CMOS模拟集成电路设计第5章—电流镜
合集下载
第5章 电流镜

误差。
二 • 共源共栅电流镜
基本共源共栅电流镜
选择Vb使VX=VY, Iout即是IREF的精确复制! 即使VP变化, 因∆VY= ∆VP /(gm3r03), 故VX≈VY , Iout≈ IREF。注意, 这是 靠牺牲电压余度来获得的精度!
M0、M3选择合适的宽长比使 VGS0=VGS3,则VX=VY 。
虚框内电路对称,可用半电 路虚地概念
三 • 有源电流镜 有源负载差动对的小信号增益(2)
由KVL定理,得:
V
V
in
in
V = -g (- )r +g r =g V r
eq
m2
02 m1 01 m1(2) in 01(2)
2
2
由戴维南定理,显然: R = r +r = 2r eq 01 02 01(2)
较少的电压余度而采用较小的偏置电压时,这个问
题更严重。
例如,若Von1=200mV,VTH有50mV的误差就会使输出电流产生44%的误差。
如何产生精度、稳定性均较好的电流源?
一 • 基本电流镜
用基准来产生电流源
用相对较复杂的电路(有时需要外部的 调整)来产生一个稳定的基准电流IREF。
在模拟电路中,电流源的设计是基于对一个稳定的基准电流IREF的复制 ( IREF常由基 准电路(第11章)产生,这里不作讨论) ,从而得到众多的电流源 。现在我们关心 的是,如何产生一个基准电流的精确复制呢?
二 • 共源共栅电流镜
低压共源共栅电流镜的原理
上图中VA=VGS1-VDS2,若选取VDS2≈ VT , 则:
VB =
VA ≈ Von1(3), 于是:VXmin=Von4+Von3, 比基本共源共栅电流
二 • 共源共栅电流镜
基本共源共栅电流镜
选择Vb使VX=VY, Iout即是IREF的精确复制! 即使VP变化, 因∆VY= ∆VP /(gm3r03), 故VX≈VY , Iout≈ IREF。注意, 这是 靠牺牲电压余度来获得的精度!
M0、M3选择合适的宽长比使 VGS0=VGS3,则VX=VY 。
虚框内电路对称,可用半电 路虚地概念
三 • 有源电流镜 有源负载差动对的小信号增益(2)
由KVL定理,得:
V
V
in
in
V = -g (- )r +g r =g V r
eq
m2
02 m1 01 m1(2) in 01(2)
2
2
由戴维南定理,显然: R = r +r = 2r eq 01 02 01(2)
较少的电压余度而采用较小的偏置电压时,这个问
题更严重。
例如,若Von1=200mV,VTH有50mV的误差就会使输出电流产生44%的误差。
如何产生精度、稳定性均较好的电流源?
一 • 基本电流镜
用基准来产生电流源
用相对较复杂的电路(有时需要外部的 调整)来产生一个稳定的基准电流IREF。
在模拟电路中,电流源的设计是基于对一个稳定的基准电流IREF的复制 ( IREF常由基 准电路(第11章)产生,这里不作讨论) ,从而得到众多的电流源 。现在我们关心 的是,如何产生一个基准电流的精确复制呢?
二 • 共源共栅电流镜
低压共源共栅电流镜的原理
上图中VA=VGS1-VDS2,若选取VDS2≈ VT , 则:
VB =
VA ≈ Von1(3), 于是:VXmin=Von4+Von3, 比基本共源共栅电流
CMOS模拟集成电路设计第5章电流镜

精品文档 行的普通股股数× (已发行时间÷报告期时间) -当期回购的普通股股数× (已回购时间÷ 报告期时间) (4)实例:本公司未发行可转换公司债券、认股权证、股份期权等稀释性潜在普通股,所 以计算过程与结果同基本每股收益。
(1)概念 : 复利是一种计算利息的方法。按照这种方法,利息除了会根据本金计算外,新 得到的利息同样可以生息,因此俗称“利滚利” 、“驴打滚”或“利叠利”。只要计算利息的 周期越密,财富增长越快,而随着年期越长,复利效应亦会越为明显。 (2)计算公式:最简单的复利公式如下: FV=PV(1+i)^n
ROE=144000195.15 ÷(916171029.94+144000195.15 ÷2-45240490.4 ×8÷12) =15.03%
精品文档
=36.22%
(1)概念:一项投资在特定时间期内的年度增长率。 (2)计算公式:复合增长率( CAGR )=(现有价值 /基础价值 )^(1/ 年数 ) – 1,
总资产收益率 =净利润÷【(期初资产总额 +期末资产总额)÷ 2】×100%=14.08%
(1)概念:又称所有者权益报酬率或股东权益收益率,是企业一定时期内净利润与平均净 资产的比率。用来衡量企业所有者权益获得报酬的水平。 (2)计算公式: ROE = P/(E0 + NP÷2 + Ei×Mi÷M0 - Ej×Mj÷M0) .
其中,现有价值是指你要计算的某项指标本年度的数目; 基础价值是指你计算的年度 上一年的这项指标的数据,如你计算 2 年,则是计算上溯第 3 年的数值; ^是乘方的意思, 开方方法为在计算器上点 x^y 健,再点( 1/年数)的数值即可。
(3)实例:以本公司 2009 年净利润为基数,计算 2010 年和 2011 年净利润的复合增 长率,给出数据如下:
第五章 电流镜

CMOS模拟集成电路设计 第五章 电流镜
6
5.1 基本电流镜
观察MOS器件的电流公式 unCox W (VGS − VTH ) 2 I OUT ≈ 2 L 两个具有同样VGS的NMOS,如果管子尺寸相同,工艺偏差 不计(VTH相同),那么两个管子流过的电流就相同。从这一点 出发,我们考虑到法一: Av=GmRout 从右图计算Gm,由于X点的摆幅较小,可以认为X点 的变化对P点的影响很小,所以P点为虚地。那么
I out + g m1Vin / 2 = g m 2 ( −Vin / 2) ⇒| Gm |= g m1, 2
从右下图计算Rout。
IX = 2 2rO1, 2 VX VX + || rO 3 rO 4 + g1 m3 ) ⇒ Rout = rO 2
I OUT ≈ u nCox W R2 ( VDD − VTH ) 2,为了减小电流源消耗的电压余度 2 L R2 + R1 过驱动电压一般比较小100 ~ 400mV,若Vov = 200mV,有50mV的偏差, 就会导致输出电流有44%的误差。看来这种产生电流源的方式是不可取的。 同时,电源的噪声也会引起电流误差。
CMOS模拟集成电路设计
Design of Analog CMOS Integrated Circuit
Oct.2014
本章内容
第五章
电流镜
CMOS模拟集成电路设计
第五章 电流镜
2
本章内容
5.1 基本电流镜 5.2 共源共栅电流镜 5.3 低压共源共栅电流镜 5.4 与差动对结合的电流镜
第五章 电流镜
CMOS模拟集成电路设计
18
5.3 低压共源共栅电流镜
这个电路不采用电阻,避开了电阻的精度问题。 只要合理放大M7的尺寸就能够使VGS7≈VTH7,从而 获得前述要求的关系式。然而这个结构同样存在 衬偏效应的问题。 使用源跟随器MS,直接使共源共栅级的偏置下 降VTH,这样一来也可以使电压余度消耗为两 个过驱动电压。但A,B两点的电位将不能近似 相等,导致精度的损失。这种结构有时也会使 用,因为共源共栅结构的电流镜不单单是为了 实现高精度,我们也有时仅仅利用其高输出阻 抗。
6
5.1 基本电流镜
观察MOS器件的电流公式 unCox W (VGS − VTH ) 2 I OUT ≈ 2 L 两个具有同样VGS的NMOS,如果管子尺寸相同,工艺偏差 不计(VTH相同),那么两个管子流过的电流就相同。从这一点 出发,我们考虑到法一: Av=GmRout 从右图计算Gm,由于X点的摆幅较小,可以认为X点 的变化对P点的影响很小,所以P点为虚地。那么
I out + g m1Vin / 2 = g m 2 ( −Vin / 2) ⇒| Gm |= g m1, 2
从右下图计算Rout。
IX = 2 2rO1, 2 VX VX + || rO 3 rO 4 + g1 m3 ) ⇒ Rout = rO 2
I OUT ≈ u nCox W R2 ( VDD − VTH ) 2,为了减小电流源消耗的电压余度 2 L R2 + R1 过驱动电压一般比较小100 ~ 400mV,若Vov = 200mV,有50mV的偏差, 就会导致输出电流有44%的误差。看来这种产生电流源的方式是不可取的。 同时,电源的噪声也会引起电流误差。
CMOS模拟集成电路设计
Design of Analog CMOS Integrated Circuit
Oct.2014
本章内容
第五章
电流镜
CMOS模拟集成电路设计
第五章 电流镜
2
本章内容
5.1 基本电流镜 5.2 共源共栅电流镜 5.3 低压共源共栅电流镜 5.4 与差动对结合的电流镜
第五章 电流镜
CMOS模拟集成电路设计
18
5.3 低压共源共栅电流镜
这个电路不采用电阻,避开了电阻的精度问题。 只要合理放大M7的尺寸就能够使VGS7≈VTH7,从而 获得前述要求的关系式。然而这个结构同样存在 衬偏效应的问题。 使用源跟随器MS,直接使共源共栅级的偏置下 降VTH,这样一来也可以使电压余度消耗为两 个过驱动电压。但A,B两点的电位将不能近似 相等,导致精度的损失。这种结构有时也会使 用,因为共源共栅结构的电流镜不单单是为了 实现高精度,我们也有时仅仅利用其高输出阻 抗。
CMOS-模拟集成电路课件-电流源与电流镜

+ VTHN+2VOD
W/(4L)
VB
-
M4
VDD
W/L
M0
W/L
M1
IREF
Z +
VOUT IOUT=IREF
W/L +
VOD -
M3
VOD -
+
W/L
+
VOD -
M2
VOD -
例4:自偏置 增加R使得 IREFR = VOD,
VGS1 = VTHN + VOD 这样,
VB= VTHN + 2VOD
IOUT
(W (W
/ L)2 / L)1
I REF
IOUT与IREF的比值由器件尺寸的比率决定,不受工艺 和温度的影响。设计者可以通过器件的尺寸比来调整 输出电流的大小。
在λ=0的情况下 !
2024/10/19
8
• 例子:
– 在电流镜电路的实际设计中,通常采 用叉指MOS管,每个“叉指”的沟道 长度相等,复制倍数由叉指数决定, 减小由于漏源区边缘扩散所产生的误 差,以减小器件的失配造成的电流失 配。.
2024/10/19
VDD IREF
+ VOD R
-
VB = 2VOD +VTHN VOUT
IOUT=IREF
+
M0 X
VOD
M3
Y+
VGS = +
VOD
M1 VOD +VTHN M2
-
16
-
小结
• 工作在饱和区的MOS晶体管可以充当电流源 • 基本电流镜—基于电流复制 • 共源共栅电流镜—提高复制精度 • 大输出摆幅共源共栅电流源—使得输出的下限等
CMOS模拟集成电路设计第5章—电流镜ppt课件

Iout与IREF的比值由器件尺寸的比率决定。
忽略沟道长度调制效应!
17.04.2020
5
.
• 例子:
– 实际设计中,所有晶体管采用相同 的栅长,以减小由于源漏区边缘扩 散所产生的误差。
– 采用叉指结构。
如图,每个叉指的W为5±0.1μm ,则 M1和M2的实际的W为:
W1=5±0.1μm, W2=4(5±0.1)μm 则IOUT/IREF= 4(5±0.1)/ (5±0.1)=4
17.04.2020
10
.
– 低压的共源共栅电流镜中的偏置Vb如何产生? 设计思路: 让Vb等于(或稍稍大于)VGS2+(VGS1-VTH1),
例1:在图a中,选择I1和器件的尺寸,使M5 产生VGS5≈VGS2,进一步调整M6的尺寸和Rb的阻 值,使VDS6=VGS6-RbI1 ≈VGS1-VTH1。
11
.
3、电流镜作负载的差动对
• 3.1大信号分析
– Vin1-Vin2足够负时,M1、M3和M4均关断,M2和 M5工作在深线性区,传输的电流为0,Vout=0;
– 随Vin1-Vin2增长,M1开始导通,使ID5的一部分流 经M3,M4开启,Vout增长
– 当Vin1和Vin2相当时,M2和M4都处于饱和区, 产生一个高增益区。
若2rO1,2>>(1/gm3)||rO3,
• 电路增益:
1
17.04.2020
I ss
15
.
• 3.3 共模特性
– 电路不存在器件失配时
忽略rO1,2,并假设1/(2gm3,4)<<rO3,4,
则,
17.04.2020
17
.
忽略沟道长度调制效应!
17.04.2020
5
.
• 例子:
– 实际设计中,所有晶体管采用相同 的栅长,以减小由于源漏区边缘扩 散所产生的误差。
– 采用叉指结构。
如图,每个叉指的W为5±0.1μm ,则 M1和M2的实际的W为:
W1=5±0.1μm, W2=4(5±0.1)μm 则IOUT/IREF= 4(5±0.1)/ (5±0.1)=4
17.04.2020
10
.
– 低压的共源共栅电流镜中的偏置Vb如何产生? 设计思路: 让Vb等于(或稍稍大于)VGS2+(VGS1-VTH1),
例1:在图a中,选择I1和器件的尺寸,使M5 产生VGS5≈VGS2,进一步调整M6的尺寸和Rb的阻 值,使VDS6=VGS6-RbI1 ≈VGS1-VTH1。
11
.
3、电流镜作负载的差动对
• 3.1大信号分析
– Vin1-Vin2足够负时,M1、M3和M4均关断,M2和 M5工作在深线性区,传输的电流为0,Vout=0;
– 随Vin1-Vin2增长,M1开始导通,使ID5的一部分流 经M3,M4开启,Vout增长
– 当Vin1和Vin2相当时,M2和M4都处于饱和区, 产生一个高增益区。
若2rO1,2>>(1/gm3)||rO3,
• 电路增益:
1
17.04.2020
I ss
15
.
• 3.3 共模特性
– 电路不存在器件失配时
忽略rO1,2,并假设1/(2gm3,4)<<rO3,4,
则,
17.04.2020
17
.
第5章 无源与有源电流镜

共源共栅屏蔽特性
华侨大学IC设计中心
若系统内部电路导致X 点的电压与Y 点的电压由∆V的差值, 则P点电压与Q点电压的差值为多少?
∆VP ,Q ≈ ∆V [( gm 3 + gmb 3 )rO 3 ]
见书P75,式3.130 P75,式
共源共栅器件可以使底部晶体管免受变化的影响。
共源共栅电流镜
抑制沟道长度调制效应
基本电流源的误差
沟道长度调制效应
Y
X
华侨大学IC设计中心
(W L ) 2 λ=0, I out = I REF ⇒ (W L ) 1 λ ≠ 0:
1 W µ n C ox (VGS − VTH )2 (1 + λVDS1 ) 2 L 1
I D1 =
。
I D2 =
1 W µ n C ox (VGS − VTH )2 (1 + λVDS 2 ) 2 L 2
= (VGS 3 − VTH ) + (VGS 2 − VTH ) + VTH
VN = VGS 0+VX = VGS 3 + VY = VGS 3 + VGS 2
两个过驱动电压加上一个阈值电压
M2饱和,VY ≥ VGS 2 − VTH M 1饱和,VP − VY ≥ VGS 3 − VTH ⇒ VP ≥ (VGS 2 − VTH ) + (VGS 3 − VTH )
I D 2 (W L )2 1 + λVDS 2 = ⋅ I D1 (W L )1 1 + λV DS1
VGS 1 = VGS 2 = VDS 1 , 但是VX 可能不等于VY,即VDS1 ≠ VDS2 导致I out ≠ I ref
第五章 电流镜

大信号分析
当Vin1<<Vin2时,M1,3,4关断,各支路无电流Vout=0。随 着Vin1逐渐增大,I4逐渐变大,I2逐渐变小,Vout处的寄生 电容被充电,电位升高。Vin1=Vin2时,Vout=VF=VDD-VSG3 。Vin1>>Vin2时,M2关断,Vout变为VDD。(Vin=Vin2时, 为什么Vout=VF?) 若Vout<VF,M1流过的电流将大于M2,M3流过的电流将 小于M4,这是互相矛盾的。
CMOS模拟集成电路设计 第五章 电流镜 Copyright 2014, zhengran
17
5.3 低压共源共栅电流镜
p
当VTH 2 > VGS 2 − VTH 1时,Vb有解。 取Vb的最小值Vb = VGS 2 + VGS1 − VTH 1 那么使VP ≥ Vb − VTH 4 = (VGS 2 − VTH 4 ) + (VGS1 − VTH 1 ), 就能保证所有器件都 饱和而且右半边电流源 消耗的电压余度只相当 于两个过驱动电压。
第五章 电流镜 Copyright 2014, zhengran
CMOS模拟集成电路设计
18
5.3 低压共源共栅电流镜
这个电路不采用电阻,避开了电阻的精度问题。 只要合理放大M7的尺寸就能够使VGS7≈VTH7,从而 获得前述要求的关系式。然而这个结构同样存在 衬偏效应的问题。 使用源跟随器MS,直接使共源共栅级的偏置下 降VTH,这样一来也可以使电压余度消耗为两 个过驱动电压。但A,B两点的电位将不能近似 相等,导致精度的损失。这种结构有时也会使 用,因为共源共栅结构的电流镜不单单是为了 实现高精度,我们也有时仅仅利用其高输出阻 抗。
第五章 电流镜

L 2 W 1 I out ≈ un Cox ( ) 2 (VGS − VTH ) 2 L 2 (W / L) 2 I REF ⇒ I out = (W / L)1 I REF ≈ un Cox ( )1 (VGS − VTH )
电流可以按照比例被复制,而且不受工艺和温度的影响。
CMOS模拟集成电路设计 第五章 电流镜 Copyright 2011, zhengran
5.4 与差动对结合的电流镜
7
5.1 基本电流镜
例,求图中M4的漏电流,所有管子都工作的饱和区,不考虑沟 道调制。
⇒ I D4 =
(W / L) 2 (W / L) 4 I REF (W / L)1 (W / L) 3
CMOS模拟集成电路设计
第五章 电流镜
Copyright 2011, zhengran
8
5.1 基本电流镜
因此我们一般使对管具有相同的沟道长度(Ldrawn),而改变 W,以获得需要的复制比例。
Copyright 2011, zhengran
CMOS模拟集成电路设计
第五章 电流镜
10
5.1 基本电流镜
计算图中的小信号电压增益。(不考虑沟道调制)
⇒ Av = g m1
(W / L) 3 RL (W / L) 2
输入共模电平范围: VGS 1, 2 + VDS 5 ≤ Vin ,CM ≤ Vout + VTH 2
CMOS模拟集成电路设计 第五章 电流镜 Copyright 2011, zhengran
20
5.4 与差动对结合的电流镜
例:假设电路完全对称,当VDD从3V变化到0V时,输出电压随 VDD变化的关系。认为VDD等于3V时所有器件都饱和。 VDD从3V减小时,VF与Vout以 斜率1下降(为什么?),下降到一 定程度时M1,M2进入线性区。 (Vout下降斜率还是1吗?)最后使 得M5进入线性区,Vout的下降 变缓。(为什么?)
电流可以按照比例被复制,而且不受工艺和温度的影响。
CMOS模拟集成电路设计 第五章 电流镜 Copyright 2011, zhengran
5.4 与差动对结合的电流镜
7
5.1 基本电流镜
例,求图中M4的漏电流,所有管子都工作的饱和区,不考虑沟 道调制。
⇒ I D4 =
(W / L) 2 (W / L) 4 I REF (W / L)1 (W / L) 3
CMOS模拟集成电路设计
第五章 电流镜
Copyright 2011, zhengran
8
5.1 基本电流镜
因此我们一般使对管具有相同的沟道长度(Ldrawn),而改变 W,以获得需要的复制比例。
Copyright 2011, zhengran
CMOS模拟集成电路设计
第五章 电流镜
10
5.1 基本电流镜
计算图中的小信号电压增益。(不考虑沟道调制)
⇒ Av = g m1
(W / L) 3 RL (W / L) 2
输入共模电平范围: VGS 1, 2 + VDS 5 ≤ Vin ,CM ≤ Vout + VTH 2
CMOS模拟集成电路设计 第五章 电流镜 Copyright 2011, zhengran
20
5.4 与差动对结合的电流镜
例:假设电路完全对称,当VDD从3V变化到0V时,输出电压随 VDD变化的关系。认为VDD等于3V时所有器件都饱和。 VDD从3V减小时,VF与Vout以 斜率1下降(为什么?),下降到一 定程度时M1,M2进入线性区。 (Vout下降斜率还是1吗?)最后使 得M5进入线性区,Vout的下降 变缓。(为什么?)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 3.2 小信号分析 • (忽略衬偏效应) • 方法一 • 利用 • 计算
得到,
gm1Vin/2
gm1Vin/2 gm2Vin/2
• 计算 • M1和M2用一个21,2代替,
从抽取的电流以单位增益(近 似),由M3镜像到M4。则,
若21,2>>(13)3,
• 电路增益:
1 I ss
• 3.3 共模特性 • 电路不存在器件失配时
• 两个都工作在饱和区且具有相等栅源电压的相同晶体管传 输相同的电流(忽略沟道长度调制效应)。
• 按比例复制电流 • (忽略沟道长度调制效应)
得到
该电路可以精确地复制电流而不受工艺和温度的影响; 与的比值由器件尺寸的比率决定。
忽略沟道长度调制效应!
• 例子:
• 实际设计中,所有晶体管采用相 同的栅长,以减小由于源漏区边 缘扩散所产生的误差。
• 沟道长度调制效应使得电流镜像产生极大误差,
因此
• 共源共栅电流源 • 为了抑制沟道长度调制的影响,
可以采用共源共栅电流源。共源共 栅结构可以使底部晶体管免受变化 的影响。
• 共源共栅电流镜 • 共源共栅电流镜 • 确定共源共栅电流源的偏置电压,
采用共源共栅电流镜结构。 •
– 共源共栅电流镜消耗了电压余度 – 忽略衬偏效应且假设所有晶体管都是相同的,则P点所允许的
模拟集成电路设计
电流镜
提纲
• 1、基本电流镜 • 2、共源共栅电流镜 • 3、电流镜作负载的差动对
Байду номын сангаас :电流源
• 处于饱和区的管可以作为一种电流源
Iou I tD 1 2n C oW L x(V G S V t) h 2 (1 V D )S
1、基本电流镜
• 电流源的设计是基于对基准电流的“复制”;
最小电压值等于
VP =
比较于
余度损耗的共源共栅电流镜
最小余度损耗的共源共栅电流源
– 低电压工作(大输出摆幅)的共源共栅电流镜
–
如图(a),共源共栅输入输出短接结构,
–
为使M1和M2处于饱和区,应满足:
得到
,有解
–
–
考察图(b),所有晶体管均处于饱和区,
选择合适的器件尺寸,使24,若选择
–
–
M34消耗的电压余度最小(M3与M4过驱
若3>>13
比无器件失配时多此项
小结
• 1、基本电流镜——电路复制 • 2、共源共栅电流镜——提高复制精度 • 3、大输出摆幅的共源共栅电流镜 • 4、电流镜作负载的差动对
• 采用叉指结构。
• 如图,每个叉指的W为 5±0.1μm ,则M1和M2的实际 的W为:
• W1=5±0.1μm, IWRE2F =IOUT 4(5±0.1)μm
• 则 4(5±0.1)/ (5±0.1)=4
请同学们思考:如果不采用 叉指结构,对电流复制会有 什么影响?
版图设计 4
2、共源共栅电流镜
–
例2:在图b中,采用二极管连接的M7
代替电阻。在一定I1下,选择大()7,从而7
≈7,这样567
–
缺点:虽然不需要电阻,但M2有衬偏
效应,而M5没有,仍会产生误差。
– 因此,设计中给出余量。
3、电流镜作负载的差动对
• 3.1大信号分析
• 12足够负时,M1、M3和M4 均关断,M2和M5工作在深 线性区,传输的电流为0,0;
• 随12增长,M1开始导通, 使5的一部分流经M3,M4开 启,增长
• 当1和2相当时,M2和M4都 处于饱和区,产生一个高增
– 输入共模电压的选择
– 为使M2饱和,输出电压不能 小于,因此,为了提高输出摆 幅,应采用尽量低的输入共模 电平,输入共模电平的最小值 为1,25。
– 当12时,电路的输出电压3|
动电压之和)。且可以精确复制。
– 低压的共源共栅电流镜中的偏置如何产生?
–
设计思路:
–
让等于(或稍稍大于)2+(11),
–
–
例1:在图a中,选择I1和器件的尺寸,
使M5产生5≈2,进一步调整M6的尺寸和的阻
值,使6=61 ≈11。
–
缺点:由于①M2有衬偏效应,而M5没
有② 实际中1大小不好控制,产生误差。
忽略rO1,2,并假设1/(2gm3,4)<<rO3,4,
则,
– 电路存在器件失配时 – 忽略1和2的影响, – 考虑到结点F和X的变化相对较小,
对P点的影响等效为 源跟随器结构
Δ1乘上M3的输出电阻得到3,34,可 以得到4的变化量为
3=4
忽略1和2的影响,则电路的输出阻抗为4, Δ4电流与Δ2电流之差将流经4 ,且34,因此,