F xa⎰=)()(在),[∞+a 上有界,则反常积分x d x f a⎰+∞)(收敛.证明:由于0)()('≥=x f x F ,则)(x F 在),[∞+a 上单调增加且有上界,根据极限收敛准则知⎰+∞→+∞→=x ax x t d t f x F )(lim)(lim 存在 ,即反常积分x d x f a⎰+∞)(收敛.由此定理,可得下面的比较审敛法: 3.比较审敛法:定理3.设函数)(x f 、)(x g 在区间),[∞+a 上连续,且a x ≥∀,有)()(0x g x f ≤≤, (1). 若x d x g a ⎰+∞)(收敛,则x d x f a ⎰+∞)(收敛; (2). 若x d x f a⎰+∞)(发散,则x d x g a⎰+∞)(发散.证明:设a t >,由于)()(0x g x f ≤≤,有x d x f ta)(⎰x d x g ta)(⎰≤. (1). 若x d x g a⎰+∞)(收敛,则有x d x f t a)(⎰x d x g t a )(⎰≤x d x g a)(⎰∞+≤,即x d x f t F ta)()(⎰=在),[∞+a 单调递增且有上界, 由定理1知x d x f a ⎰+∞)(收敛.(2).用反证法:假设x d x g a⎰+∞)(收敛,则由x d x f ta)(⎰ x d x g ta)(⎰≤x d x g a)(⎰∞+≤知,xd x f a⎰+∞)(收敛,出现矛盾,故x d x g a⎰+∞)(发散.注:大的收敛,保证小的收敛;小的发散,导致大的发散.由于反常积分)0(1>⎰∞+a x d x a p 当1>p 时,收敛;当1≤p 时,发散,故通常取)0()(>=A x Ax g p作为比较函数,即有下面的柯西审敛法: 4.柯西审敛法:定理4.设非负函数)(x f 在区间),[∞+a )0(>a 上连续,对常数p ,记l x f x p x =+∞→)(lim ,(1). 当1>p 时,若0>∃M ,a x ≥∀, 有p xMx f ≤)(,则x d x f a ⎰+∞)(收敛;(2). 当1≤p 时,若0>∃N ,a x ≥∀, 有p xNx f >)(则x d x f a ⎰+∞)(发散.例1. 判别反常积分x d x ⎰+∞+13411的敛散性.解:由于3/4343411110x xx =<+<,而x d x⎰+∞13/41收敛,故x d x ⎰+∞+13411收敛.在比较审敛法的基础上,可以得到应用更方便的极限审敛法: 5.极限审敛法:定理5.设非负函数)(x f 在区间),[∞+a )0(>a 上连续,对常数p ,记l x f x p x =+∞→)(lim ,(1). 当1>p 时,若+∞<≤l 0,则x d x f a ⎰+∞)(收敛; (2). 当1≤p 时,若+∞≤<l 0,则x d x f a⎰+∞)(发散.证明:(1). 当1>p 时,若0)(lim ≥=+∞→l x f x p x ,则由极限定义知:对任意给定的0>ε,当x 充分大时,必有M l x f x p=+≤ε)(,即p xMx f ≤≤)(0,由比较审敛法知x d x f a⎰+∞)(收敛.(2). 当1≤p 时, 若0)(lim >=+∞→l x f x p x , 则由极限定义,可取0>ε,使0>-εl ,当x 充分大时,必有N l x f x p =-≥ε)(,即p xNx f ≥)(,由比较审敛法知x d x f a⎰+∞)(发散.若+∞==+∞→l x f x p x )(lim ,则对任意+∈N N ,当x 充分大时,N x f x p ≥)(,即px Nx f ≥)(,由比较审敛法知x d x f a⎰+∞)(发散.例2. 判别反常积分x d xx ⎰+∞+1211的敛散性.解法(一):由于221110xxx <+<,而x d x⎰+∞121收敛,故x d xx ⎰+∞+1211收敛.解法(二):由于2211lim xx x x +⋅+∞→ 11lim21+=+∞→x x 1=,极限审敛法知x d xx ⎰+∞+1211收敛.例3. 判别反常积分x d xx ⎰∞++122/31的敛散性. 解:由于22/31lim x x x x +⋅+∞→ 221lim x xx x +⋅+∞→+∞=,极限审敛法知x d x x ⎰∞++122/31发散. 例4. 判别反常积分x d xx⎰+∞1arctan 的敛散性.解:由于x x x x arctan lim ⋅+∞→ x x arctan lim +∞→2π=,极限审敛法知x d xx ⎰+∞1arctan 发散. 当被积函数不是非负函数时,我们可以考虑被积函数取绝对值的积分,即引入绝对收敛的概念以及绝对收敛定理. 6.绝对审敛法:(1). 无穷积分的绝对收敛与条件收敛:设反常积分x d x f a)(⎰+∞收敛,若⎰∞+a x d x f )(收敛,则称x d x f a )(⎰+∞绝对收敛; 若⎰∞+ax d x f )(发散,则称x d x f a)(⎰+∞条件收敛;(2).绝对审敛法:定理6.若函数)(x f 在区间),[∞+a 上连续,且⎰∞+ax d x f )(收敛,则x d x f a)(⎰+∞收敛.证明:令])()([21)(x f x f x +=ϕ,则)()(0x f x ≤≤ϕ,由于⎰∞+a x d x f )(,故x d x a )(⎰+∞ϕ收敛,而)()(2)(x f x x f -=ϕ,又x d x f x d x x d x f aaa)()(2)(⎰⎰⎰+∞+∞+∞-=ϕ,故x d x f a)(⎰+∞收敛.例5. 判断反常积分x d bx x a ⎰∞+-0sin e b a ,(为常数,)0>a 的敛散性.解:由于 x a x a x b --≤e sin e ,而x xa d e⎰∞+-收敛,根据比较审敛原理知⎰∞+-ax a x bx d sin e ,再由绝对收敛定理知x d bx x a ⎰∞+-0sin e 收敛.二、瑕积分的审敛法由于瑕积分可转化为无穷积分,故无穷积分的审敛法完全可平移到瑕积分中来. 1.柯西收敛准则: 定理7. 瑕积分x d x f b a⎰)((a 为)(x f 的瑕点)收敛的充要条件是:对0>∀ε,0>∃δ,当δηη<<'','0时,有εηη<⎰-+x d x f b a ''')(成立.2.比较审敛法:定理8.设非负函数)(x f 、)(x g 在区间],(b a 上连续,a 为)(x f 、)(x g 的瑕点,且a x ≥∀,有)()(0x g x f ≤≤, (1). 若x d x g b a ⎰)(收敛,则x d x f b a ⎰)(收敛; (2). 若x d x f b a⎰)(发散,则x d x g b a⎰)(发散.利用反常积分⎰-ba qa x xd )(当10<<q 时收敛; 1≥q 时发散的结论,瑕积分有如下的柯西审敛法和极限审敛法:3.柯西审敛法:定理9.设非负函数)(x f 在区间],(b a 上连续,a 为)(x f 的瑕点, (1). 若0>∃M ,当1<q 时,],(b a x ∈∀, 有qa x Mx f )()(-≤,则x d x f b a⎰)(收敛;(2).若0>∃N ,当1≥q 时,],(b a x ∈∀, 有qa x Nx f )()(->则x d x f b a⎰)(发散.4.极限审敛法:定理10.设非负函数)(x f 在区间],(b a 上连续,a 为)(x f 的瑕点,对常数q ,记l x f a x q ax =-+→)()(lim ,(1). 当10<<q 时,若+∞<≤l 0,则x d x f b a⎰)(收敛;(2). 当1≥q 时,若+∞≤<l 0,则x d x f b a⎰)(发散.例6. 判别反常积分⎰31ln xxd 的敛散性. 解:易知1=x 是被积函数的瑕点,由于1/11lim ln 1)1(lim 11==-++→→xx x x x , 由极限判别法知瑕积分⎰31ln xxd 发散. 例7.判定椭圆积分)1()1)(1(210222<--⎰k x k x x d 的敛散性.解:易知1=x 是被积函数的瑕点,由于)1(21)1)(1(1lim )1)(1(1lim 22212221k x k x x x k x x x x -=-+-=---++→→,故由极限判别法知⎰--10222)1)(1(x k x x d 收敛.5.绝对审敛法:(1). 瑕积分的绝对收敛与条件收敛:设瑕积分x d x f ba)(⎰(a 为)(x f 的瑕点)收敛,若x d x f b a|)(|⎰收敛,则称x d x f ba)(⎰绝对收敛;若x d x f b a|)(|⎰发散,则称x d x f ba)(⎰条件收敛;(2).绝对审敛法:定理11.若函数)(x f 在区间],(b a 上连续上连续,且x d x f ba|)(|⎰收敛,则x d x f ba)(⎰收敛.例8.判定反常积分⎰101sin 1x d x x的敛散性. 解:易知0=x 是被积函数的瑕点,由于xx x 11sin 1≤,而⎰101x d x 收敛,根据比较审敛法知⎰101sin 1x d x x,再由绝对收敛定理知⎰101sin 1x d x x 收敛. 例9.判定反常积分x d xx⎰10ln 的敛散性 解: 易知0=x 是被积函数的瑕点,由于x x x x ln lim 430+→0ln lim 410==+→x x x ,从而0ln lim 430=+→xx x x ,即x d xx⎰10ln 收敛,从而x d x x ⎰10ln 收敛. 三、Γ 函数1. Γ 函数:称参变量α的反常积分为)0(01>⎰∞+--ααx d e x x 为Γ函数,记作 )0()(01>=⎰∞+--ααΓαx d e x x .2. Γ函数的收敛性:)0()(01>=⎰∞+--ααΓαx d e x x 收敛.证明:由定义式可知,函数可分解为⎰∞+--=01)(x d e xxααΓ⎰--=11x d e xxα⎰∞+--+11x d e x x α.当1>α时,⎰--101x d e x x α为定积分;当10<<α时,⎰--11x d e x x α为瑕积分,0=x 为瑕点,此时,由于x x e x e x 1111⋅=---αα α-<11x , 又由于11<-α时,瑕积分⎰-1011x d xα收敛,于是⎰--11x d e x x α收敛.对无穷积分⎰∞+--11x d e xxα,由于⋅+∞→2lim x x )(1xa e x --x a x ex 1lim ++∞→=0=,从而⎰∞+--11x d e x x α收敛.综上可得⎰∞+--=01)(x d e x x ααΓ收敛.3. Γ 函数的性质:(1). 递推公式:)()1(αΓααΓ=+. 证明:应用分部积分法,有⎰⎰∞+-∞+--==+0)1(xxed x x de x αααΓ[]⎰+∞---+-=+∞010x d e x ex x xααα)(αΓα=.当•α介于两个整数之间时,则)1()1()()1(--==+αΓαααΓααΓ)2()2)(1(---=αΓααα=)()()2)(1(n n ----=αΓαααα )10(<-<n α.当•α为正整数n 时,则)1()1()()1(--==+n n n n n n ΓΓΓ)2()2)(1(---=n n n n Γ=)]1([)]1([)2)(1(------=n n n n n n n Γ )1(1)2)(1(Γ --=n n n )1(!Γn =,而1)1(0==⎰+∞-x d e x Γ,所以⎰∞+-==+0!)1(x d e x n n x n Γ.(2). 当+→0s 时,+∞→)(s Γ. 证明:由于ααΓαΓ)1()(+=且1)1(=Γ,又)(αΓ当0>α时连续(可证),于是 +∞=+=++→→ααΓαΓαα)1(lim )(lim 00. (3). 余元公式: )10()sin(ππ)1()(<<=-αααΓαΓ.注:π2102/1==⎪⎭⎫⎝⎛⎰∞+--x d e x x Γ.(4). Γ 函数的其它形式:)0(2)(0122>⋅=⎰∞+--ααΓαt•d e t t .推导:对Γ 函数⎰∞+--=01)(x d e x x ααΓ,令2t x =得,⎰∞+--⋅=01222)(t •d e t t ααΓ.注: 1°.)1(212102->⎪⎭⎫ ⎝⎛+=⎰∞+-t t x d e x x t Γ.推导:令u x =2,则u x =,u d ux d 21=,于是⎰∞+-02ex d x x t⎰∞+--=021221x d e u u t ⎰∞+--+=0121221x d e u u t )1(2121->⎪⎭⎫ ⎝⎛+=t t Γ.2°.概率积分:⎰∞+-02x d ex ⎪⎭⎫⎝⎛=2121Γ 2π=. 例10. 计算反常积分⎰∞+-0198x d e x x .解:令u x =8,则u d x d x =78,u d u x d 8781-=,于是⎰∞+-0198x d ex x ⎰∞+-=02381u d e u u ⎰∞+--=012581u d e u u⎪⎭⎫ ⎝⎛=2581Γ⎪⎭⎫ ⎝⎛+=12381Γ⎪⎭⎫ ⎝⎛⋅⋅=232381Γ⎪⎭⎫ ⎝⎛+⋅⋅=1212381Γ⎪⎭⎫ ⎝⎛⋅⋅⋅=21212381Γ323π=.。

高等数学(同济大学第五版)第五章 定积分

高等数学(同济大学第五版)第五章 定积分

π
3 6 3
, M = f ( 3 ) = 3 arctan 3 =
π
3
.
因此
π
6 3
( 3−
1 3
) ≤ ∫ 1 x arctan xdx ≤
3
3
π
3
( 3−
1 3
),

π
9
≤ ∫ 1 x arctan xdx ≤
3
2
3
2π . 3
(4)先求函数 f ( x) = e x
f ′( x ) = e x
成 n 个长度相等的小区间, 各个小区间的长度为: Δx i =
第二步: 在第i个小区间[xi−1, xi] (i=1, 2, ⋅ ⋅ ⋅, n)上取右端点 ξ i = x i = a +
S n = ∑ f (ξ i )Δx i = ∑ [(a +
i =1 i =1 n n
b−a 2 b−a i ) +1]⋅ n n
2 2 2 2 1 1
b
b
b
b
(4) ∫0 xdx 还是 ∫0 ln(1+ x)dx ? (5) ∫0 e x dx 还是 ∫0 (1+ x)dx ? 解 (1)因为当 0≤x≤1 时, x2≥x3, 所以 ∫0 x 2 dx ≥ ∫0 x 3 dx . 又当 0<x<1 时, x2>x3, 所以 ∫0 x 2 dx > ∫0 x 3 dx . (2)因为当 1≤x≤2 时, x2≤x3, 所以 ∫1 x 2 dx ≤ ∫1 x 3 dx . 又因为当 1<x≤2 时, x2<x3, 所以 ∫1 x 2 dx < ∫1 x 3 dx . (3)因为当 1≤x≤2 时, 0≤ln x<1, ln x≥(ln x)2, 所以 ∫1 ln xdx ≥ ∫1 (ln x) 2 dx . 又因为当 1<x≤2 时, 0<ln x<1, ln x>(ln x)2, 所以 ∫1 ln xdx > ∫1 (ln x) 2 dx . (4)因为当 0≤x≤1 时, x≥ln(1+x), 所以 ∫0 xdx ≥ ∫0 ln(1+ x)dx . 又因为当 0<x≤1 时, x>ln(1+x), 所以 ∫0 xdx > ∫0 ln(1+ x)dx . (5)设f(x)=ex−1−x, 则当 0≤x≤1 时f ′(x) =ex−1>0, f(x)=ex−1−x是单调增加的. 因此当 0≤x≤1 时, f(x)≥f(0)=0, 即ex≥1+x, 所以 ∫0 e x dx ≥ ∫0 (1+ x)dx . 又因为当 0<x≤1 时, ex>1+x, 所以 ∫0 e x dx > ∫0 (1+ x)dx .

同济大学(高等数学)_第五章_定积分及其应用

同济大学(高等数学)_第五章_定积分及其应用
边长及高均为 1 所以
5
01(1 x)dx

1 11 2
1 2

图 5-4
例 3 利用定积分的几何意义,证明 1 1 x 2 dx .
1
2
证明
令 y 1 x2 , x [1,1]
,显然 y 0 ,则由 y 1 x 2 和直线
x 1, x 1, y 0 所围成的曲边梯形是单位圆位于 x 轴上方的半圆.如图 5-5 所示.
b
a
f
( x)dx

c
a
f
(x)dx

b
c
f
(x)dx

这个性质表明定积分对于积分区间具有可加性
值得注意的是不论 a, b, c 的相对位置如何总有等式
b
a
f
(x)dx

c
a
f
(x)dx
b
c
f
(x)dx
成立 例如 当 a b c 时 由于
c
a
f
(x)dx

b
a
f
(x)dx
求曲边梯形的面积的精确值
显然 分点越多、每个小曲边梯形越窄 所求得的曲边梯形面积 A 的近似值就越接近 曲边梯形面积 A 的精确值 因此 要求曲边梯形面积 A 的精确值 只需无限地增加分点 使
每个小曲边梯形的宽度趋于零 记 maxx1, x2 ,L , xn , 于是 上述增加分点 使每
si v( i )ti (i 1,2,L , n).
于是这 n 段部分路程的近似值之和就是所求变速直线运动路程 S 的近似值 即
n
S v(i)ti i 1
求精确值

高等数学第五章定积分

高等数学第五章定积分
则 ∫ f ( x )dx ≥ 0
a
(a < b)
b
推论: 推论: 1) 如果在区间[a , b]上 f ( x ) ≤ g ( x ) , (
则 ∫ f ( x )dx ≤
a b
∫a g( x )dx
f ( x )dx
(a < b)
(2) )
∫a f ( x )dx ≤ ∫a
8
b
b
(a < b)
返回
第五章
定积分
1
复习
1、问题的提出 求曲边梯形的面积A 实例 (求曲边梯形的面积A)
曲 边 梯 形 由 连 续 曲 线 y = f (x)( f ( x) ≥ 0)、
x 轴与两条直线 x = a 、 = b 所 围 成 . x
A = lim ∑ f (ξ i )∆xi
λ → 0 i =1
n
方法:分割、代替、求和、取极限. 方法:分割、代替、求和、取极限. 返回
也不论在小区间 怎样的分法, 如果不论对[a , b] 怎样的分法,
[ x i −1 , x i ] 上 点 ξ i 怎样 的取法, 的取法, 只要当λ
→ 0 时,
我们称这个极限 I 和 S 总趋于 确定的极限 I , 为函数 f ( x ) 在区间[a , b]上的定积分, 上的定积分 记为 定积分,
x
d 证 dx
∫0
x
d x tf ( t )dt = xf ( x ), f ( t )dt = f ( x ) dx 0

F ′( x ) =
xf ( x ) ⋅ ∫0 f ( t )dt −f ( x ) ⋅ ∫0 tf ( t )dt
( ∫ f ( t )dt )2

大一高数上 PPT课件 第五章.

大一高数上 PPT课件 第五章.

[a, b] — —积分
.
∫a f ( x )dx = I = lim ∑ f (ξ i )∆xi λ → 0 i =1
注:
) 积分仅与被积函数及积分区间有关, (1) 积分仅与被积函数及积分区间有关,
与积分变量的字母的选择无关. 而 与积分变量的字母的选择无关 .
b
n
∫a f ( x )dx = ∫a f ( t )dt = ∫a f ( u)du
2
i =1
i =1
exdx 练习 利用定义计算定积分 ∫
0
1
解 f ( x) = e x 在 [0,1]上连续,故f(x)在[0,1]上可积 上连续, 上可积. 上连续 在 上可积 等分, 将 [0,1]n 等分,左侧取点 i −1 i −1 1 ξi = , ∆x i = f (ξ i ) = e n n n 1 2 n −1 n 1 0 ∑ f (ξ i )∆xi = n [e + e n + e n + L + e n ] i =1 1 等比数列求和 1 1 1 − (e n )n = ( e − 1) n = ⋅ 1 1 n en − 1 1 − en 1

i =1 n
n
f (ξ i )∆xi = ∑ ξ i ∆xi = ∑ xi2∆xi ,
2
n
n
1 n 2 1 n( n + 1)(2n + 1) i 1 = i = 3⋅ = ∑ ⋅ 3∑ n 6 n n i =1 i =1 n 1 1 1 = 1 + 2 + , λ → 0 ⇔ n → ∞ 6 n n n 1 1 1 1 1 2 2 ∫0 x dx = lim ∑ ξ i ∆xi = lim 6 1 + n 2 + n = 3 . n→ ∞ λ → 0 i =1

大一上学期同济版高数第五章定积分

大一上学期同济版高数第五章定积分
所占的区间 a, b 上的定积分,即
A f ( x)dx
a
b
变速直线运动的物体所走过的路程等于速度函数 v(t ) 在区间T1,T2 上的定积分,即
S v(t )dt
T1
T2
注:定积分是一种和式的极限,是一个数值。
不定积分表示全体原函数。
11
定积分的几何意义:
曲边梯形面积 曲边梯形面积的负值
lim
1 3
n
o
i n
1x
14
例2. 用定积分表示下列极限:
1 i (1) lim 1 n n i 1 n
n
1p 2 p n p (2) lim p 1 n n
n 1 n i i 1 解: (1) lim 1 lim 1 n n i 1 n n i 1 n n
故 即

2 2 0

dx 2 f ( x ) dx 2 1 dx
0
2


0
1

0
sin x dx x 2
25
8. 积分中值定理
则至少存在一点 使
a f ( x) dx f ( )(b a)
证: 设 f ( x) 在[a, b] 上的最小值与最大值分 别为 m, M , 则由性质7 可得
f ( x) 0 . (“高数”上, P236 题 12(1)) 证: 用反证法. 假设存在 x0 [a , b] , f ( x0 ) 0 , 无妨设 x0 为内点 , 由 f (x) 的连续性可知 , 存在邻域 在其上 f ( x) 0 , 则
a f ( x) d x x
1.
o a
xi 1xi

(完整版)高等数学(上)第五章定积分总结

第五章 定积分内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。

要求:理解定积分的概念和性质。

掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。

重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。

难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。

§1。

定积分的概念一、实例分析1.曲边梯形的面积设函数)(x f y =∈C[a , b ], 且)(x f y =〉0。

由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形.如何定义曲边梯形的面积? (1) 矩形面积=底高。

(2) 预备一张细长条的纸, 其面积底高。

(3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示:将曲边梯形分割为许多细长条, 分割得越细, 误差越小。

第i 个细长条面积)],,[()(11---=∆∈∀∆≈∆i i i i i i i i i x x x x x x f S ξξ曲边梯形面积: ∑=∆≈ni i i x f S 1)(ξ定积分概念示意图.ppt定义: ),,2,1,max {()(lim 10n i x x f S i ni ii =∆=∆=∑=→λξλy =f (x )x =a x =by =f (x )a=x 0 x 1 x i-1 x i x n =b抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义设)(x f y =在[a , b ]有定义, 且有界。

(1) 分割: 用分点b x x x a n =<<<= 10把[a , b ]分割成n 个小区间:},,2,1,max{,,,2,1],,[11n i x x x x ni x x i i i i i i =∆=-=∆=--λ记(2) 取点: 在每个小区间],[1i i x x -上任取一点i, 做乘积: i i x f ∆)(ξ。

高等数学同济版第五章第六版教案

授课教案课程名称:高等数学授课专业:总学时:开课单位:制定人:审核人:制定时间:教 案1()lim niii v t S λτ→=∑=△新课和新上课的教师要求写详案。

4.要求教师上课必带教案。

5.“备注”填写历年更新的内容(手写)。

6.教案可带附件(课程内容补充材料)。

教案新课和新上课的教师要求写详案。

4.要求教师上课必带教案。

5.“备注”填写历年更新的内容(手写)。

6.教案可带附件(课程内容补充材料)。

教案=adt tfx)()(φ)(xf[]ba,。

注:1.每2学时至少制定一个教案。

2.课型包括新授课、练习课、复习课、讲评课、实验课等。

3.上新课和新上课的教师要求写详案。

4.要求教师上课必带教案。

5.“备注”填写历年更新的内容(手写)。

6.教案可带附件(课程内容补充材料)。

教案a adxxf)(a dxxf)(2-注:1.每2学时至少制定一个教案。

2.课型包括新授课、练习课、复习课、讲评课、实验课等。

3.上新课和新上课的教师要求写详案。

4.要求教师上课必带教案。

5.“备注”填写历年更新的内容(手写)。

6.教案可带附件(课程内容补充材料)。

教案[]210216.21x -+π13-+π新课和新上课的教师要求写详案。

4.要求教师上课必带教案。

5.“备注”填写历年更新的内容(手写)。

6.教案可带附件(课程内容补充材料)。

高等数学 课件 PPT 第五章 定积分

[a,b]上有界并不是可积的充分条件.例如,
在[0,1]上是有界函数,但不可积.因为不论对[0,1]怎样分 割,在任意被分割的小区间[xi-1,xi]上,总能取到ξi为有理数, 这时f(ξi)=1,也总能取到ξi为无理数,这时f(ξi)=0.所以对[0,1] 的任何一种分法,我们总可以得到
一、定积分的概念
思考
一个函数在什么条件下可积?什么条件下不可积?
一、定积分的概念
3. 定积分存在的充分条件
若f(x)在[a,b]上无界,则f(x)在[a,b]上一定是不可积 的.这是因为,若f(x)在[a,b]上无界,那么无论对[a,b] 怎样分割,都至少有一个区间[xi-1,xi],函数f(x)在其上无 界.因此,在[xi-1,xi]上一定可以取一点ξi,使得f(ξi)大于任 意一个正数M,因而也就使得和式 ∑ =1f(ξi)Δxi可以任意的 大.当λ→0时,这个和就不可能趋向于任何极限.由此可知, f(x)在[a,b]上可积的必要条件是f(x)在[a,b]上有界.
一、变速直线运动中位置函数与速度函数之间的联系
为了讨论质点在变速直线运动中位置函数与速度函数间的 联系,有必要沿质点的运动方向建立坐标轴.设时刻t时质点所 在位置st,速度vtvt≥0. 已知质点在时间间隔T1,T2内经过的路程可以用速度函数vt在 T1,T2上的定积分
一、定积分的概念
在区间[a,b]上,f(x)既有正值又有负值时,函数y=f(x) 的图形某些部分在x轴的上方,而其他部分在x轴的下方.如果 规定在x轴的上方的图形的面积为正,在x下方的图形面积为负, 那么∫baf(x) 的几何意义就是介于曲线y=f(x)、x轴及两条直线 x=a,x=b之间的各部分面积的代数和,如图5-2所示.
把区间[a,b]分成个n小区间 [x0,x1],[x1,x2],…,[xn-1,xn],

高数第五章 定积分的应用

第五章 定积分的应用在本章中,我们将利用学过的定积分理论来解决一些实际问题.首先介绍建立定积分数学模型的方法——微分元素法;再利用这一方法求一些几何量(如面积、体积、弧长等)和一些物理量(如功、液体静压力、引力等);并介绍定积分在经济学中的简单应用.第一节 微分元素法实际问题中,哪些量可用定积分计算?如何建立这些量的定积分表达式?本节中我们将回答这两个问题.由定积分定义知,若()f x 在区间,a b ⎡⎤⎣⎦上可积,则对于,a b ⎡⎤⎣⎦的任一划分:1<<<0n a x x x b == ,及1,i i x x -⎡⎤⎣⎦中任意点i ξ,有d Δ01()lim()nb i i aλi f x x f ξx →==∑⎰,(5-1-1)这里()-=-= 11,2,,i i i Δx x x i n ,}{≤≤=1m ax i i nλΔx . (5-1-1)式表明定积分的本质是一类特定和式的极限,此极限值与,a b ⎡⎤⎣⎦的分法及点i ξ的取法无关,只与区间,a b ⎡⎤⎣⎦及函数()f x 有关.基于此,我们可以将一些实际问题中有关量的计算归结为定积分来计算.例如,曲边梯形的面积、变速直线运动的位移等均可用定积分来表达.由上一章中分析曲边梯形面积用定积分来表示的过程,我们可概括地将此过程描述为“划分找近似,求和取极限”.也就是说,将所求量整体转化为部分之和,利用整体上变化的量在局部近似于不变这一辩证关系,局部上以“不变”代替“变”,这是利用定积分解决实际问题的基本思想.根据定积分的定义,如果某一实际问题中所求量U 符合下列条件:(1)建立适当的坐标系和选择与U 有关的变量x 后,U 是一个与定义在某一区间,a b ⎡⎤⎣⎦上的可积函数()u x 有关的量; (2)U 对区间,a b ⎡⎤⎣⎦具有可加性,即如果把,a b ⎡⎤⎣⎦任意划分成n 个小区间()-=-= 11,2,,i i i Δx x x i n ,则U 相应地分成n 个部分量i ΔU ,且1nii U U Δ==∑;(3) 部分量i ΔU 可近似地表示成()()1,i i i i i u ξΔx ξx x -∈⎡⎤⎣⎦,且i ΔU 与()i i u ξΔx 之差是iΔx 的高阶无穷小,即()()i i i i ΔU u ξΔx o Δx -=,那么,我们可得到所求量U 的定积分数学模型d ()b au x U x =⎰. (5-1-2)在实际建模过程中,为简便起见,通常将具有代表性的第i 个小区间1,i i x x -⎡⎤⎣⎦的下标略去,记为[,d ]x x x +,称其为典型小区间,相应于此小区间的所求量的部分量记作ΔU .因此,建立实际问题的定积分模型可按以下步骤进行:(1) 建立坐标系,根据所求量U 确定一个积分变量x 及其变化范围,a b ⎡⎤⎣⎦;(2) 考虑典型小区间[,d ]x x x +,求出U 相应于这一小区间的部分量ΔU ,将ΔU 近似地表示成,a b ⎡⎤⎣⎦上的某个可积函数()ux 在x 处的取值与小区间长度d Δx x =的积,即 d (d )()ΔU u x x o x =+, (5-1-3)我们称d ()u x x 为所求量U 的微分元素(简称微元或元素),记作d d ()U u x x=;(3) 计算所求量U ,即d =d ()b b aau x U x =⎰⎰U .上述建立定积分数学模型的方法称为微分元素法,这一方法的关键是步骤(2)中微分元素d U 的取得.第二节 平面图形的面积在上一章开头讨论过由连续曲线()()()0y =f x f x ≥,以及直线()x=a ,x =b a <b 和x 轴所围成的曲边梯形的面积()d baA f x x =⎰.如果()f x 在,a b ⎡⎤⎣⎦上不都是非负的,由定积分对区间的可加性,则所围图形的面积为()d b aA f x x =⎰.本节将讨论一般平面图形的问题,如果其边界曲线是由两条连续曲线()1y f x =, ()2y f x =()()21f x f x ⎡⎤≥⎣⎦及直线x =a ,x =b 所围成的平面图形,其面积便可用定积分来计算.下面我们运用定积分的微分元素法,建立不同坐标系下平面图形的面积计算公式.一、 直角坐标情形设一平面图形由曲线()()12,y f x y f x ==及直线x =a 和()x =b a b <围成(见图5-1).图5-1为求其面积A ,我们在,a b ⎡⎤⎣⎦上取典型小区间[,d ]x x x +,相应于该小区间的平面图形面积ΔA 近似地等于高为()()12f x f x -、宽为d x 的窄矩形的面积,从而得到面积微元()()d d 12A f x f xx =-.所以,此平面图形的面积为()()d 12b aA f x f xx =-⎰. (5-2-1)类似地,若平面图形由12(),()x φy x φy ==及直线y c =和()y d d c =>围成(见图5-2),则其面积为()()d 12d cA φy φy y =-⎰. (5-2-2)图5-2例1 计算由抛物线21y x =-+与2y x =所围图形的面积A . 解 解方程组221y x y x⎧=-+⎪⎨=⎪⎩得两抛物线的交点为122⎛⎫ ⎪⎝⎭和122⎫⎪⎝⎭,于是图形位于2x =-与2x =之间,如图5-3所示,取x 为积分变量,由(5-2-1)式得d 22222)A xxx x=--=-32022()3x x =-=图5-3例2 计算由直线4y x =-和抛物线22y x =所围平面图形的面积A . 解 解方程组224y xy x ⎧=⎪⎨=-⎪⎩得两线的交点为(2,-2)和(8,4),平面图形,如图5-4所示,位于直线2y =-和4y =之间,于是取y 为积分变量,由(5-2-2)式得d 24242yA y y -=+-⎰3242(4)26yyy -=+-18=.图5-4注意:若在例1中取y 为积分变量,在例2中取x 为积分变量,则所求面积的计算会较为复杂.例如在例2中,若选x 为积分变量,则积分区间是[0,8].当(,2)0x ∈时,典型小区间(,d )x x x +所对应的面积微元是(d d A x=⎤⎦;而当(2,8)x ∈时,典型小区间所对应的面积微元是()d d 4A x x ⎤-⎦=. 故所求面积为(()d d 28024A x x x⎤⎤+-⎦=⎦⎰⎰.显然,上述做法较例2中的解法要复杂.因此,在求平面图形的面积时,恰当地选择积分变量可使计算简便.当曲边梯形的曲边为连续曲线,其方程由参数方程(),(),x φt y ψt =⎧⎨=⎩12t t t ≤≤ 给出时,若其底边位于x 轴上,()φt 在12[,]t t 上可导,则其面积微元为 ()()d d d A y x ψt φt t ==' d (0)t >. 从而面积为()()d 21t t A ψt φt t ='⎰. (5-2-3)同理,若其底边位于y 轴上,且()ψt 在12[,]t t 上可导,则其面积微元为 ()()d d d A x y φt ψt t ==' d (0)t > 从而面积为()()d 21t t A φt ψt t ='⎰. (5-2-4)例3 设椭圆方程为12222y x ab+= (,a b 为正的常数),求其面积A .解 椭圆的参数方程为cos ,sin ,x a t y b t =⎧⎨=⎩20t π≤≤. 由对称性知d 204sin (cos )A b t a t tπ'=⋅⎰d d 22201cos 24sin 42ta b t t a b t ππ-==⎰⎰a b=π.二、 极坐标情形设一平面图形,在极坐标系下由连续曲线()r r θ=及射线,θαθβ==所围成(称为曲边扇形,如图5-5所示.)为求其面积,我们在θ的变化区间[,]αβ上取一典型小区间[,d ]θθθ+,相应于此区间上的面积近似地等于中心角为d θ、半径为()r θ的扇形面积,从而得到面积微元()d d 212A r θθ=, 所以d 21()2βαA r θθ=⎰. (5-2-5)图5-5例4 计算阿基米德(Archimedes)螺线(>)0r a θa =上相应于θ从0到2π的一段弧与极轴所围成图形如图5-6所示的面积.解 由式(5-2-5)得d 22232302114()2630A a θθa θa ππ⎛⎫===π ⎪⎝⎭⎰.图5-6 图5-7例5 求由双纽线()()2222222x y a x y +=-所围成,且在半径为a 的圆内部的图形如图5-7所示的面积.解 由对称性,所求面积应等于第一象限部分面积的4倍,极坐标下双纽线在第一象限部分的方程为222co 2r a s θ=, 04θ≤≤π.圆的方程为r a =. 由 222cos 2r a θr a ⎧=⎪⎨=⎪⎩解得两曲线在第一象限交点为6,a ⎛⎫⎪⎝⎭π,由式(5-2-5)得所求面积d cos d 2264061142222A a θa θθπππ⎡⎤=+⎢⎥⎣⎦⎰⎰42262sin 23a a θπππ=+2(23aπ=+-.第三节 几何体的体积一、 平行截面面积为已知的立体体积考虑介于垂直于x 轴的两平行平面x a =与x b =之间的立体如图5-8所示,若对任意的[,]x a b ∈,立体在此处垂直于x 轴的截面面积可以用x 的连续函数()A x 来表示,则此立体的体积可用定积分表示.图5-8在[,]a b 内取典型小区间[,d ]x x x +,对应于此小区间的体积近似地等于以底面积为()Ax ,高为d x 的柱体的体积,故体积元素为()d d V A x x =, 从而d ()b aA x V x =⎰. (5-3-1)例1 一平面经过半径为R 的圆柱体的底圆中心,并与底面交成角α,如图5-9所示,计算此平面截圆柱体所得楔形体的体积V .解法1 建立坐标系如图5-9,则底面圆方程为222x y R +=.对任意的[,]x R R ∈-,过点x 且垂直于x 轴的截面是一个直角三角形,两直角边的长度分别为y =和tan y αα=,故截面面积为()()tan 2212x R x A α-=.于是立体体积为tan d 221()2R RV R x αx -=-⎰tan d tan 22302()3RαR x x R α=-=⎰.图5-9 图5-10解法2 在楔形体中过点y 且垂直于y 轴的截面是一个矩形如图5-10所示,其长为2x =tan y α,故其面积为()2A yy α=.从而,楔形体的体积为()d tan 322222an 3R R V αy αR y==--⎰tan 323R α=. 二、旋转体的体积由一平面图形绕这平面内一条定直线旋转一周而成的立体称为旋转体. 设一旋转体是由连续曲线()y f x =,直线x a =和x b =及x 轴所围成的曲边梯形绕x 轴旋转一周而形成的(图5-11),则对任意的[,]x a b ∈,相应于x 处垂直于x 轴的截面是一个圆盘,其面积为2()πf x ,于是旋转体的体积为 ()d 2ba V f x x =π⎰. (5-3-2)图5-11例2 计算由椭圆22221y x ab+=(,a b 为正的常数)所围图形绕x 轴旋转而成的旋转体(称之为旋转椭球体,见图5-12)的体积.图5-12解 这个旋转体实际上就是半个椭圆y =及x 轴所围曲边梯形绕x 轴旋转一周而成的立体,于是由式(5-3-2)得()2222a ab V axa-=π-⎰()d 22222a b axxa=π-⎰2322230ab x a x a ⎛⎫=π⋅- ⎪⎝⎭243a b =π.特别地,当a b =时便得到球的体积343πa .例3 求圆域222()()x b a y b a +-≤>绕x 轴旋转而成的圆环体的体积如图5-13所示.图5-13解 如图5-13,上半圆周的方程为2y b +=1y b -=对应于典型区间[,d ]x x x +上的体积微元为d d 2221()V y y x =π-πd 22((b b x ⎡⎤=π+--⎢⎥⎣⎦4x =π.所以4a aV x -=π⎰8b x =π⎰284ab π=π⋅22a b =2π.第四节 曲线的弧长和旋转体的侧面积一、 平面曲线的弧长首先,我们建立平面曲线弧长的概念.设有平面曲线 A B ,在其上任取分点:11,,,,0n n A M M M M B -== ,连接相邻的两个分点得到n 条线段1i i MM-,1,2,,i n = .以()1,i i iρρM M-=表示线段1i i M M -的长度(见图5-14),记1m ax{}i i nρλ≤≤=,若极限01lim niλi ρ→=∑存在,则定义此极限值为曲线 A B 的长度(即弧长),并称曲线 AB 是可求长的.图5-14下面用微分元素法来推导弧长的计算公式.设 A B 的方程为()y f x =,[,]x a b ∈,且()f x 在[,]a b 上有一阶连续导数.考虑[,]a b 内的典型小区间[,]x x Δx +,相应于此区间的弧长记为Δs ,Δs 近似地等于弦长,即22222()()()()[()()]Δs Δx Δy Δx f x Δx f x ≈+=++-.由微分中值定理,得,222()()[()]),(Δs ξx x Δx Δx f ξΔx ∈'+≈++,此处>0Δx ,故得弧长的微分元素(简称弧微分)为d s ==x =. (5-4-1)从而, AB 的长为as x =⎰. (5-4-2)若曲线弧 AB 的方程由参数方程 (),(),x φt y ψt =⎧⎨=⎩ αt β≤≤,给出,设()(),φt ψt 在[,]αβ上具有连续导数,由于()()d d d d ,x φt t y ψt t ='=',因此对于任意的[,]t αβ∈,典型小区间d []t t t +,上相应弧长元素为d s t =. (5-4-3)所以,曲线弧 AB 的弧长为αs t =⎰. (5-4-4)式(5-4-1)和(5-4-3)即为弧微分公式,这和第二章第五节所推导的弧微分公式是一致的.例1 两端固定于空中的线缆,由于其自身的重量而下垂成曲线形,称之为悬链线.设一悬链线的方程为e +e ()2sh xxa a y a x a a -== (a为正的常数),求其在[,]0a 上一段的长.解 d ds x x == =e +e d 1()2xxa a x -,故 e +e d e+e ee 101()()()2x xxx a a a aaas x a a ---===⎰-. 例2 如图5-15所示,计算摆线(sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩()0a > 的一拱(20t π≤≤)的长度.图5-15解 由于d s t =t=d 2sin2ta t =, 所以d d 2202sin2sin22tts a t a t ππ==⎰⎰22(2cos )820t a a π=-=.如果曲线方程由极坐标方程()()r r θαθβ=≤≤给出,且()r θ存在一阶连续导数,则由 ()cos ,()sin ,x r θθy r θθ=⎧⎨=⎩()αθβ≤≤ 可得()[()cos ]()cos ()sin ,φθr θθr θθr θθ'''==- ()[()sin ]()sin ()cos ,ψθr θθr θθr θθ'''==+从而 ()()()()2222φθψθrθr θ'+'=+'. 所以αs θ=⎰. (5-4-5)例3 求心形线1 (cos )(0)r a θa =+>的全长(见图5-16).图5-16解 由(5-4-5)式有d s θ=θ=θ=.由对称性知02s θπ=⎰d 022cos2θa θπ=⎰ 8sin820θa a π==. *二、 旋转体的侧面积设一旋转体的侧面由一段曲线()()y f x a x b =≤≤绕x 轴旋转一周而得(图5-17).为求其面积A ,我们在[,]a b 上取典型小区间[,d ]x x x +,相应于此区间上的窄带形侧面(图5-17中的阴影部分)可近似地看成弧微分d s 绕x 轴旋转一周而成.于是这一窄带形侧面可以用一个半径为()f x ,高为d s 的圆柱面来近似代替,从而得侧面积的微分元素()(d πd π22A f xs f x x ==.所以2(b aA f x x =π⎰.此处假设()f x 在[,]a b 上可导.图5-17例4 求半径为R 的球的表面积.解 以球心为原点建立一平面直角坐标系,则该球是平面上半圆盘0y ≤≤绕x 轴旋转一周而成的旋转体,其表面积为π2R RA x-=⎰πd π244R Rx -==⎰R R .第五节 定积分在物理学中的应用一、 变力沿直线所做的功由物理学知,若一个大小和方向都不变的恒力F 作用于一物体,使其沿力的方向作直线运动,移动了一段距离s ,则F 所做的功为·W F s =.下面用微分元素法来讨论变力做功问题.设有大小随物体位置改变而连续变化的力()F F x =作用于一物体上,使其沿x 轴作直线运动,力F 的方向与物体运动的方向一致,从x a =移至至>x b a = (见图5-18).在[,]a b 上任一点x 处取一微小位移d x ,当物体从x 移到d x x +时,()F x 所做的功近似等于d ()F x x ,即功元素d d ()W F x x =,于是d ()b aW F x x =⎰. (5-5-1)图5-18例1 一汽缸如图5-19所示,直径为0.20m ,长为1.00m ,其中充满了气体,压强为5981.0⨯Pa.若温度保持不变,求推动活塞前进0.5m 使气体压缩所作的功.图5-19解 根据波义耳(Boyle )定律,在恒温条件下,气体压强p 与体积V 的乘积是常数,即p V k =.由于压缩前气体压强为5981.0⨯Pa ,所以ππ52981198.00000k =⨯⋅⋅=.建立坐标系如图5-19所示,活塞位置用x 表示,当活塞处于x 处时汽缸中气体体积π211()(0.)V x =-,于是压强为2()(1)(0.1)k p x x =-π,从而活塞上的压力为()1k F x p S x==-.故推动活塞所作功为d 05ln 10.50.9800980010W x x π==-π(-)-⎰x 980000ln2 2.13104(J )=π≈⨯.例2 从地面垂直向上发射一质量为m 的火箭,求将火箭发射至离地面高H 处所作的功.解 发射火箭需要克服地球引力做功,设地球半径为R ,质量为M ,则由万有引力定律知地球对火箭的引力为2GM m F =r,其中r 为地心到火箭的距离,G 为引力常数.当火箭在地面时,r R =,引力为2G M m R.另一方面,火箭在地面时,所受引力应为m g ,其中g 为重力加速度,因此2m g =GM m R, 故有 2=gR G M,于是22=m gR F r.从而,将火箭从r R =发射至r R H =+处所做功为d 111222R H RW r RR H +⎛⎫==- ⎪+⎝⎭⎰m gRm gR r .例3 地面上有一截面面积为20A =m 2,深为4 m 的长方体水池盛满水,用抽水泵把这池水全部抽到离池顶3m 高的地方去,问需做多少功?图5-20解 建立坐标系如图5-20所示.设想把池中的水分成很多薄层,则把池中全部水抽出所做的功W 等于把每一薄层水抽出所做的功的总和.在[0,4]上取小区间[x ,x +d x ],相应于此小区间的那一薄层水的体积为2d 0x m 3,设水的密度1310ρ=⨯kg ·m -3,故这层水重为d 4210g x ⨯ kg ,将它抽到距池顶3m 高处克服重力所做功为d d 4210(3)x g x W ⨯⋅⋅=+.从而,将全部水抽到离池顶3m 高处所做的功为4023 1.9632424510()d 10x W x g x x ⎛⎫=⨯⋅+⋅=⨯⋅⨯+ ⎪⎝⎭⎰639210J .()=⨯ (其中-29.8m s g =⋅)二、液体静压力由帕斯卡(Pascal )定律,在液面下深度为h 的地方,液体重量产生的压强为p ρg h =,其中ρ为液体密度,g 为重力加速度.即液面下的物体受液体的压强与深度成正比,同一深度处各方向上的压强相等.面积为A 的平板水平置于水深为h 处,平板一侧的压力为p ρg h A =. 下面考虑一块与液面垂直没入液体内的平面薄板,我们来求它的一面所受的压力.设薄板为一曲边梯形,其曲边的方程为,()()y f x a x b =≤≤,建立坐标系如图5-21所示,x 轴铅直向下,y轴与液面相齐.当薄板被设想分成许多水平的窄条时,相应于典型小区间d [,]x x x +的小窄条上深度变化不大,从而压强变化也不大,可近似地取为ρg x ,同时小窄条的面积用矩形面积来近似,即为d ()f x x ,故小窄条一面所受压力近似地为d d ()p ρg x f x x=⋅.图5-21从而d ()b ap ρgx f x x =⎰. (5-5-2)例4 一横放的圆柱形水桶,桶内盛有半桶水,桶端面半径为0.6m ,计算桶的一个端面上所受的压力.图5-22解 建立坐标系如图5-22所示,桶的端面圆的方程为22360.x y +=.相应于[,d ]x x x +的小窄条上的压力微元d 2p ρg xx =,所以桶的一个端面上所受的压力为060.p x xx =⎰20633(.)ρg =314110N .≈⨯()其中3110ρ=⨯kg·m -3,98-2m s .g ⋅=. 三、引力由物理学知,质量分别为12,m m ,相距为r 的两质点间的引力的大小为122m m F Gr=,其中G 为引力系数,引力的方向沿着两质点的连线方向.对于不能视为质点的两物体之间的引力,我们不能直接利用质点间的引力公式,而是采用微元法,下面举例说明.例5 一根长为l 的均匀直棒,其线密度为ρ,在它的一端垂线上距直棒a 处有质量为m 的质点,求棒对质点的引力.图5-23解 建立坐标系如图5-23所示,对任意的[,0)x l ∈,考虑直棒上相应于d [,]x x x +的一段对质点的引力,由于d x 很小,故此一小段对质点的引力可视为两质点的引力,其大小为d d G 22m ρx F a x=+,其方向是沿着两点,(0)a 与(),0x 的连线的,当x 在(),0l 之间变化时,d F 的方向是不断变化的.故将引力微元d F 在水平方向和铅直方向进行分解,分别记为d ,d x y F F ,则d 32G d 22()x m ρxF F x x a ==+,d 32G d 22()y m ρa F F x xa =-=-+.于是,直棒对质点的水平方向引力为32d 022()l x x F G m ρx xa =+⎰32d 2222()()2l G m ρa x a x -=++⎰1222()0l G m ρa x -=-+1(G m ρa=-.铅直方向引力为d 30222()l y x F G m ρa a x =-+⎰12l G m ρa -=-G m ρl =.注意 此例如果将直棒的线密度改为()ρρx =,即直棒是非均匀的,当()ρx 为已知时,直棒对质点的引力仍可按上述方法求得. 四、平均值我们知道,n 个数值12,,,n y y y 的算术平均值为121()n y y y y n=+++ . 在许多实际问题中,需考连续函数在一个区间上所取值的平均值,如一昼夜间的平均温度等.下面将讨论如何规定和计算连续函数()f x 在[,]a b 上的平均值. 先将区间[,]a b n 等分,分点为1<<<0n a x x x b == ,每个小区间的长度为Δx b an=-,()f x 在各分点处的函数值记为1,2,,()()i i y f x i n == .当Δx 很小(即n 充分大)时,在每个小区间上函数值视为相等,故可以用12,,,n y y y 的平均值121()n y y y n+++ 来近似表达()f x 在[,]a b 上的所有取值的平均值.因此,称极限值121lim()n n y y y y n→∞=+++为函数()f x 在[,]a b 上的平均值.由于12lim n n y y y b ay b a n →∞+++-=-120limnx y y y x b a∆→+++=∆-011lim ()ni x i f x x b a ∆→==∆-∑,故1()d bay f x x b a =-⎰.(5-5-3)式(5-5-3)就是连续函数()f x 在[,]a b 上的平均值的计算公式.例6 计算纯电阻电路中正弦交流电sin m i I ωt =在一个周期π2T =ω上的功率的平均值(简称平均功率).解 设电阻为R ,则电路中的电压为m U iR I R tω==sin ,功率为2sin 2m N Ui t I R ω==.一个周期上的平均功率为d d 2221sin sin 2T ωI R ωN R ωt t ωt I t Tπ==π⎰⎰22m md()0220sin 2(1cos 2)442ωωR R ωt ωt ωt ωt I I ππ⎡⎤=-=-⎢⎥ππ⎣⎦⎰22m m22mU I R I ==2m m ,其中m m U I R =表示最大电压,也称为电压峰值,即纯电阻电路中正弦交流电的平均功率等于电流与电压的峰值的乘积的一半.通常交流电器上标明的功率就是平均功率,而交流电器上标明的电流值都是另一种特定的平均值,常称为有效值.一般地,周期性非恒定电流i 的有效值是这样规定的:当电流()i t 在一个周期T 内在负载电阻R 上消耗的平均功率等于取固定值I 的恒定电流在R 上消耗的功率时,称这个固定值为()i t 的有效值.电流()i t 在电阻R 上消耗的功率为()()()()N t U t i t i t R =⋅=2.它在[0,T )上的平均值为d d 221()()T T R N i t R t i t tTT==⎰⎰.而固定值为I 的电流在R 上消耗的功率为2N I R =,因此d 22()T R I R i t t T =⎰, 即I =.例7 求正弦电流s (n )i m i I t t ω=的有效值.解12221s i n 2ωI ωt ωπ⎛⎫ ⎪=⎪π ⎪⎝⎭⎰2m I122sin 242ωωt ωt π⎡⎤⎡⎤⎢⎥=-⎢⎥π⎣⎦⎢⎥⎣⎦2mI=.叫做函数()f x 在[,]a b 上的均方根.第六节 定积分在经济学中的应用一、 最大利润问题设利润函数()()()πx =R x C x -,其中x 为产量,()R x 是收益函数,()C x 是成本函数,若()π,(),()x R x C x 均可导,则使()πx取得最大值的产量x 应满足()()()π0x R x C x '='-'=,即()().R x C x '='因此总利润的最大值在边际收入等于边际成本时取得.例1 设某公司产品生产的边际成本2181()00C x x x '=-+,边际收益为23()00R x x '=-,试求公司的最大利润.解 由于d ππd ()()()()x x R x C x x'''==-223181(00)(00)x x x =---+215100x x=-+,故利润微分元素为d πd 2151()(00)x x xx =-+.产量为0x 时,利润为πd 0200()(15100)x x x xx =-+⎰.另一方面,令π()0x '=,得21525x ±==(负值舍去). 又当20x =时,()π152<0x x "=-,故20x =时,利润取得最大值,最大利润为πd 202(20)(15100)x xx =-+⎰322015(100)230x xx =-+ 23333.≈.二、资金流的现值与终值1. 连续复利概念设有一笔数量为0A 元的资金存入银行,若年利率为r ,按复利方式每年计息一次,则该笔资金t 年后的本利和为0(1)(1,2,)tt A A r t =+= .如果每年分n 次计息,每期利率为r n,则t 年后的本利和为*01(1,2,)n tt r A A t n ⎛⎫=+= ⎪⎝⎭ .当n 无限增大时,由于e lim (1)n r n r n→∞+=,故e *00lim lim (1)n t r t t n n r A A A n→∞→∞=+=.称公式e 0r tt A A = (5-6-1)为0A 元的现值(即现在价值)在连续复利方式下折算为t 年后的终值(将来价值)的计算公式.公式(5-6-1)可变形为e0r tt A A -= (5-6-2)称(5-6-2)式为t 年末的t A 元的资金在连续复利方式下折算为现值的计算公式.建立资金的现值和终值概念,是为了对不同时点的资金进行比较,以便进行投资决策. 2. 资金流的现值与终值.将流出企业的资金(如成本、投资等)视为随时间连续变化,称之为支出流.类似地,将流入企业的资金(如收益等)视为随时间连续变化,称之为收入流.资金的净流量为收入流与支出流之差.企业单位时间内,资金的净流量称为收益率.设某企业在时段[]0T ,内的t 时刻的收益率为连续函数()f t ,下面我们按连续复利(年利率为r )方式来求该时段内的收益总现值和总终值. 在[]0T ,上取典型小区间[,d ]t t t +,该时段内收益近似为d ()f t t ,其t 时刻现值为 ed ()r tf t t -.这就是收益总现值的微分元素,故收益总现值为ed 0()T r tP f t t -=⎰. (5-6-3)又由于[,d ]t t t +时段内收益d ()f t t 折算为t T =时刻的终值为 ed ()()T t rf t t -,故收益总终值为ed ()0()T T t rF f t t -=⎰. (5-6-4)当收益率()f t k =(k 为常数)时,该资金流称为稳定资金流或均匀流.例2 某公司投资100万元建成1条生产线,并于1年后取得经济效益,年收入为30万元,设银行年利率为10%,问公司多少年后收回投资.解 设T 年后可收回投资,投资回收期应是总收入的现值等于总投资的现值的时间长度,因此有ed 0.1030100T tt -=⎰,即 0.1300(1e )100t --=. 解得455.0T =,即在投资后的4.055年内可收回投资.习 题 五1.求下列各曲线所围图形的面积:(1)212y x =与228x y += (两部分都要计算); (2)1y x=与直线y x =及2x =;(3)e e ,x x y y -==与直线1x =;(4)ln y x =,y 轴与直线()ln ,ln 0y a y b b a ==>>; (5)抛物线2y x =和22y x =-+;(6)sin ,cos y x y x ==及直线,44x x ππ=9=;(7)抛物线243y x x =-+-及其在3(0,)-和3,(0)处的切线;(8)摆线sin 1cos (),()x a t t y a t =-=-的一拱2(0)t π≤≤与x 轴; (9)极坐标曲线3ρa si n φ=; (10)极坐标曲线2cos ρa φ=.2.求下列各曲线所围成图形的公共部分的面积: (1)()1cos r a θ=+及2cos r a θ=;(2)r θ=及22in r θ=.3.已知曲线2()f x x x =-与()g x ax =围成的图形面积等于29,求常数a .4.设有一截锥体,其高为h ,上、下底均为椭圆,椭圆的轴长分别为2a ,2b 和2A ,2B 求这截锥体的体积.5.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.6.求下列旋转体的体积:(1)由2y x =与23y x =围成的平面图形绕x 轴旋转;(2)由3,2,0y x x y ===所围图形分别绕x 轴及y 轴旋转; (3)星形线222333x y a +=绕x 轴旋转. 7.求下列曲线段的弧长: (1)22,20y x x =≤≤;(2)ln ,y x x =≤≤(3)2,22x y t x π-π-≤=≤π⎰, . 8.设星形线的参数方程为33,,cos sin 0x a t y a t a ==>,求(1)星形线所围面积;(2)绕x 轴旋转所得旋转体的体积; (3)星形线的全长.9.求对数螺线e a θr =相应于0θ=到θφ=的一段弧长.10.求半径为R ,高为h 的球冠的表面积.11.求曲线段31(0)y x x =≤≤绕x 轴旋转一周所得旋转曲面的面积:12.把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少功? 13.有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力.14.半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少.15.设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力.16.求下列函数在[,]a a -上的平均值.(1)()f x =(2)()2f x x =. 17.求正弦交流电sin 0i I ωt =经过半波整流后得到电流00sin 0.I ωt t ωi t ωωπ⎧≤≤⎪=⎨π2π⎪≤≤⎩,,, 的平均值和有效值.18.已知电压3sin2()u t t =,求(1)()u t 在02π⎡⎤⎢⎥⎣⎦,上的平均值; (2)电压的均方根值.19.设某企业固定成本为50,边际成本和边际收入分别为2()14111,()1002C x x x R x x ''=-+=-.试求最大利润.20.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为2()C x '=(万元/百台),边际收入为72()R x x '=-(万元/百台)):(1)求生产量为多少时总利润最大?(2)在总利润最大的基础上再生产100台,总利润减少多少?21.某企业投资800万元,年利率为5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期.22.某父母打算连续存钱为孩子攒学费,设银行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第_节第五章定积今的概念及住质
一、定积分问题举例
二.定积分的定义
三、定积分的性质
一、定积分问题举例
矩形面积=ah
梯形面积=—(6J + b)
1.曲边梯形的面积
设曲边梯形是由连续曲线尹=/(刃(/(X)> 0)及X轴,以及两直线x = a,x = b 所围成,求其面积A.
a
h
a
h
y =/U)
A = ?
IT
4
n
A= limVAA;
—()台
/]
=Hm£/(多)M K) /.]
7
根据定积分的定义
曲边梯形的面积等于曲边的纵坐标.f(x)在其底边所占的区间S 上]上的定积分,即
A =『/(兀)dx
变速直线运动的物体所走过的路程等于速度函数v(Z)在区间厉,7^]上的定积分,即
S =『叩)力
注:定积分是一种和式的极限,是一个数值。

不定积分表示全体原函数。

11
定积分的几何意义;
/(x) > 0, f (x)dx = A曲边扌弟形面积
J a
f(x) < 0, f (X)dx - - A曲边梯形面积的负值
J a
y 角
人2
h X ^4
4
a
12
可积的充分条件:
定理1 •函数/(X)在[口0]上连续=/(x)在|6方I可积.
定理2・函数/3)在|%|上有界,且只有有限个间斷点=>/(X)在|a,b|可积. (证明略)
例1・利用定义计算定积分£*2 & 解:将[0,11 ZZ等分,分点为£ =和0 = 0,1,…/)
取£ =£ 馅W 0 = 12…,)
贝U /(即心产殆*
n'
H 1 " c 1 I
孕©)0〉當〒・6“(心)(2小)
1 川
=lim 一(1 +一)(2
+—)
(5 n n
3
14
第_节第五章定积今的概念及住质
一、定积分问题举例
二.定积分的定义
三、定积分的性质
一、定积分问题举例
矩形面积=ah
梯形面积=—(6J + b)
1.曲边梯形的面积
设曲边梯形是由连续曲线尹=/(刃(/(X)> 0)及X轴,以及两直线x = a,x = b 所围成,求其面积A.
a
h
a
h
y =/U)
A = ?
IT
4
n
A= limVAA;
—()台
/]
=Hm£/(多)M K) /.]
7
根据定积分的定义
曲边梯形的面积等于曲边的纵坐标.f(x)在其底边所占的区间S 上]上的定积分,即
A =『/(兀)dx
变速直线运动的物体所走过的路程等于速度函数v(Z)在区间厉,7^]上的定积分,即
S =『叩)力
注:定积分是一种和式的极限,是一个数值。

不定积分表示全体原函数。

11
定积分的几何意义;
/(x) > 0, f (x)dx = A曲边扌弟形面积
J a
f(x) < 0, f (X)dx - - A曲边梯形面积的负值
J a
y 角
人2
h X ^4
4
a
12
可积的充分条件:
定理1 •函数/(X)在[口0]上连续=/(x)在|6方I可积.
定理2・函数/3)在|%|上有界,且只有有限个间斷点=>/(X)在|a,b|可积. (证明略)
例1・利用定义计算定积分£*2 & 解:将[0,11 ZZ等分,分点为£ =和0 = 0,1,…/)
取£ =£ 馅W 0 = 12…,)
贝U /(即心产殆*
n'
H 1 " c 1 I
孕©)0〉當〒・6“(心)(2小)
1 川
=lim 一(1 +一)(2
+—)
(5 n n
3
14。

相关文档
最新文档