中国传统数学及其衰落
由中国数学史审视近代中国数学的停滞 古今数学思想论文

由中国数学史审视近代中国数学的停滞(人文学院公管112班朱琳1140450201)摘要:中国古代数学在14世纪以前一直是世界上数学最为发达的国家之一,16世纪以后,中国数学日益走向衰落。
其主要原因有:近代数学的发展与社会工业化紧密相联,而中国封建落后,严重阻碍了资本主义萌芽的发展,依然为农业社会,未能步人工业社会,这就阻碍了和工商业有关的数学发展;日趋腐朽的封建制度也是阻碍中国近代数学发展的根本原因之一;考察中国古代数学自身运动的逻辑,可以发现它是一种零散的、经验的数学知识,缺乏较严密理性的自组织结构系统,有着内在机制上的缺陷。
关键字:古代数学成就外在机制内在机制一、中国古代的数学成就的透视与分析我们伟大的祖国,作为世界四大文明古国之一,在数学发展的历史长河中,曾经作出许多杰出的贡献。
这些光辉的成就,远远走在世界的前列,在世界数学史上享有崇高的荣誉。
下面的例子即是最好的证明:1、中国是最早应用“十进制制”计数法的国家。
2、中国的数学专着《九章算术》,最早引入了负数概念。
3、中国最早提出联立一次方程组的解法。
4、中国最早研究不定方程的问题。
5、中国最早得出有六位准确数字的π值。
6、中国南宋的伟大数学家秦九韶,在《数书九章》(公元1247年)中最早提出了高次方程的数值解法。
7、中国最早引用“内插法”。
明代以前,世界上重要的创造发明和重大的科学成就大约300项,其中中国大约175项,占总数的57%以上。
英国剑桥大学的李约瑟博士在研究后指出,中国的发明和发现,远远超过同时代的欧洲。
中国古代科技长期领先于世界,这主要是在天文、数学、化学、医药等方面的科学知识,曾传播到世界各地,对世界科技的发展作出了重要贡献。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家之一,出现过许多杰出数学家,取得了很多辉煌成就,其渊源流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式东西辉映,交替影响世界数学的发展。
数学的发展论文2000字

数学的发展论文2000字1、中国古代数学的发展史1.1起源与早期发展数学是研究数和形的科学,是中国古代科学中一门重要的学科。
中国数学发展的萌芽期可以追溯到先秦时期,最早的记数法在殷墟出土的甲骨文卜辞中可以找到记数的文字。
如独立的记数符号一到十,百、千、万,最大的数字为三万,还有十进制的记数法。
在春秋时期出现中国最古老的计算工具——算筹,使用算筹进行计算称为筹算,中国古代数学的最大特点就是建立在筹算基础之上。
古代的算筹多为竹子制成的同样长短和粗细的小棍子,用算筹记数有纵、横两种方式,个位用纵式,十位用横式,以此类推,并以空位表示零。
这与西方及阿拉伯数学是明显不同的。
在几何学方面,在《史记夏本记》中记录到夏禹治水时已使用了规、矩、准、绳等作图和测量工具,勾股定理中的勾三股四弦五已被发现。
1.2中国数学体系的形成与奠基时期这一时期包括秦汉、魏晋、南北朝,共400年间的数学发展历史。
中国古代的数学体系形成在秦汉时期,随着数学知识的不断系统化、理论化,相应的数学专书也陆续出现,如西汉初的《算数书》、西汉末年的《周髀算经》、东汉初年的《九章算术》以及南北朝时期的《孙子算经》、《夏侯阳算经》、《张丘建算经》等一系列算学著作。
《周髀算经》编纂于西汉末年,提出勾股定理的特例及普遍形式以及测太阳高、远的陈子测日法;《九章算术》成书于东汉初年,以问题形式编写,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章,特点在于注重理论联系实际,形成了以筹算为中心的数学体系。
中国数学在魏晋时期有了较大的发展,其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。
赵爽证明了数学定理和公式,详尽注释了《周髀算经》,其中一段530余字的勾股圆方图注文是数学史上极有价值的文献。
刘徽的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
在南北朝时期数学的发展依然蓬勃,出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。
中国数学发展简史

中国数学发展简史(一)中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,考古发现,仰韶文化时期出土的陶器,上面就已刻有表示数字的符号。
到原始公社末期,就已开始用文字符号取代结绳记事了。
(二)春秋战国之际,筹算得到普遍的应用筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”(是我国古书中最早体现微积分思想的一段)等。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
秦汉是封建社会的上升时期,经济和文化均得到迅速发展。
中国古代数学体系正是形成于这个时期,它的主要标志是算术成为一个专门的学科以及《九章算术》为代表的数学著作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。
例如分数四则运算,今有术(西方称三率法),开平方与开立方(包括二次方程数值解法),盈不足术(西方称双设法),各种面积和体积公式,线性方程组解法,正负数运算的加减法则,勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的,其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。
就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
(三)中国古代数学体系的发展魏、晋时期出现的玄学有利于数学从理论上加以提高。
吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注2卷(已失传),魏末晋初刘徽撰《九章算术》注10卷(263)、《九章重差图》1卷(已失传)都是出现在这个时期,赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
中国传统数学衰落之解析

中国传统数学衰落之解析近年来,中国的数学研究方向和数学水平一直处于落后状态,在国际大如此情况下,中国传统数学却处于衰落之中。
传统的中国数学曾经在宋朝达到鼎盛时期,为全世界学者所熟知,但是在现代,传统的中国数学已失去了影响力。
这是因为多种因素造成的,下面将对其进行解析。
首先,中国传统数学很少被用于实际应用,放弃了实用性。
它们更注重哲学思考和逻辑分析,而不是解决实际问题。
此外,它们过于复杂,容易令人困惑,人们不愿意学习它们,从而阻碍了它们的发展。
其次,多学科发展使得中国传统数学难以与之竞争。
随着科学技术的进步,新的学科涌现,使得人们更愿意学习新的学科,而忽视了传统数学,从而使其衰退。
此外,中国数学研究学者数量有限,而且数学水平大多不高,他们缺乏有效的研究。
研究者缺乏突破性发现,也没有令国际上学者推崇的成果。
最后,国家的教育政策也是中国传统数学衰落的原因。
近代的教育重视数学的实际应用,而贬低中国传统数学的地位。
此外,分科把数学和理科分开,使人们把它们看作不同的科目,从而减少了对传统数学的重视。
通过上述分析,我们可以得出结论,中国传统数学之衰落是多种因素造成的,其中,实用性缺失、多学科发展改变了学者关注的方向、学者研究能力不足以及国家教育政策对传统数学的忽视,都是衰落的重要原因。
然而,中国传统数学的知识依然具有重要的参考价值和历史价值。
许多中国数学思想已经被国际学术界认可,成为了国际数学的源头。
因此,我们应该关注和研究中国传统数学,并将其进行持续发展,以及传承至后代,为数学学习者和研究者提供更多宝贵的资源。
至此,本文对中国传统数学衰落之解析进行了分析,得出结论,多种因素造成了中国传统数学衰落;但是其仍具有重要的参考价值和历史价值,值得继续研究与发展。
中国传统数学衰落之解析

中国传统数学衰落之解析中国传统数学衰落之解析中国的历史数学和科学发展受到西方的巨大影响,在西方的影响下,传统的中国数学思维受到重大影响,逐渐败落。
本文通过解析中国传统数学衰落的原因,揭示中国传统数学衰落的历史背景,从而深刻地理解传统的中国数学思维的独特性及其对中国数学的重要性。
一、衰亡的历史背景1.外来文化的影响中国传统数学以综合性、抽象性而闻名,但在近代新近现代历史阶段,受到西方文化的影响,中国传统数学开始走上衰落的路线。
在近代文化冲击下,中国传统数学普遍受到质疑和抨击,导致传统数学在国内研究学术发展和市场中被认为是“古旧、滞后”的科学技术。
2.教育体制的变化清末民初,围绕着新型的教育制度的建立,原有的传统数学教学大量减少,几乎消失,同时,新的数学教学也出现,增添西方数学知识,进一步淘汰传统中国数学。
二、历史思维与中国数学之间的融合1.数学思维深度融合由于中国传统数学和西方数学的差异,两者的融合必须在理论层面进行,为此,“数学思维深度融合”成为中国数学发展的重要视角之一,不但能够有效发展中国数学,而且能够将传统中国数学的思想内涵与西方数学的思维方法进行有机的融合,从而提升数学的实践意义及其全球性价值观。
2.把握历史思维发展路径中国传统数学不仅是中国人历史思维发展历程和继承的重要实体,而且更是人类历史思维发展的重要贡献。
只有把握好历史思维和数学思维之间的联系,才能够认识到中国传统数学衰落隐藏着的人类思维潜在价值,从而在发展中国数学的过程中,勇敢地施用传统数学,努力实现传统数学的复兴繁荣。
三、为实现传统数学复兴提出的建议1.重视传统数学的思维能力传统数学的思维能力要比西方数学更强,在学习过程中要学会灵活运用传统数学的解决思路和计算方法,发掘数学学习和思考的乐趣,进而培养孩子锻炼思维,培养高形象抽象思维能力。
2.强调儒家文化精神儒家文化和数学极为贴近,其哲学思想也改变了中国传统数学研究的方向,为恢复中国传统数学提供了有力的保障及其历史基础,因此,应该强调儒家文化的精神,以建立力学与礼仪、理性和道德的有机结合。
由中西文化差异探究我国古代数学衰落的原因及启示

等, 都达到当时数学的高峰。 特别是 l 3 世纪 4 0 年代 I 写作方式 , 完成 了具有划时代意义的工作——把 以实 到1 4 世纪初, 出现了现通称贾宪三角形的“ 开方作法 1 验和观察而建立起来 的经验科学过渡为演绎 的科学 ,
本源 图” 、 “ 增乘 开方法 ” 、 “ 正负开方 术 ” 、 “ 大衍求 一 : 把逻辑证明系统地引入数学 中。欧几里得在《 几何原
方面的, 其中最主要的是, 中西文字表达方式不同, 西I 是他和他的朋友 、 学生完成的。他最著名的学生是亚 方文字有利于他们创造和使用符号。 中国 古代的数学 l 里士多德, 柏拉图 称赞其为“ 本学派的精英” 。 采用汉字来表述, 严重阻碍了数学符号的创立。 『 四、启示
要保证不把靠不住的事实 当作 已知 。 由于坚持要用这 批著名的数学家和数学著作 , 如贾宪的《 黄帝九章算 j 经细草》 , 刘益的《 议古根源》 , 秦九韶的《 数书九章》 ,l 种形式来证明 , 因此希腊人得以把此前几千年来数学
ቤተ መጻሕፍቲ ባይዱ
李冶 的《 测 圆海镜 》 和《 益古演段》 , 杨辉 的《 详解九 章 1 里 的所有法则 、 步骤和事实全部抛弃 。古希腊数学的 算法 》 《 日用算法》 , 朱世杰 的《 算学启蒙 》 《 四元玉鉴》f 经典 之作 《 几何原 本》 破 天荒 地采 用 了最科学 的数学
方法 : 形数结合 , 长于计算 , 逻辑性较差 , 理论水平偏 f 形式 , 经历 了一个漫长 、 曲折的演变过程 , 许多符号是
低, 使用算器。 建立算法体系是中国数学的显著特色,l 从缩 写演 变来 的。例如 : 1 6 7 5年 , 莱布尼兹分别引入
“ d x ” 、 “ d y ”表 示 X和 Y的 微 分 , d是 微 分 ( d i f e r e n t i a l s ) “ 寓理于算 ” 是中国数学理论 的重要特征。 例如 中国古 l 代数学的代表作《 九章算术 》 , 只有题 目、 “ 答 日” 和“ 术 的缩 写 , 同年 引入积分号 “l” , 它是总和 ( s u m m a ) 的 日9 9 。 以“ 卷九・ 勾股” 为例, 共2 4 个例题, 举例丰富, 涉J 第一个字母 s 的拉长 。再如 : 对数( L o g a r i t h m) 的创立 及类型很多,遗憾的是未从大量实例中抽象出公式 I cZ = 者纳皮尔 , 他 曾套用对数整个词 , 1 6 2 4年开普勒把它 a 2 + b 2 , 更没有理论依据告诉 我们为什么这样做。 因! 简化为 “ L o g ” , 1 6 3 2年卡 瓦列 里首 次采用 “ l o 异 ” , 并 延 此我们只能根据史料得 出“ 寓理于算 ” 的结论 。 f 用至今 。符号的演变过程并不像 圆周率 、 勾股定理那 在古希腊时期, 享受教育的阶级轻视实际事务, I 样, 圆周率 、 勾股定理是 地球 上不 同地域 的人类 文明 视理论教学为高雅文化, 视应用数学为“ 奴隶数学” , 1
明朝数学

明朝数学中国古代数学经过先秦、两汉至隋唐的持续发展,在宋元时期达到了顶峰,并在相当长的时期内居于世界领先的地位,而到了明清时期则逐渐衰落了,这是由于受当时社会政治、经济、思想以及传统数学内在局限性等因素综合作用的结果。
与此同时,西方经过中世纪漫长的黑夜之后,资本主义生产获得蓬勃发展,科学技术也随着以意想不到的速度发展起来。
在数学方面,十六世纪时笛卡儿创立解析几何学,此后,牛顿和莱布尼茨创立微积分学,从而完成了由常量数学到变量数学,由初等数学到高等数学,由古典数学到近代数学的转变,西方数学走到了中国数学的前面。
在这种情况下,中国数学的研究方向和内容都发生了一些新的变化,其中在中国数学史上具有重要意义的事件是珠算术的发展和明代万历以后西方数学的引进。
中国为改变数学的落后局面和追赶世界数学主流,长途跋涉了达三个多世纪。
第一节传统数学研究的衰落明代研治数学的人为数不少,著述也相当多。
据有关书目文献记载,明代算书约有一百二十余种,其数量超过了以往的任何时代①。
特别是在明代,中国传统数学的一些重要典籍,如《周髀算经》、《九章算术》以及宋元数学家的著作,大多还有传本。
明初编辑《永乐大典》,曾将汉至明初的各种算术分类抄入事韵算字条下,共三十六卷。
清代纂修《四库全书》,戴震等从中辑录出《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《五经算术》、《数学九章》(即秦九韶《数书九章》)、《益古演段》等古典数学名著。
《永乐大典》算字条现尚存原著第16343—16344 卷,还有学者认为,现存《诸家算法及序记》是《永乐大典》第16361 卷的抄本②。
除上列之书外,从《永乐大典》现存部分中尚可见到杨辉《详解九章算法》、《日用算法》、《续古摘奇算法》、《丁巨算法》、贾亨《算法全能集》、何平子《详明算法》、严恭《通原算法》、《透帘细草》、《锦囊启源》等著作。
其中有不少是早已失传的内容,为后世保存了许多宝贵的数学史料。
中国传统数学在世界数学史上的地位 (1)

中国传统数学在世界数学史上的地位三、中国传统数学在世界数学史上的地位(中国数学史概述、2002年第24届国际数学家大会、华罗庚)人类进入文明社会五千余年来,世界数学中心发生了几次大的转移,在自公元前3-4世纪至14世纪初的一千七八百年间,中国数学是世界领先的,其间有三次大的高潮,之后又有三次不同程度的衰落。
经过一个世纪的努力,我们走出了六百年的低谷,重新成为数学大国,并正在为厕身数学强国的行列而奋斗。
大家知道,2002年8月20日-28日,在北京成功地举行了第24届国际数学家大会。
这是国际数学家大会首次在我国召开,也是第一次在发展中国家召开。
应该说,这是多年来在我国举行的最重要的一次国际学术会议。
世界数学联盟对会议地点的选择非常慎重,都是选择在数学发达的国家和地区。
过去的23次大会,大都在欧美举行,只有一次在日本,日本也是数学相当发达的国家。
因此,第24届国际数学家大会在召开,是国际数学界对我国当前数学发展成就的肯定和高度评价。
可以说,尽管我们的国家还属于第三世界,但是,经过近一个世纪的努力,我国的数学已经走出了近六百年的低谷,重新成为数学大国,并正为厕身于数学强国而奋斗。
我们说,我国数学走出了六百年的低谷。
六百年前,就是14世纪初,元朝中叶以前的情形如何呢?可以毫不夸张地说,这之前,我国数学在世界上领先了一千七八百年,就是说,从公元前3-4世纪至14世纪初,中国是当之无愧的世界数学强国。
第24届国际数学家大会会标我们从第24届国际数学家大会的会标说起。
大家知道,这是一个正方形,其中有4个一正方形的边长为弦的勾股形,而中心则是以勾股差为边长的小正方形。
这实际上是赵爽《周髀算经注》中的“弘图一”,刘徽《九章算术注》(公元263年)在证明《九章算术》的解勾股形公式时也用到这个图。
这个图产生于什么时候,不得而知。
刘徽注《九章算术》时曾“采其所见”。
稍前于刘徽的赵爽在《周髀算经注》的“勾股圆方图说”中使用这个图的文字叙述大体与刘徽相同,可见它们不是赵爽或刘徽个人的创造,而是数学界的共知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国传统数学的特点及其衰落
我要和大家分享的题目是中国传统数学的特点及其衰落,内容主要有两部分:中国传统数学的特点和中国传统数学衰落的原因。
周教授在前面已经非常详细地给我们介绍了中国传统数学的辉煌及其衰退,通过周教授的讲解和结合相关资料,我想和大家一起思考上面两个内容。
一、中国传统数学的特点
(1)属于应用数学
中国数学具有浓郁应用色彩,《孙子算经》中,“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”《张邱建算经》中“今有鸡翁一,直钱五;鸡母一,直钱三;鸡雏三,直钱一,凡百钱买鸡百只,问鸡翁、母、雏各几何?”等等类似例子在中国古代数学著作中非常多,都是与社会生活和生产密切相关而又普遍存在的问题,从以上这些可以知道,中国传统数学是不脱离社会生活与生产的实际、以解决实际问题为目标而发展的。
(2)以算法为中心
中国传统数学有着强烈的算法精神。
着重算法的概括,不讲究命题的形式推导。
从生活和生产中提出问题,然后用一般性的计算方法解决问题。
如《九章算术》中的消元法,虽然问题的提出具体到特殊的“上中下禾实一秉各几何”,但是它的解题方法可以解一般性的方程。
(3)具有较强的社会性。
中国传统数学文化中,中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。
同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。
(4)寓理于算,理论高度概括。
由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。
其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如平面几何中的“出入相补”原理、曲面体理论中的“截面原理”等等。
中国传统数学源远流长,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响,它曾经出现的辉煌是我们国人的骄傲。
中国古代数学从公元前后至公元14世纪,先后经历了三次发展高潮——两汉时期、魏晋南北朝时期和宋元时期。
但是到了明朝之后,社会动荡。
政治腐败,社会生产力不发达,不能促进科学技术发展,数学也开始走向衰落。
二、分析衰落的原因主要有以下几个方面:
(一)政治方面
纵观历史.朝代更替,政治黑暗。
社会处于动荡之中,农民起义和少数民族之间的战争不断。
元朝中期以后,统治日趋腐朽。
蒙古皇室内部争夺地位,政府无暇顾及教育以及学术研究。
在明朝后期,我国封建社会内部出现了资本主义的早期萌芽,本可以带动我国生产力的发展.可当时统治的黑暗.使资本主义萌芽衰落。
明朝以后“闭关自守”不利于中外的学术交流。
清朝统治使中国封建社会
开始走向衰落,传统数学逐步衰退,以至大大落后。
封建社会晚期的僵化与腐朽日趋严重,数学发展缺乏社会动力和思想刺激。
(二)当时的思想
明清的统治者对外部世界茫然无知.盲目自大,把先进的科学技术视为“奇技淫污”,闭关政策使中国孤立于正在兴起的资本主义世界之外,对中国文化的发展起了阻碍.也阻碍数学的发展。
还有在中国占支配性地位的儒家思想中,对格物致知的重要性认识
不足,使程朱理学更极端的贬低数学。
中国古代的思想体系(以儒家
为主),人们的思想也受到束缚甚至遭到禁钢,桎梏了知识人的思维,使他们不易在数学方面有所造诣。
中国古代数学只是极少数专业数学家的爱好,不受统治者重视、也不为普通人所知。
实行八股取士之后,书院大都以儒学为主,连读书人都不识算学了。
中国人只会机械地使用算盘和算筹,数学逐渐走向衰落。
(三)统治阶级的需求
当时的中国是一个极其封建的君主制度,一切的中国数学教育与研究始终置于政府的控制之下,以适应统治阶级的需要。
中国数学的发展是建立在为封建统治阶级服务的基础上,它主要是针对中国封建阶级的需要而建立的。
具有鲜明的阶级思想.不同与希腊的数学。
希腊人认为在数学中可以看到关于宇宙结构和设计的最终真理,使数学与自然界紧密联系起来。
并认为宇宙是按数学规律设计的,并且能被人们所认识的。
这就决定了中国的数学发展具有局限性。
(四)废除科举制
七世纪初隋朝,科举制度与国子监制度的确立,数学教育有了长足的发展。
唐初统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。
由太史令李淳风等人编纂注释《算经十书》作为算学馆学生用的课本,唐代还在科举考试中设了“明算科”。
这对古代数学发展起了重要的作用。
然而,十三世纪的考试制度中已删减数学内容,十四世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,于是自此中国古代数学呈现全面衰退的现象。
(五)中国教学本身的弱点:
算筹为中国数学发展提供了了技术工具,使中国在世界上最早采用了十进位值制记数法,使计算程序化和自动化。
然而筹算有一个不足是,许多数学问题有答案而无解答过程,这自然不利于数学知识的广泛应用与传播。
长期坚持走算法化的发展道路,限制了数学方法的流传和改进,影响了逻辑体系的发展,很难达到现代数学的发展水平。
珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。
珠算理论已成系统,标志着从筹算到珠算转变的完成。
但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。
通观中国古典数学著作的内容,几乎都与当时社会生活的实际需要有着密切的联系。
从《九章算术>开始。
中国算学经典基本上都遵从问题集解的体例编纂而成,其内容反映了当时社会政治、经济、军事、文化等方面的某些实际需要.具有浓厚的应用数学的色彩。
过分重实用,不利于抽象概念和命题的形成。
自古以来就重视“术”的应用。
用公式的推理和证明一直是不受重视的,这样的数学没有严密性,很少有说服力。
希腊人将数学抽象化,使之成为一种科学.具有不可估量的意义和价值。
希腊人一直持使用演绎证明,从公理出发,可
以得到相当多的定理和命题,属于公理化演绎体系。
着眼于”理”——首先给出公理、公设、定义,尔后在此基础七有条不紊地、由简到繁地进行一系列定理的证明。
中国数学理论表现为运算过程之中,即“寓理于算”。
中国数学家善于从错综复杂的数学现象中抽象出深刻的数学概念。
提炼出一般的数学原理,作为研究众多数学问题的基础。
这些都体现了中国数学运用性和计算性的特征。
(六)、经济的原因
14世纪之前.中国经济的发展虽然是有起有落,但都呈现出了向上
发展的趋势。
特别是在隋朝和唐朝。
经济的发展达到了颠峰。
但是.14世纪明王朝的建立.就标志着中国封建制度的衰落.它不仅表现在制度方面,更是表现在经济方面。
经济不发达,生产力受到阻碍,数学的发展也相应的受到阻碍。
这也是古中国数学衰落的一个方面。
综上所述,政治、社会、思想、经济的落后.和数学本身的缺陷导致了中国传统数学的衰落。