太原理工大学11级硕士研究生数值分析期末考试题

合集下载

数值分析习题集及答案[1]-推荐下载

数值分析习题集及答案[1]-推荐下载

5. 计算球体积要使相对误差限为 1%,问度量半径 R 时允许的相对误差限是多少?
6. 设Y0 28, 按递推公式
Yn
Yn1
1 100
计算到 Y100 .若取 783 ≈27.982(五位有效数字),试问计算 Y100 将有多大误差?
7. 求方程 x2 56x 1 0 的两个根,使它至少具有四位有效数字( 783 ≈27.982).
数值分析习题集 (适合课程《数值方法 A》和《数值方法 B》)
长沙理工大学
1. 设 x>0,x 的相对误差为 δ,求 ln x 的误差.
2. 设 x 的相对误差为 2%,求 xn 的相对误差.
第一章 绪 论
3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出
它们是几位有效数字:
max
x0 x x3
0,1,, n);
l2 (x)
8. 在 4 x 4 上给出 f (x) ex 的等距节点函数表,若用二次插值求 ex 的近似值,要使截
断误差不超过106 ,问使用函数表的步长 h 应取多少?
9. 若 yn 2n ,求 4 yn 及 4 yn .
10. 如果 f (x) 是 m 次多项式,记 f (x) f (x h) f (x) ,证明 f (x) 的 k 阶差分
5.
设 xk

x0

kh
,k=0,1,2,3,求
6. 设 x j 为互异节点(j=0,1,…,n),求证:
7.
i) j0
n
x
k j
l
j
(x)

xk
(k
n
(x j x)k l j (x) k 1, 2,, n).

最新太原理工大学研究生期末考试组合数学答案

最新太原理工大学研究生期末考试组合数学答案

最新太原理⼯⼤学研究⽣期末考试组合数学答案1. 填空(本题共20分,共10空,每空2分)1) 三只⽩⾊棋⼦和两只红⾊棋⼦摆放在5*5的棋盘上,要求每⾏每列只放置⼀个棋⼦,则共有 1200 种不同的摆放⽅法。

答案:1200!525=?C 2) 在(5a 1-2a 2+3a 3)6的展开式中,a 12?a 2?a 33的系数是 -81000 。

答案:810003)2(5!3!1!2!632-=?-3) 有n 个不同的整数,从中取出两组来,要求第⼀组数⾥的最⼩数⼤于第⼆组的最⼤数,共有121+?-n n 种⽅案。

4) 六个引擎分列两排,要求引擎的点⽕的次序两排交错开来,试求从⼀特定引擎开始点⽕有 12 种⽅案。

答案:12121213=??C C C5) 从1到600整数中既不能被3整除也不能被5整除的整数有 320 个。

6) 要举办⼀场晚会,共10个节⽬,其中6个演唱节⽬,4个舞蹈节⽬。

现要编排节⽬单,要求任意两个舞蹈节⽬之间⾄少要安排⼀个演唱节⽬,则共可以写出 604800 种不同的节⽬单。

答案:604800!4!637=??C 7) 把n 男n ⼥排成⼀只男⼥相间的队伍,共有2)!(2n ? 种排列⽅法;若围成⼀圆桌坐下,⼜有)2/()!(22n n ? 种⽅法。

8) n 个变量的布尔函数共有nn2 个互不相同的。

9) 把r 个相异物体放⼊n 个不同的盒⼦⾥,每个盒⼦允许放任意个物体,⽽且要考虑放⼊同⼀盒中的物体的次序,这种分配⽅案数⽬为),1(r r n P -+ 。

答案:),1()!1()!1()1()2)(1(r r n P n r n r n n n n -+=--+=-+++2. (本题10分)核反应堆中有α和β两种粒⼦,每秒钟内⼀个α粒⼦分裂成三个β粒⼦,⽽⼀个β粒⼦分裂成⼀个α粒⼦和两个β粒⼦。

若在时刻t=0时,反应堆中只有⼀个α粒⼦,问t=100秒时反应堆中将有多少个α粒⼦?多少个β粒⼦?解: 设t 秒钟的α粒⼦数位a t ,β粒⼦数为b t , 则==+==---0,12300111b a b a b b a t t t t t)(3,03210211*==+==---b b b b b b a t t t t t(*)式的特征⽅程为0322=--x x ,解得3,121=-=r r ,即tt t A A b 3)1(21?+-?=代⼊初始值3,010==b b ,解得43,4321=-=A A tt t b 343)1(43?+-?-=∴ 111343)1(43---?+-?-==t t t t b a)13(43),13(4310010099100-=+=∴b a3. (本题共10分,共2⼩题,每⼩题5分)①设1212n a a a n n P P P =,12,,n P P P 是互不相同的素数,设求能除尽n 的正整数数⽬为多少?解:每个能整除尽数n 的正整数都可以选取每个素数P i 从0到a i ,即每个素数有a i +1种选择,所以能整除n 的正整数数⽬为)1()1)(1(21+++n a a a 个。

数值分析考试卷及详细答案解答汇总

数值分析考试卷及详细答案解答汇总

姓名 __________ 班级 ___________ 学号 _____________一、选择题i.F (2,5,-3,4)表示多少个机器数(C ).A 64B 129C 257D 256 2. 以下误差公式不正确的是(D )A ・ £(迎 *一七 *)« 5(Xj*)+£(£ *) c ,£(“*•£ *)«|^2 *k (-'l*) + |时住2 *)3. 设° =(、任_1)6,从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出°较好的近似值? (D )A ———B 99-70V2C (3-2V2)3D —— (V2 +1)6 (3 + 204. 一个30阶线性方程组,若用Crammer 法则来求解,则有多少次乘法?(A ) A31X29X30! B 30X30X30! C31X30X31! D 31X29X29!5. 用一把有亳米的刻度的米尺来测量桌子的长度,读出的长度1235mm,桌子的精确长度 记为(D ) A 1235mm B 1235-0.5mm C 1235+0.5nun D 1235±0.5mm二、填空1. 构造数值算法的基本思想是 近似替代、离散化、递推化 。

2. 十进制123.3转换成二进制为1111011.0而1。

3. 二进制110010.1001转换成十进制为 50.5625 。

4. 二进制o.ioi 转换成十进制为-o75.已知近似数X *有两位有效数字,则其相对误差限 5%。

6.1112=0.69314718...,精确到 10一’的近似值是 0.693。

* *7. x = ;r = 3.1415926・・・,则“ =3.1416 , =3.141的有效数位分别为5 和 3 __________ o8. 设卅=2.001,严=-0.8030是由精确值x 和y 经四舍五入得到的近似值,则兀* +y *的误差限____________________ o9.设x = 2.3149541•…,取5位有效数字,则所得的近似值卅二2.3150 。

(完整word版)数值分析试题(word文档良心出品)

(完整word版)数值分析试题(word文档良心出品)

一、填空题(每空2分,共20分)1、解非线性方程阿西吧的f(x)=0的牛顿迭代法具有_______收敛2、迭代过程(k=1,2,…)收敛的充要条件是___3、已知数 e=2.718281828...,取阿西吧的近似值 x=2.7182,那麽x具有的有效数字是___4、高斯--塞尔德迭代法解阿西吧的线性方程组的迭代格式中求阿西吧的______________5、通过四个互异节点的插值多项式p(x),只要满足_______,则p(x)是不超过二次的多项式6、对于n+1个节点的插值求积公式至少具有___次代数精度.7、插值型求积公式的求积系数之和___8、 ,为使A可分解为A=LL T, 其中L为对角线元素为正的下三角形,a的取值范围_9、若则矩阵A的谱半径(A)=___10、解常微分方程初值问题的梯形格式是___阶方法二、计算题(每小题15分,共60分)1、用列主元消去法解线性方程组2、已知y=f(x)的数据如下x 0 2 3f(x) 1 3 2求二次插值多项式及f(2.5)3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过。

4、欧拉预报--校正公式求解初值问题取步长k=0.1,计算y(0.1),y(0.2)的近似值,小数点后保留5位.三、证明题(20分每题 10分)1、明定积分近似计算的抛物线公式具有三次代数精度2、若,证明用梯形公式计算积分所得结果比准确值大,并说明这个结论的几何意义。

参考答案:一、填空题1、局部平方收敛2、< 13、 44、5、三阶均差为06、n7、b-a8、9、 1 10、二阶方法二、计算题1、2、3、≈1.25992 (精确到,即保留小数点后5位)4、y(0.2)≈0.01903三、证明题1、证明:当=1时,公式左边:公式右边:左边==右边当=x时左边:右边:左边==右边当时左边:右边:左边==右边当时左边:右边:左边==右边当时左边:右边:故具有三次代数精度A卷一、填空题(本大题共8小题,每小题3分,共9×3=27分)1、要使11的近似值的相对误差不超过0.1%,应取______________有效数字。

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。

答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。

答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。

答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。

答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。

解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。

拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。

2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B

2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B

2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B(总分:28.00,做题时间:90分钟)一、填空题(总题数:6,分数:12.00)1.填空题请完成下列各题,在各题的空处填入恰当的答案。

(分数:2.00)__________________________________________________________________________________________ 解析:2.设|x|>>1______(分数:2.00)__________________________________________________________________________________________正确答案:()解析:3.求积分∫ a b f(x)dx的两点Gauss公式为______(分数:2.00)__________________________________________________________________________________________正确答案:()解析:4.设∞ =______,‖A‖ 2 =______.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:5.给定f(x)=x 4,以0为三重节点,2为二重节点的f(x)的Hermite插值多项式为______.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:x 4)解析:6.己知差分格式r≤______时,该差分格式在L ∞范数下是稳定的.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:二、计算题(总题数:2,分数:4.00)7.给定方程lnx-x 2+4=0,分析该方程存在几个根,并用迭代法求此方程的最大根,精确至3位有效数字.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:令f(x)=lnx-x 2 +4,则f"(x)= -2x,当x= 时,f"(x)=0. 注意到f(0.01)=-0.6053<0,f(1)=3>0,f(3)=-3.9014<0,而当时,f"(x)>0,当时,f"(x)<0,所以方程f(x)=0有两个实根,分别在(0.01,1)和(1,3)内.方程的最大根必在(1,3)内,用Newton迭代格式取x 0 =2,计算得x 1 =2.1980,x 2 =2.1)解析:8.用列主元Gauss(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:求得x 1 =3,x 2 =1,x 3 =5.)解析:三、综合题(总题数:6,分数:12.00)9.设α,β表示求解方程组.Ax=b的Jacobi迭代法与Gauss-Seidel迭代法收敛的充分必要条件.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:Jacobi迭代格式的迭代矩阵特征方程为展开得500λ3—15αβλ=0或者λ(500λ2—15αβ)=0,解得λ=0或λ2 = 则Jacobi格式收敛的充要条件为|αβ|<Gauss-Seidel格式迭代矩阵的特征方程为展开得500λ3—15αβλ2 =0或者λ2(500λ-15αβ)=0,解得λ=0或λ则Gauss-Seidel格式收敛的充)解析:10.设x 0,x 1,x 2为互异节点,a,b,m为已知实数.试确定x 0,x 1,x 2的关系,使满足如下三个条件p(x 0 )=a, p"(x 1 )=m,p(x 2 )=b的二次多项式p(x)存在且唯一,并求出这个插值多项式p(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:由条件p(x 0 )=a,p(x 2 )=b确定一次多项式p 1 (x),有所以p(x)-P 1(x)=A(x—x 0 )(x—x 2 ),p"(x)=p" 1 (x)+A(x—x 0 +x—x 2 ),p"(x 1+A(2x 1 -x 0 -x 2) 解析:11.求y=|x|在[-1,1]上形如c 0 +c 1 x 2的最佳平方逼近多项式.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:取φ0 (x)=1,φ1 (x)=x 2,则(φ0,φ0)=∫ -11 =2,(φ0,φ1)=∫ -11 x 2)1 x 2,(φ1,φ1)=∫ -1解析:12.已知函数f(x)∈C 3 [0,3],试确定参数A,B,C,使下面的求积公式数精度尽可能高,并给出此时求积公式的截断误差表达式.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:当f(x)=1时左=∫ 03 1dx=3,右=A+B+C,当f(x)=x时左=∫ 03 xdx= ,右=B+2C 当f(x)=x 2时左=∫ 03 x 2 dx=9,右=B+4C.要使公式具有尽可能高的代数精度,则而当f(x)=x 3时,左=∫ 03 x 3)解析:13.给定常微分方程初值问题取正整数n,并记h=a/n,x i =a+ih,0≤i≤n.证明:用梯形公式求解该初值问题所得的数值解为且当h→0时,y n收敛于y(a).(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:梯形公式应用于方程有y i+1=y i+ (-y i—y i+1),即有所以i=1,2,….当h→0时,n→∞我们有而由方程知解析解y=e -x则y(a)=e -a,所以)解析:14.Ω={0<x<3,0<y<3).试用五点差分格式求u(1,1),u(1,2),u(2,1),u(2,2)的近似值.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:五点差分格式为根据要求,可取h= ,将(1,1),(2,1),(1,2),(2,2)处的差分格式列成方程组有或者解得u 11=15.8750,u 21=22.6250,u 12=15.8750,u 22 =22.6250.)解析:。

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。

解:(1)插值基函数分别为()()()()()()()()()()1200102121()1211126x x x x x x l x x x x x x x ----===--------()()()()()()()()()()021*******()1211122x x x x x x l x x x x x x x --+-===-+---+-()()()()()()()()()()0122021111()1121213x x x x x x l x x x x x x x --+-===-+--+-故所求二次拉格朗日插值多项式为()()()()()()()()()()()2202()11131201241162314121123537623k k k L x y l x x x x x x x x x x x x x ==⎡⎤=-⨯--+⨯-+-+⨯+-⎢⎥⎣⎦=---++-=+-∑(2)一阶均差、二阶均差分别为[]()()[]()()[][][]010*********011201202303,11204,41234,,52,,126f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----===----===---故所求Newton 二次插值多项式为()()[]()[]()()()()()20010012012,,,35311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-++++-=+-例2、 设2()32f x xx =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。

数值分析题库

数值分析题库

一. 单项选择题(每小题2分,共10分)1. 在下列四个数中,有一个数具有4位有效数字,且其绝对误差限为 51021-⨯,则该数是( ) A 0.001523 B 0.15230 C 0.01523 D 1.52300 2. 设方阵A 可逆,且其n 个特征值满足:n λλλ>≥> (21),则1-A 的主特征值是( )A11λ B nλ1 C1λ或n λ D 11λ或nλ13. 设有迭代公式→→+→+=fxB x k k )()1(。

若||B|| > 1,则该迭代公式( )A 必收敛B 必发散C 可能收敛也可能发散4. 常微分方程的数值方法,求出的结果是( )A 解函数B 近似解函数C 解函数值D 近似解函数值 5. 反幂法中构造向量序列时,要用到解线性方程组的( ) A 追赶法 B LU 分解法C 雅可比迭代法D 高斯—塞德尔迭代法二. 填空题(每小题4分,共20分)1. 设有方程组⎪⎩⎪⎨⎧=+-=+-=+02132432132132x x x x x x x x ,则可构造高斯—塞德尔迭代公式为⎪⎩⎪⎨⎧2. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111112101A ,则=∞A3. 设1)0(,2'2=+=y y x y ,则相应的显尤拉公式为=+1n y4. 设1)(+=ax x f ,2)(x x g =。

若要使)(x f 与)(x g 在[0,1]上正交,则a =5. 设T x )1,2,2(--=→,若有平面旋转阵P ,使P →x 的第3个分量为0,则P =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 三. 计算题(每小题10分,共50分)1. 求27的近似值。

若要求相对误差小于0.1%,问近似值应取几位有效数字?2. 设42)(x x x f -=,若在[-1,0]上构造其二次最佳均方逼近多项式,请写出相应的法方程。

3. 设有方程组⎪⎩⎪⎨⎧=++=++=-+1221122321321321x x x x x x x x x ,考察用雅可比迭代解此方程组的收敛性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11级(12/07/03)
一、基础题(40分)
(一)、单项选择(2×5=10分)
1、求解常微分方程的预估—校正法的局部截断误差为( )。

2、过
3
4
5、
(二)
1、是一日插值基函数在节点上的取值是______________。

2、设分段多项式,

是以0,2,3为节点的三次样条
函数。

则a =____________,b =____________, c =____________。

3、设,则关于节点,,的二阶向前差分为_________。

4、5个节点的牛顿—科特斯求积公式的代数精度为________,5个节点的求积公式最高代数精度为________。

5、设,则a的取值范围为________A可分解为A = LL T,且当L满足________,分解是唯一的。

6、设是切比雪夫正交多项式系,则的正交区间为________,它的权
7迭8。

1
2
(1)
(2)
3、用二步法求解一阶常微分方程初值问题

,问:如何选择、的值,才能使该方法的阶数尽可能高?写出此时的局部截断误差主项。

三、计算题(15×2=30分)
1、(1)设,,是区间[-1,1]上权函数为的最高项系数为1的正交多项式组,其中,,求。

(2)利用,,求函数在[-1,1]上的二次最佳平方逼近多项式。

2、已知求解方程组Ax = b的分量迭代格式:,
,,,;,,,
(1)试求出矩阵格式及迭代矩阵。

(2)证明当A为严格对角占优矩阵,时,该迭代格式收敛。

相关文档
最新文档