数值分析(第五版)计算实习题第四章作业
数值分析第四章习题

数值分析第四章习题第四章习题1. 采用数值计算方法,画出dt t t x y x ?=0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。
〖答案〗1.65412. 求函数x e x f 3sin )(=的数值积分?=π 0 )(dx x f s ,并请采用符号计算尝试复算。
〖答案〗s = 5.1354Warning: Explicit integral could not be found. > In sym.int at 58s =int(exp(sin(x)^3),x = 0 .. pi)3. 用quad 求取dx x e x sin 7.15?--ππ的数值积分,并保证积分的绝对精度为910-。
〖答案〗1.087849437547794. 求函数5.08.12cos 5.1)5(sin )(206.02++-=t t t et t f t 在区间]5,5[-中的最小值点。
〖答案〗最小值点是-1.28498111480531 相应目标值是-0.186048010065455. 设0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。
〖答案〗数值解y_05 = 0.78958020790127符号解ys =1/2-1/2*exp(2*t)+exp(t)ys_05 =.789580356470605529168507052137806. 求矩阵b Ax =的解,A 为3阶魔方阵,b 是)13(?的全1列向量。
〖答案〗x =0.06670.06670.06677. 求矩阵b Ax =的解,A 为4阶魔方阵,b 是)14(?的全1列向量。
〖答案〗解不唯一x =-0.0074 -0.0809 0.1397 0.0662 0.0588 0.1176 -0.0588。
《数值分析》第四章答案

习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。
再给13169=建立3次插值公式,给出相应的结果。
解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳育创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x ,相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x n x n x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e n k k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案

=
1 = 1.7863 × 10 − 2 。 55.982
8、当 N 充分大时,怎样求 ∫ [解]因为 ∫
N +1 N
1 dx ? 1+ x2
1 dx = arctan( N + 1) − arctan N ,当 N 充分大时为两个相近数相 1+ x2
减,设 α = arctan( N + 1) , β = arctan N ,则 N + 1 = tan α , N = tan β ,从而 tan(α − β ) = 因此 ∫
5、计算球体积要使相对误差限为 1%,问度量半径 R 允许的相对误差是多少? 4 ε * ( π (R* )3 ) 4 3 [解]由 1% = ε r* ( π ( R * ) 3 ) = 可知, 4 3 * 3 π (R ) 3 ′ 4 4 4 ε * ( π ( R * ) 3 ) = 1% × π ( R * ) 3 = π ( R * ) 3 ε * ( R * ) = 4π ( R * ) 2 × ε * ( R * ) , 3 3 3
ε * ( y n ) = 10ε * ( y n −1 ) = 10 n ε * ( y 0 ) ,
1 1 从而 ε * ( y10 ) = 1010 ε * ( y 0 ) = 1010 × × 10 − 2 = × 10 8 ,因此计算过程不稳定。 2 2 12、计算 f = ( 2 − 1) 6 ,取 2 ≈ 1.4 ,利用下列公式计算,哪一个得到的结果最 好? 1 ( 2 + 1)
* r
x= x
*
ε ( x * ) = n( x * ) n −1 2% x * = 2n% ⋅ x * ,
数值分析第五版计算实习题

弟二草插值法3.卜列数据点的插值可以得到平方根函数的近似,在区间064]上作图。
(1〉用这9个点做8次多项式插值Q x)。
(2)用三次样条(第一边界条件)程岸求S(X)。
从得到结果石在[0.64] 1:・哪个插值更粘确:在区间[0,1] I:•两种插值哪个更精确?(1) 8次多项式插值:(1)8次多项式插值:首先建立新的M-file:输入如卜代码(此为拉格朗口插值的功能函数)并保存function f=Language(x,y,x0)%求Li知数据点的拉格朗Fl插值多项式%己知数据点的x坐标向量:x%已知数据点的y坐标向量:y%插值的x坐标:x0%求得的拉格朗H插值多项式或在X0处的插值:fsyms t;ifi(lcngth(x)=length(y))n=length(x);elsedisp(*x和y的维数不相等!);return;end %检错tbr(i=l:n)i=y(i);fbr(j=1:i-l)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i-M:n)end;for(j=i+l:n) l=l*(t-x(j))/(x(i)-x(j)); end;simplify(f);if(i==n) if|nargin=3)f=subs(C't\xO);else f=collcct(f);f=vpa(f,6);endendend再建立新的M-file:输入:clear;x=[0 1 49 16 25 36 49 64];y=[0:l:8];%计算拉格朗口基丞数%计算拉格朗ri插值函数%化简%计算插值点的曲数值%将插值多项式展开%将插值多项式的系数化成6位精度的小数f=Uinguage(x,y) 运行得到f=1.32574*1-381410*t A2+.604294e-1 *t A3+.222972e-3 *t A5-.542921 e-5*t A6+.671268e・7T7・.328063e・9T8・.498071 e-2*t A4 这就是8次多项式插值L s(x)= 1.32574怜.381410*t A2+.604294e-1 *t A3+.222972e-3 *t A5-.542921 e-5*t A6+.671268e-7*t A7-.328063e-9*t A8-.498071 e-2*t A4. (2)三次样条插值:建立新的M-filc:输入:clear;x=[0 I 49 1625 36 4964];尸[0:8];t=[0:0.1:64];Y=t.A(0.5);O=Language(x,y)f= 1,32574*t-.381410*t.A2+.604294e-1 *t.A3+.222972e-3*t.A5-.542921 e・5*(. W+.671268e-7*t.A7-.328063e-9*t.A8-.498071 e-2 *t.A4;S=interp l(x,y,t.'spline,);plol(x,y,o;(・YY.lf.'b'」S'g:');grid;运行程序得到如下图:从结果屮很明显可以看出在[0.64].上.三次样条插值更精确,儿乎与原函数帀合。
最新数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:10121012112120(1)()()(0)();(2)()()(0)();(3)()[(1)2()3()]/3;(4)()[(0)()]/2[(0)()];hhhh hf x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-⎰⎰⎰⎰解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。
(1)若101(1)()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1012h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则3221123h h A h A -=+ 从而解得011431313A h A h A h -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则3()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=令4()f x x =,则4551012()52()(0)()3hhhhf x dx x dx h A f h A f A f h h ---==-++=⎰⎰故此时,101()()(0)()hhf x dx A f h A f A f h --≠-++⎰故101()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。
(2)若21012()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1014h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则32211163h h A h A -=+ 从而解得11438383A h A h A h -⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则22322()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=令4()f x x =,则22452264()5hhhhf x dx x dx h --==⎰⎰510116()(0)()3A f h A f A f h h --++=故此时,21012()()(0)()hhf x dx A f h A f A f h --≠-++⎰因此,21012()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。
数值分析第五版课后习题答案

数值分析第五版课后习题答案数值分析是一门应用数学的分支学科,主要研究如何利用数值方法解决实际问题。
在学习这门课程的过程中,课后习题是不可或缺的一部分。
本文将对《数值分析第五版》的课后习题进行一些探讨和解答。
第一章是数值分析的导论,主要介绍了误差分析和计算方法的基本概念。
在课后习题中,有一道题目是关于误差传播的。
假设有一个函数f(x, y) = x^2 + y^2,其中x和y的测量误差分别为Δx和Δy,要求计算f(x, y)的误差。
解答:根据误差传播公式,可以得到f(x, y)的误差为Δf = √[(∂f/∂x)^2 *(Δx)^2 + (∂f/∂y)^2 * (Δy)^2]。
对于本题而言,∂f/∂x = 2x,∂f/∂y = 2y。
代入公式,得到Δf = √[(2x)^2 * (Δx)^2 + (2y)^2 * (Δy)^2] = 2√(x^2 * (Δx)^2+ y^2 * (Δy)^2)。
第二章是插值与多项式逼近的内容。
其中一道习题涉及到拉格朗日插值多项式。
给定n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),要求构造一个n次多项式p(x),使得p(xi) = yi (i = 0, 1, ..., n)。
解答:拉格朗日插值多项式的表达式为p(x) = Σ(yi * Li(x)),其中Li(x) = Π[(x - xj) / (xi - xj)],j ≠ i。
将数据点代入表达式中,即可得到所求的多项式。
第三章是数值微积分的内容,其中一道习题是关于数值积分的。
给定一个函数f(x),要求使用复化梯形公式计算定积分∫[a, b]f(x)dx。
解答:复化梯形公式的表达式为∫[a, b]f(x)dx ≈ h/2 * [f(a) + 2Σf(xi) + f(b)],其中h = (b - a)/n,xi = a + i * h (i = 1, 2, ..., n-1)。
根据给定的函数f(x),代入公式中的各个值,即可得到近似的定积分值。
数值分析计算实习题答案

数值分析计算实习题答案数值分析计算实习题答案数值分析是一门研究如何利用计算机对数学问题进行近似求解的学科。
在数值分析的学习过程中,实习题是一种重要的学习方式,通过实践来巩固理论知识,并培养解决实际问题的能力。
本文将为大家提供一些数值分析计算实习题的答案,希望能够帮助大家更好地理解和掌握数值分析的相关知识。
一、插值与拟合1. 已知一组数据点,要求通过这些数据点构造一个一次插值多项式,并求出在某一特定点的函数值。
答案:首先,我们可以根据给定的数据点构造一个一次插值多项式。
假设给定的数据点为(x0, y0), (x1, y1),我们可以构造一个一次多项式p(x) = a0 + a1x,其中a0和a1为待定系数。
根据插值条件,我们有p(x0) = y0,p(x1) = y1。
将这两个条件代入多项式中,可以得到一个方程组,通过求解这个方程组,我们就可以确定a0和a1的值。
最后,将求得的多项式代入到某一特定点,就可以得到该点的函数值。
2. 已知一组数据点,要求通过这些数据点进行最小二乘拟合,并求出拟合曲线的表达式。
答案:最小二乘拟合是一种通过最小化误差平方和来找到最佳拟合曲线的方法。
假设给定的数据点为(x0, y0), (x1, y1),我们可以构造一个拟合曲线的表达式y =a0 + a1x + a2x^2 + ... + anx^n,其中a0, a1, ..., an为待定系数。
根据最小二乘拟合原理,我们需要最小化误差平方和E = Σ(yi - f(xi))^2,其中yi为实际数据点的y值,f(xi)为拟合曲线在xi处的函数值。
通过求解这个最小化问题,我们就可以确定拟合曲线的表达式。
二、数值积分1. 已知一个函数的表达式,要求通过数值积分的方法计算函数在某一区间上的定积分值。
答案:数值积分是一种通过将定积分转化为数值求和来近似计算的方法。
假设给定的函数表达式为f(x),我们可以将定积分∫[a, b]f(x)dx近似为Σwi * f(xi),其中wi为权重系数,xi为待定节点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章:1、(1):复合梯形建立m文件:function t=natrapz(fname,a,b,n)h=(b-a)/n;fa=feval(fname,a);fb=feval(fname,b); f=feval(fname,a+h:h:b-h+0.001*h); t=h*(0.5*(fa+fb)+sum(f));输入:>> syms x>> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,10)输出:ans =-0.417062831779470输入:>> syms x>> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,100)输出:ans =-0.443117908008157输入:>> syms x>> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,1000)输出:ans =-0.444387538997162复合辛普森建立m文件:function t=comsimpson(fname,a,b,n)h=(b-a)/n;fa=feval(fname,a);fb=feval(fname,b);f1=feval(fname,a+h:h:b-h+0.001*h);f2=feval(fname,a+h/2:h:b-h+0.001*h);t=h/6*(fa+fb+2*sum(f1)+4*sum(f2));输入:>> syms x>> f=inline('sqrt(x).*log(x);');>> format long;>>comsimpson(f,eps,1,10)输出:ans =-0.435297890074689输入:>>syms x>>f=inline('sqrt(x).*log(x);');>>comsimpson(f,eps,1,100)输出:ans =-0.444161178415673输入:>>syms x>>f=inline('sqrt(x).*log(x);');>>comsimpson(f,eps,1,1000)输出:ans =-0.444434117614180(2)龙贝格建立m文件:function [RT,R,wugu,h]=Romberg(fun,a,b,wucha,m) %RT是龙贝格积分表%R是数值积分值%wugu是误差估计%h是最小步长%fun是被积函数%a b是积分下、上限%m是龙贝格积分表中行最大数目%wucha是两次相邻迭代值的绝对误差限n=1;h=b-a;wugu=1;x=a;k=0;RT=zeros(4,4);RT(1,1)=h*(feval(fun,a)+feval(fun,b))/2;while((wugu>wucha)&(k<m)|(k<4))k=k+1;h=h/2;s=0;for j=1:nx=a+h*(2*j-1);s=s+feval(fun,x);endRT(k+1,1)=RT(k,1)/2+h*s;n=2*n;for i=1:kRT(k+1,i+1)=((4^i)*RT(k+1,i)-RT(k,i))/(4^i-1);endwugu=abs(RT(k+1,k)-RT(k+1,k+1));endR=RT(k+1,k+1);输入:>>fun=inline('sqrt(x).*log(x)');>> [RT,R,wugu,h]=Romberg(fun,eps,1,1e-5,13)输出:RT =1 至5 列-0.000000268546145 0 0 0-0.245064670140209 -0.326752804004897 0 0-0.358104125949240 -0.395783944552250 -0.400386020588741 0 0-0.408090073087781 -0.424752055467295 -0.426683262861631 -0.427100679405645 0-0.429474601629505 -0.436602777810080 -0.437392825966266 -0.437562819031419 -0.437603847029951-0.438389494461832 -0.441361125405941 -0.441678348578999 -0.441746372747455 -0.4417627788404596 列-0.441766844267449R =-0.441766844267449wugu =4.065426989774412e-06h =0.031250000000000(3)自适应辛普森输入:>> f=inline('sqrt(x).*log(x)');>> q=quad(f,0,1,1e-4)输出:q =-0.4439755729517282.(1)复合辛普森建立m文件function q=combinesimpson2(F,x0,a,b,n)%复合Simpson多元求积公式%F—被积函数%x0—被积函数自变量%[a,b]积分区间%n—区间份数x=linspace(a,b,n+1);q=0;for k=1:nq=q+subs(F,x0,x(k))+4*subs(F,x0,(x(k)+x(k+1))/2)+subs(F,x0,x(k+1)); endq=q*(b-a)/n/6;输入:>> clear>> syms x y;>> F=exp(-x.*y);>> s=combinesimpson2(combinesimpson2(F,'x',0,1,4),'y',0,1,4)输出:s =exp(-1)/576 + exp(-1/2)/144 + exp(-1/4)/72 + exp(-3/4)/144 + exp(-1/8)/36 +exp(-3/8)/36 + exp(-5/8)/72 + exp(-7/8)/72 + (5*exp(-1/16))/144 + exp(-3/16)/24 + exp(-5/16)/36 + exp(-7/16)/36 + exp(-9/16)/144 + exp(-1/32)/36 + exp(-3/32)/18 + exp(-5/32)/36 + exp(-7/32)/36 + exp(-9/32)/36 + exp(-15/32)/36 + exp(-21/32)/36 + exp(-1/64)/36 + exp(-3/64)/18 + exp(-5/64)/18 + exp(-7/64)/18 + exp(-9/64)/36 + exp(-15/64)/18 + exp(-21/64)/18 + exp(-25/64)/36 + exp(-35/64)/18 + exp(-49/64)/36 + 47/576>> double(s)ans =0.796599967946203高斯求积公式function q=gaussquad(F,x0,a,b,n)%Gauss求积公式%F—被积函数%x0—被积函数自变量%[a,b]积分区间%n—节点个数syms t;F=subs(F,x0,(b-a)/2*t+(a+b)/2);[x,A]=gausspoints(n);q=(b-a)/2*sum(A.*subs(F,t,x));输入:>> clear>> syms x y;F=exp(-x.*y);>> s=gaussquad(gaussquad(F,x,0,1,4),y,0,1,4)输出:s =0.7966(2)复合辛普森输入:>> syms x y;>> f=exp(-x.*y);>> s=combinesimpson2(combinesimpson2(f,y,0,sqrt(1-x^2),4),x,0,1,4)输出:s =(3^(1/2)*(exp(-3^(1/2)/4) + 2*exp(-3^(1/2)/8) + 2*exp(-3^(1/2)/16) + 2*exp(-(3*3^(1/2))/16) + 4*exp(-3^(1/2)/32) + 4*exp(-(3*3^(1/2))/32) + 4*exp(-(5*3^(1/2))/32) + 4*exp(-(7*3^(1/2))/32) + 1))/576 + (7^(1/2)*(exp(-(3*7^(1/2))/16) + 2*exp(-(3*7^(1/2))/32) + 2*exp(-(3*7^(1/2))/64) + 2*exp(-(9*7^(1/2))/64) + 4*exp(-(3*7^(1/2))/128) + 4*exp(-(9*7^(1/2))/128) + 4*exp(-(15*7^(1/2))/128) + 4*exp(-(21*7^(1/2))/128) + 1))/1152 + (15^(1/2)*(exp(-15^(1/2)/16) + 2*exp(-15^(1/2)/32) + 2*exp(-15^(1/2)/64) + 2*exp(-(3*15^(1/2))/64) + 4*exp(-15^(1/2)/128) + 4*exp(-(3*15^(1/2))/128) + 4*exp(-(5*15^(1/2))/128) + 4*exp(-(7*15^(1/2))/128) + 1))/1152 + (15^(1/2)*(exp(-(7*15^(1/2))/64) + 2*exp(-(7*15^(1/2))/128) + 2*exp(-(7*15^(1/2))/256) + 2*exp(-(21*15^(1/2))/256) + 4*exp(-(7*15^(1/2))/512) + 4*exp(-(21*15^(1/2))/512) + 4*exp(-(35*15^(1/2))/512) + 4*exp(-(49*15^(1/2))/512) + 1))/1152 + (39^(1/2)*(exp(-(5*39^(1/2))/64) + 2*exp(-(5*39^(1/2))/128) + 2*exp(-(5*39^(1/2))/256) + 2*exp(-(15*39^(1/2))/256) + 4*exp(-(5*39^(1/2))/512) + 4*exp(-(15*39^(1/2))/512) + 4*exp(-(25*39^(1/2))/512) + 4*exp(-(35*39^(1/2))/512) + 1))/1152 + (55^(1/2)*(exp(-(3*55^(1/2))/64) + 2*exp(-(3*55^(1/2))/128) + 2*exp(-(3*55^(1/2))/256) + 2*exp(-(9*55^(1/2))/256) + 4*exp(-(3*55^(1/2))/512) + 4*exp(-(9*55^(1/2))/512) + 4*exp(-(15*55^(1/2))/512) + 4*exp(-(21*55^(1/2))/512) + 1))/1152 + (63^(1/2)*(exp(-63^(1/2)/64) + 2*exp(-63^(1/2)/128) + 2*exp(-63^(1/2)/256) + 2*exp(-(3*63^(1/2))/256) + 4*exp(-63^(1/2)/512) + 4*exp(-(3*63^(1/2))/512) + 4*exp(-(5*63^(1/2))/512) + 4*exp(-(7*63^(1/2))/512) + 1))/1152 + 1/24>> double(s)ans =0.670113633359095。