流体力学第八章气体的一元流动
流体动力学中的高速气体流动

流体动力学中的高速气体流动1. 引言流体动力学是研究流体的力学性质和运动规律的科学领域。
在工程领域中,流体动力学被广泛应用于高速气体流动的研究。
高速气体流动是指在常温、常压下,气体在较高速度下的流动现象。
高速气体流动具有复杂的物理特性和运动规律,对于工程设计和研究具有重要意义。
本文将介绍在流体动力学中研究高速气体流动的基本原理、数值模拟方法和实验技术等内容。
2. 高速气体流动的基本原理2.1 高速气体流动的特点在高速气体流动中,气体的运动速度远超过声速,压力、温度和密度等物理量的分布变得非常复杂。
高速气体流动具有以下特点:•高速气体流动中,气体的压力和温度分布受到湍流和激波等非定常现象的影响,流动场呈现出不稳定性和不可逆性;•高速气体流动会引起气体的压缩和加热,从而导致压力和温度的非均匀性;•高速气体流动中,气体的速度梯度大,会导致产生剧烈的湍流和分离现象。
2.2 高速气体流动的数学模型研究高速气体流动时,可以采用Navier-Stokes方程组作为基本数学模型。
Navier-Stokes方程组描述了气体在空间中的流动性质和动力学规律。
对于高速气体流动,需要考虑以下一些额外的物理过程:•气体的物理性质随着温度的变化而变化,需要采用物性关系来描述气体的状态方程;•高速气体流动中,湍流的发生和发展对于流动场的影响非常显著,需要考虑湍流模型的引入;•高速气体流动会产生激波和压缩波等非定常现象,需要考虑定常化条件或采用非定常模拟方法。
2.3 高速气体流动的基本参数在研究高速气体流动时,需要考虑一些基本的参数来描述流动的特性和性质:•马赫数(Mach number):表示气体流速与声速之比,是衡量流动速度的重要参数;•静温(static temperature):指气体在流动前、流动中的温度,是影响气体性质和压力分布的重要因素;•静压(static pressure):表示气体在流动前、流动中的压力,是衡量气体压力分布的重要参数;•总压(stagnation pressure):表示气体在流动中的压力,即气体受到压缩和加热后的压力。
工程流体力学课件-气体一维高速流动

由于气体一维流动中,气体参数 不随位置变化,因此流动是线性 的,可以应用一维流动方程进行 描述。
气体一维流动的分类
等熵流动
气体在流动过程中,熵值保持不变的 流动。等熵流动中,气体压力和密度 随速度增加而减小。
等温流动
气体在流动过程中,温度保持不变的 流动。等温流动中,气体压力和密度 随速度增加而增加。
火箭发动机喷管中的气体一维流动特性研究
总结词
火箭发动机喷管中的气体一维流动特性研究对于喷管 设计和火箭性能优化至关重要。
详细描述
火箭发动机喷管中的气体流动具有极高的速度和压力变 化,直接模拟三维流场非常困难且计算量大。因此,采 用一维流动模型进行研究和分析是常用的方法。一维流 动模型可以模拟喷管中气体的流动、加速和膨胀过程, 分析喷管的性能和特性。通过研究喷管中气体的流动特 性,可以优化喷管设计,提高火箭发动机的推力和效率 ,为火箭设计和发射提供重要的理论支持和技术保障。
动量守恒方程
表示动量在流动过程中的 变化,即动量在流场中不 增加也不减少。
能量守恒方程
表示能量在流动过程中的 变化,即能量在流场中不 增加也不减少。
初始条件和边界条件
初始条件
表示流动开始时流场中各物理量的值 。
边界条件
表示流场边界上各物理量的值或其变 化规律。
控制方程的离散化
有限差分法
将控制方程中的偏导数用差分近似代替 ,将连续的物理量离散为离散的数值。
有限差分法的优点是简单直观,易于编程实现,适用于各种类型的偏微分方程,特别是对波动问题和 稳定性问题有较好的处理能力。
有限元法
有限元法是一种将连续的物理量离散化为有限个单元,并在 每个单元上设置节点,通过节点上的等效源代替单元内的源 ,从而将偏微分方程离散化为线性方程组的方法。这种方法 在气体一维流动数值模拟中也有应用。
§8-2滞止参数、声速、马赫数16015

三、气体动力学函数
气体动力学函数:我们在应 用气体动力学的知识去分 析、研究、计算有关工程 上的问题时,在一些公式 中其速度系数λ往往成几 种常见的组合形式出现, 叫做气体动力学函数。
每个函数用一个符号代表。
把各函数随速度系数变化的 数值计算出来列成数值表, 运用这种函数及其数值表 就可将公式大大简化,而 且使计算工作变得十分简 便。
(c) t3=t+dt
u·dt u·dt
p+dp
ρ+duρ △M c
(c-u)·t (c-u)·dt
二、声速、马赫数和速度系数
2
滞 止
式在中绝:热无摩擦的气流中,各段 面i的能0反cc滞全量0映止部。了k参能断kRR气T数量面T0流是,滞包kp不止kp0含p则变参00热反的数能映,可在机根T0内、械据
一、滞止参数
1 () T 1 k 1 2
T0
k 1
三种 常用 的气 体动
()
p
(1
k
1
2
)
k k 1
p0 2 k 1
力学
函数
4 ()
(1
k
1
2
)
1 k 1
0
k 1
由绝热过程方程式有:
p0 p
0k k
代将将入式Ccp2 pkk0k
pR 1 (1
代k 入1代MT入02)kkTk1+得2vC2:p 得:
二、声速、马赫数和速度系数
【例8-2】气流的速度为 800m/s,温度为530℃, 等熵指数k=1.25,气体 常数R=322.8J/(kg·K)。 试计算当地音速与马赫 数。
§8-1一元稳定流动基本方程16011

工程流体力学多媒体课件第七章 非牛顿流体运动规律 与应用石油与化学工程系 孟士杰引例大家知道,空气和水是我们生活中最为常见的流体。
然而同属于流体的空气和水它们在运动时有何差异?具 体而言,气体的运动与液体相比有何不同?其遵循的规 律是什么?搞清这些问题有助于解决天然气在生产、加 工、储存与输送过程中所遇到的各种实际问题。
对气体而言,具有明显的可压缩性,即气体在流动 时密度为变量。
也就是说,气体运动是在考虑压缩性的 条件下,研究气体流动的基本规律以及气流与物体之间 相互作用的问题。
正是由于气体本身具有这些性质,从 而使气体流动的规律与流体力学给出的不可压缩流动的 理论存在明显的差异。
主要内容第八章 气体动力学基础与应用§8-1一元稳定流动基本方程 §8-2滞止参数、声速、马赫数 §8-3气体流动的计算§8-1一元稳定流动基本方程主要内容动量 气体状态 能量方程 连续性 方程式 方程式 方程§8-1一元稳定流动基本方程一元稳定流动:是指垂直 于流动方向的各截面上, 流动参数(如速度、压力 、密度和温度等)都均匀 一致且不随时间变化的流 动,也就是说流动参数只 是一个空间坐标的函数。
气体在实际管道中的流动,由 于气体与固体壁面间的摩擦和 传热作用,气体的诸流动参数 在每个截面上都是不均匀的, 不是真正的一元流动。
但在工 程上,对于缓变流问题,可假 定用各截面物理参数的平均值 来代替各截面的参数,近似地 当作一元流动问题来处理。
一、气体状态方程式理想 气体状态方程 微分方程dp d dT p = RT p T式中: 上式表明理想气体在任一平衡 R——气体常数,J/(kg· K)。
对空气 状态时,压力、密度、温度三者之 R=287.06J/(kg· K); 间的变化关系。
若已知其中任意两 p——压力,Pa; 个参数,便可求得第三个参数。
8流体力学-第八章 气体一维定常流动

M数很小,说明单位质量气体的动能相对于内能而言很小, 速度的变化不会引起气体温度的显著变化 ,对不可压流体来 说,不仅可以认为密度是常值而且温度T也是常值。
流动参数增加为四个:p、ρ、T、和u,
已经有了三个基本方程,它们是:状态方程、连续方程和理想 流的动量方程(即欧拉方程)。
2021/3/31
19
规
律
26
总结
临界流速达到当地声速cf ,cr kpcr / cr
喷管 dcf>0
Ma<1 dA<0 渐缩
Ma=1 dA=0 临界截面
Ma>1 dA>0 渐扩
Ma<1→Ma>1 dA<0→dA>0 缩放(拉伐尔)
dc f d cf
Ma<1
dc f d cf
dc f d cf
dc f d cf
(c)
在的垂直平面的下游半空间(成为扰动
B
2 3
区)内传播,永远不可能传播到上游半
4
空间(成为寂静区)。
u+c0=2c0 →
3c
2021/3/31
22
2
4
二、亚、超声速流场中小扰动的传播特性
气流A超马声赫锥速流动 Ma>1
vc
vc
由的图扰可动o 见波,不2由 仅c 于 不3c能u>向c0上,游相传对播气,流反传而播被
2)对于气体等可压流,流速的变化取决于截面和密度的综合 变化。超音速时比体积的增加要大于流速的增大,因此,只 有增大通流面积才能保证通过一定不变的质量流量。
一、声速和马赫数
小扰动在弹性介质中的传播速度为声速,气体经历小扰动而压 缩及恢复过程并无能量损耗,作定熵过程处理,对理想气体:
流体动力学基础工程流体力学闻建龙

z p p dy p p dz
y 2
z 2
y
x
第一节 理想流体的运动微分方程
x方向
p
p x
dx 2
dydz
p
p x
dx 2
Hale Waihona Puke dydzy方向p
p y
dy 2
dzdx
p
p y
dy 2
dzdx
z方向
p
p z
dz 2
dxdy
p
p z
dz 2
dxdy
p
p z
dz 2
p
p
根据牛顿第二定律建立欧拉运动微分程。
在运动的理想流体中,取一微元六面体,如图示。
理想流体不存在粘性,运动时 不产生切应力,只有正应力。
各方向所受压力为
1. 表面力 理想流体中没有切应力
p
p z
dz 2
p
p
dy
y 2
p p dx
x 2 dz A
p p dx x 2
dy dx
(摩擦力),作用在微元体 上的表面力只有重直指向作 用面的压力。
(2)沿同一微元流束(流线)积分。 因定常流动,流线与迹线重合,即
dx dt
vx ,
dy dt
vy,
dz dt
vz
(3)质量力只有重力。即
fx 0, f y 0, fz g
第二节 伯努利方程
将欧拉运动微分方程各式分别乘以同一流线上的微元线段矢 量ds的投影dx、dy、dz,然后相加得
fx
z方向
p
p z
dz 2
dxdy
p
p z
dz 2
dxdy
工程流体力学原理介绍

如果孔口直径d远小于管道直径D,则称为小孔口,(d/D)4≈0 于是从上式可得小孔口的出流速度以及所有的孔口出流系 数根据:孔口出流射入大气后即成为平抛运动,通过分析这 种运动规律可得与雷诺数有关的各种出流系数曲线图
流体力学
大孔口出流常常用于孔板流量计中,小孔口出流常常用于 小孔阻尼器或小空节流中; 孔板、喷嘴和文丘里管流量计原理:静压能转变成动能, 流量大小表现为压力降的大小。当d并非远小于D时,
流体力学
局部阻力:管路的功用是输送流体,为了保证流体输送 中可能遇到的转向、调节、加速、升压、过滤、测量 等需要,在管路上必须要装管路附件。例如常见的弯 头、三通、检测表、变径段、进出口、过滤器、溢流 阀、节流阀、换向阀等。
流体力学
经过这些装置时,流体运动受到扰乱,必然产生压强(或水 头、能量)损失,这种在管路局部范围内产生损失的原因 统称为局部阻力。 局部水头损失:hf=ξv2/2g ξ为局部阻力系数
流体力学
雷诺通过实验测定得知: 当Re>13800时,管中流动状态是紊流; Re<2320时,管中流动状态是层流; 2320<Re<13800时,层流紊流的可能性都存在,不过紊流 的情况居多。因为雷诺数较高时层流结构极不稳定,(实验 表明)遇有外界振动干扰就容易变为紊流。
流体力学
管路计算的基础知识 流体在管路中所受的阻力包括沿程阻力和局部阻力 沿程阻力:在等径管路中,由于流体与管壁以及流体本身的 内部摩擦,使得流体能量沿流动方向逐渐降低,这种引起能 量损失的原因叫作沿程阻力。用压强损失、水头损失、或 功率损失三种形式表示。 压强损失:∆p=32 µ lv/d2 水头损失:hf=32 עlv/gd2=λlv2/2gd 功率损失:N=128 µlQ2/πd4
工程流体力学第八章

k p2 k 1 V2 2 RT0 [1 ( ) ] k 1 p0
P1,T1 V1=0
k
环境压强,P3 2 2
s
p3 p* (3) 超临界 p0 p0
p2=p*≠p3,Ma2=1, G=Gmax,气体在喷嘴出口未完全膨胀 壅塞现象 :对于一给定的收缩喷嘴,当环境压力p3下
一、声速与马赫数 1 声速
声速(a)是小扰动压力波在静止介质中的传播速
度,反映了介质本身可压缩性的大小。
dF dV B p1=p+dp V1=dv 1=+d dV
dF dV A
p,,V=0
A
B
若活塞间流体不可压:扰动 瞬时传递到B,声速a→∞
若活塞间流体可压:
dF A p1,1 V=dV p, V=0 B 扰动后 扰动前 x
降到临界压力时,它的流量就达到最大。继续减小p3不
再影响喷嘴内的流动,流量也不改变。
例8-1: 大容器内的空气通过收缩喷嘴流入绝对压强为 50kpa的环境中,已知容器内的温度是1500C,喷嘴出口 直径为2cm,在喷嘴出口气流速度达到声速,容器罐内 的压强至少为多少?并计算相应的质量流量。
ቤተ መጻሕፍቲ ባይዱP3 2 2
3 Ma=1. (扰动源以音速向左运动)
马赫线
扰动不可 到达区/寂 静区
t=0
(
c ) Ma=1
扰动中心
即:扰动源运动马赫数为1时,扰动不能传播到扰动源 的前方,在其左侧形成一个寂静区。
当扰动源静止,来流以音速自左向右运动:
马赫线 V=a t=0
扰动不可到达 区/寂静区
p1=p+dp 1=+d V1=dv
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 气体的一元流动一、 学习的目的和任务1.掌握可压缩气体的伯努利方程 2.理解声速和马赫数这两个概念3.掌握一元气体的流动特性,能分析流速、流通面积、压强和马赫数等参数的相互关系 4.掌握气体在两种不同的热力管道(等温过程和绝热过程)的流动特性。
二、 重点、难点1.重点: 声速、马赫数、可压气体的伯努利方程、等温管道流动、绝热管道流动 2.难点: 声速的导出、管道流动参数的计算由于气体的可压缩性很大,尤其是在高速流动的过程中,不但压强会变化,密度也会显著地变化。
这和前面研究液体的章节中,视密度为常数有很大的不同。
气体动力学研究又称可压缩流体动力学,研究可压缩性流体的运动规律及其应用。
其在航天航空中有广泛的应用,随着研究技术的日益成熟,气体动力学在其它领域也有相应的应用。
本章将简要介绍气体的一元流动。
8.1 气体的伯努利方程在气体流动速度不太快的情况下,其压力变化不大,则气体各点的密度变化也不大,因此可把其密度视为常数,即把气体看成是不可压缩流体。
这和第四章研究理想不可压缩流体相似,所以理想流体伯努利方程完全适用,即2211221222p u p u z z g g g gρρ++=++ (8.1-1)上式中12,p p ——流体气体两点的压强;12,u u ——流动气体两点的平均流速在气体动力学中,常以g ρ乘以上式(8.1-1)后气体伯努利方程的各项表示称压强的形式,即2212112222u u p gz p gz ρρρρ++=++(8.1-2)由于气体的密度一般都很小,在大多数情况下1gz ρ和2gz ρ很相近,故上式(8.1-2)就可以表示为22121222u u p p ρρ+=+(8.1-3)前面已经提到,气体压缩性很大,在流动速度较快时,气体各点压强和密度都有很大的变化,式(8.1-3)就不能适用了。
必须综合考虑热力学等知识,重新导出可压缩流体的伯努利方程,推导如下。
如图8-1所示,设一维稳定流动的气体,在上面任取一段微小长度ds ,两边气流断面1、2的断面面积、流速、压强、密度和温度分别为A 、u 、p 、ρ、T ;A dA +、u du +、p dp +、d ρρ+、T dT +。
取流段1-2作为自由体,在时间dt 内,这段自由体所作的功为()()()W pAudt p dp A dA u du dt =-+++(8.1-4)根据恒流源的连续性方程式,有uA C ρ=(常数),所以上式(8.1-4)可写成()pp dp p p dpW Cdt Cdt Cdt d d ρρρρρρ++=-=-++由于在微元内,可认为ρ和d ρρ+很相近,则上式可化简为()p p dpdpW Cdt Cdt ρρ--==-(8.1-5)又对1-2自由体进行动能分析,其动能变化量为图8-1ds 微元流段222111()22E m u du m u ∆=+- (8.1-6)同样地根据恒流源的连续性方程式uA C ρ=(常数),故有12m m uA C ρ=== 上式就可以写成1(2)2E Cdt udu Cudtdu ∆==(8.1-7)根据功能原理有W E =∆,化简得0dpudu ρ+=(8.1-8)该式就是一元气体恒定流的运动微分方程对上式(8.1-8)进行积分,就得一元气体恒定流的能量方程22dpu C ρ+=⎰(8.1-9)式中C 为常数。
上式表明了气体的密度不是常数,而是压强(和温度)的函数,气体流动密度的变化和热力学过程有关,对上式的研究取要用到热力学的知识。
下面简要介绍工程中常见的等温流动和绝热流动的方程。
(1) 等温过程等温过程是保持温度不变的热力学过程。
因pRT ρ=,其中T =定值,则有pC ρ=(常数),代入式(8.1-9)并积分,得2ln 2pu p C ρ+=(8.1-10)(2) 绝热过程绝热过程是指与外界没有热交换的热力学过程。
可逆、绝热过程称为等熵过程。
绝热过程方程pC γρ=(常数),代入式(8.1-9)并积分,得212pu C γγρ+=-(8.1-11)式中γ为绝热指数。
8.2声速和马赫数8.2.1声速微小扰动波在介质中的传播速度称为声速。
如弹拨琴弦,使弦振动了空气,其压强和密度都发生了微弱的变化,并以波的形式在介质中传播。
由于人耳能接收到的振动频率有限,声速并不限于人耳能接收的声音传播速度。
凡在介质中的扰动传播速度都称为声速。
如图8-2所示,截面面积为A 的活塞在充满静止空气的等径长管内运动,0u =时(0t =),管内压强为p ,空气密度为ρ,温度为T ;若以微小速度du 向右推进时间dt ,压缩空气后,压强、密度和温度分别变成了p dp +,d ρρ+和T dT +。
活塞从右移动了dudt ,活塞微小扰动产生的声速传播了cdt ,c 就为声速。
取上面的控制体,列连续性方程得()()cdtA d c du dtA ρρρ=+-(8.2-1)化简并略去高阶无穷小项,得du cd ρρ=(8.2-2)又由动量定理,得()[()]pA p dp A cA c du c ρ-+=--(8.2-3)同样化简并略去高阶无穷小项,得dp cdu ρ=(8.2-4)联立式(8.2-2)和式(8.2-4),得c =(8.2-5)上式就为声速方程式的微分形式。
密度对压强的变化率d dp ρ反映了流体的压缩性,d dp ρ越大,则dpd ρ越小,声速c 也越小;反则声速c 越大。
由此可知,声速c 反映了流体的可压缩性,即声速c 越小,流体越容易压缩;声速c 越大,流体也越不易压缩。
由于微小扰动波的传播速度很快,其引起的温度变化也很微弱,在研究微小扰动时,可认为其压缩或膨胀过程是绝热且可逆的,这就是热力学中的等熵过程。
则有绝热方程为pC γρ=(常数)(8.2-6)式中γ为绝热指数。
可写为p C γρ=(8.2-7)上式两边对ρ求导,得11dp p p C d γγγγργργρρρ--=== (8.2-8)又由理想气体状态方程g pR T ρ=和上式(8.2-8)、式(8.2-5)联立,得c ==(8.2-9)综合上述分析,有(1) 由式(8.2-5)得,密度对压强的变化率d dp ρ反映了流体的压缩性,d dp ρ越大,则dpd ρ越小,声速c 也越小;反则声速c 越大。
由此可知,声速c 反映了流体的可压缩性,即声速c 越小,流体越容易压缩;声速c 越大,流体也越不易压缩。
(2)特别的,对于空气来说, 1.4,287.1/()g R J kg K γ==⋅,则空气中的声速为/c s =(8.2-10)(3)从式(8.2-9)可看出,声速c 不但和绝热指数γ有关,也和气体的常数g R 和热力学温度T 有关。
所以不同气体声速一般不同,相同气体在不同热力学温度下的声速也不同。
8.2.2 马赫(Ma )数为了研究的方便,引入气体流动的当地速度u 与同地介质中声速c 的比值,称为马赫数,以符号Ma 表示uMa c=(8.2-10)马赫数是气体动力学中最采用的参数之一,它也反映了气体在流动时可压缩的程度。
马赫数越大,表示气体可压缩的程度越大,为可压缩流体;马赫数越小,表示气体可压缩性小,当达到一定程度时,可近似看作不可压缩流体。
根据马赫数Ma 的取值,可分为(1)u c =,即1Ma =时,称为声速流动; (2)u c >,即1Ma >时,称为超声速流动; (3)u c <,即1Ma <时,称为亚声速流动。
下面讨论微小扰动波的传播规律,可分为四种情况:(1) 如图8-3()a 所示,0u =,扰动源静止。
扰动波将以声速向四周对称传播,波面为一同心球面,不限时间,扰动波布满整个空间。
(2) 如图8-3()b 所示,u c <,扰动源以亚声速向右移动。
扰动波以声速向外传播,由于扰动源移动速度小于声速,只要时间足够,扰动波也能布满整个空间。
(3) 如图8-3()c 所示,u c =,扰动源以声速向右移动。
由于扰动源移动速度等于声速,所以扰动波只能传播到扰动源的下游半平面。
(4) 如图8-3()d 所示,u c >,扰动源以超声速向右移动。
由于扰动源移动速度大于声速,扰动波的球形波面被整个地带向扰动源的下游,所以扰动波只能传播到扰动源的下游区域,其区域为一个以扰动源为顶点的圆锥面内。
称该圆锥为马赫锥。
锥的半顶角θ称图8-3 微小扰动传播规律图为马赫角,从图中可以看出1sin c u Maθ==(8.2-11)上面分析了扰动源分别在静止以及亚声速、声速和超声速从右移动时,微小扰动波的传播规律。
由此可知,01Ma ≤<,即在振源静止或以亚声速移动的情况下,扰动波能传播到整个空间;而1Ma ≥,即在振源以声速或超声速移动时,扰动波只能传播到半空间或一圆锥面内。
8.3 一元气流的流动特性在引入了声速和马赫数的概念后,对于可压缩气体的流动有一些自己的特性。
这里我们介绍两个重要特性。
8.3.1气体流速与密度的关系由第一节的式(8.1-7)和第两节的式(8.2-5),得2dpdp d d udu c d ρρρρρρ=-=-=-(8.3-1)将马赫数uMa c=代入上式,有 2d du Ma uρρ=- (8.3-2)上式表明了密度相对变化量和速度相对变化量之间的关系。
从该式可以看出,等式中有个负号,表示两者的相对变化量是相反的。
即加速的气流,密度会减小,从而使压强降低、气体膨胀;反则,减速气流,密度增大,导致压强增大、气体压缩。
马赫数Ma 为两者相对变化量的系数。
因此,当1Ma >时,即超声速流动,密度的相对变化量大于速度的相对变化量;当1Ma <时,即亚声速流动,密度的相对变化量小于速度的相对变化量。
以下再分析流速与断面积的关系8.3.2气体流速与流道断面积的关系对一元气流得连续性方程uA C ρ=(常数)两边取对数,得ln()ln ln ln ln uA u A C C ρρ'=++==对上式微分,得0d du dA u A ρρ++= 或d du dAu Aρρ=--(8.3-3)将式(8.2-13)代入上式,得2(1)dA du Ma A u=- (8.3-4)从上式我们可以看到,1Ma =是一个临界点。
下面讨论其在亚声速和超声速流动下的情况。
(1) 亚声速流动时,即1Ma <。
面积相对变化量和速度相对变化量反向发展,说明了气体在亚声速加速流动时,过流断面逐渐收缩;减速流动时,过流断面积逐渐扩大。
(2) 超声速流动时,即1Ma >。
这种情况正好和亚声速流动相反,沿流线加速时,过流断面逐渐扩大;减速流动时,过流断面逐渐收缩。
上式就表明,亚声速和超声速流动在加速或减速流动的情况截然相反。