第二章数列练习题

合集下载

高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。

高中数学 第二章 数列 2.5 等比数列的前n项和 第1课时 等比数列前n项和的求解练习(含解析)新

高中数学 第二章 数列 2.5 等比数列的前n项和 第1课时 等比数列前n项和的求解练习(含解析)新

第1课时 等比数列前n 项和的求解A 级 基础巩固一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为() A .63 B .64 C .127 D .128解析:设数列{a n }的公比为q (q >0),则有a 5=a 1q 4=16,所以q =2,数列的前7项和为S 7=a 1(1-q 7)1-q =1-271-2=127.答案:C2.设在等比数列{a n }中,公比q =2,前n 项和为S n ,则S 4a 3的值为() A.154B.152C.74D.72解析:根据等比数列的公式,得S 4a 3=a 1(1-q 4)(1-q )·a 1q 2=(1-q 4)(1-q )q 2=1-24(1-2)×22=154. 答案:A3.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是()A .190B .191C .192D .193解析:设最下面一层灯的盏数为a 1,则公比q =12,n =7,由a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1271-12=381,解得a 1=192.答案:C4.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于()A .-6(1-3-10) B.19(1-3-10)C .3(1-3-10) D .3(1+3-10)解析:因为3a n +1+a n =0,a 2=-43≠0,所以a n ≠0,所以a n +1a n =-13,所以数列{a n }是以-13为公比的等比数列.因为a 2=-43,所以a 1=4,所以S 10=4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).答案:C5.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为()A .-2B .2C .-3D .3解析:设数列{a n }的公比为q ,若q =1,则S 2mS m=2,与题中条件矛盾,故q ≠1. 因为S 2m S m =a 1(1-q 2m )1-q a 1(1-q m)1-q =q m +1=9,所以q m=8. 所以a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,所以m =3,所以q 3=8, 所以q =2. 答案:B 二、填空题6.在等比数列{a n }中,公比q =2,前99项的和S 99=30,则a 3+a 6+a 9+…+a 99=________.解析:因为S 99=30,即a 1(299-1)=30,数列a 3,a 6,a 9,…,a 99也成等比数列且公比为8,所以a 3+a 6+a 9+…a 99=4a 1(1-833)1-8=4a 1(299-1)7=47×30=1207.答案:12077.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=1,{a n }的“差数列”的通项公式为a n +1-a n =2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n ,应用累加法可得a n =2n-1, 所以S n =a 1+a 2+a 3+…+a n =2+22+23+ (2)-n=2(1-2n)1-2-n=2n +1-n -2.答案:2n +1-n -28.(2016·某某卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:a 1+a 2=4,a 2=2a 1+1⇒a 1=1,a 2=3,再由a n +1=2S n +1,a n =2S n -1+1(n ≥2)⇒a n +1-a n =2a n ⇒a n +1=3a n (n ≥2),又a 2=3a 1, 所以a n +1=3a n (n ≥1),S 5=1-351-3=121.答案:1121 三、解答题9.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n 及其前n 项和S n ; (2)设b n =1+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n ·b n +1的前10项和T 10.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3.因此,a n =3n -1,S n =1(1-3n )1-3=3n-12.(2)由(1)知b n =1+log 3a n =1+(n -1)=n , 则1b n b n +1=1n (n +1)=1n -1n +1,所以T 10=11×2+12×3+…+110×11=1-12+12-13+…+110-111=1-111=1011.10.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *. (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n·a n ,求数列{b n }的前n 项和S n . (1)证明:由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a nn=1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)解:由(1)得a nn=1+(n -1)·1=n , 所以a n =n 2.从而b n =n ·3n.S n =1×31+2×32+3×33+…+n ·3n ,①3S n =1×32+2×33+…+(n -1)·3n +n ·3n +1.②① —②得,-2S n =31+32+…+3n -n ·3n +1=3·(1-3n)1-3-n ·3n +1=(1-2n )·3n +1-32.所以S n =(2n -1)·3n +1+34.B 级 能力提升1.在等比数列{a n }中,a 1+a 2+…+a n =2n -1(n ∈N *),则a 21+a 22+…+a 2n 等于() A .(2n -1)2B.13(2n -1)2C .4n-1 D.13(4n -1)解析:a 1+a 2+…+a n =2n-1,即S n =2n-1,则S n -1=2n -1-1(n ≥2),则a n =2n -2n -1=2n -1(n ≥2),又a 1=1也符合上式,所以a n =2n -1,a 2n =4n -1,所以a 21+a 22+…+a 2n =13(4n -1).答案:D2.等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则该数列的项数n =________.解析:a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=(a 1+a 2+a 3+a 4)q 4a 1+a 2+a 3+a 4=q 4=2.因为a 1+a 2+a 3+a 4=a 1(1-q 4)1-q =a 1(1-2)1-q =-a 11-q =1,所以a 11-q =-1.所以S n =a 1(1-q n )1-q=q n-1=15,所以q n=16,即(q 4)n4=24,所以n4=4,所以n =16.答案:163.已知等比数列{a n }的各项均为正数,且a 1+2a 2=5,4a 23=a 2a 6. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=2,且b n +1=b n +a n ,求数列{b n }的通项公式; (3)设=a nb n b n +1,求数列{}的前n 项和T n . 解:(1)设等比数列{a n }的公比为q ,由4a 23=a 2a 6得4a 23=a 24,所以q 2=4,由条件可知q >0,故q =2,由a 1+2a 2=5得a 1+2a 1q =5,所以a 1=1,故数列{a n }的通项公式为a n =2n -1.(2)由b n +1=b n +a n 得b n +1-b n =2n -1,故b 2-b 1=20,b 3-b 2=21,……,b n -b n -1=2n -2(n ≥2),以上n -1个等式相加得b n -b 1=1+21+…+2n -2=1·(1-2n -1)1-2=2n -1-1,由b 1=2,所以b n =2n -1+1(n ≥2).当n =1时,符合上式,故b n =2n -1+1(n ∈N *).(3)=a nb n b n +1=b n +1-b n b n b n +1=1b n -1b n +1, 所以T n =c 1+c 2+…+=⎝ ⎛⎭⎪⎫1b 1-1b 2+⎝ ⎛⎭⎪⎫1b 2-1b 3+…+⎝ ⎛⎭⎪⎫1b n -1b n +1=1b 1-1b n +1=12-12n +1.。

数学分析2数列极限总练习题

数学分析2数列极限总练习题

第二章 数列极限总练习题1、求下列数列的极限: (1)limn →∞n 3+3n n;(2)limn →∞n 5e n;(3)lim n →∞( n +2−2 n +1+ n ).解:(1)当n>3时,n 3<3n ,∴3= 3n n< n 3+3n n< 2·3n n=3 2n→3(n →∞). 由迫敛性定理可知:lim n →∞ n 3+3n n=3.(2)设a n =n 5e n ,则limn →∞a na n +1=lim n →∞e nn+1 5=e>1,∴limn →∞n 5e n=0.(3)lim n →∞n +2−2 n +1+ n =lim n →∞n +2− n +1 − n +1− n =lim n →∞ n +2+n +1−n +1+ n=0.2、证明:(1)lim n →∞n 2q n =0(|q|<1);(2)limn →∞lgn n a=0(a ≥1);(3)lim n →∞ n !n=0.证明:(1)当q=0 时,n 2q n =0,lim n →∞n 2q n =0;当0<|q|<1时,令|q|=1p ,则p>1. 设p=1+h ,h>0. 由(1+h)n >13!n(n-1)(n-2)h 3,(n>2) 得0<|n 2q n|<n 2(1+h)n <6h 3·n 2n(n −1)(n −2)=6h 3·1n(1−1n )(1−12)→0(n →∞).由迫敛性定理可知:lim n →∞n 2q n =0 (|q|<1).(2)任给ε>0,则10ε>1, n n→1(n →∞),故存在N ,当n>N 时,有1< n n<10ε,取对数后得:0<lgn n<ε,∴limn →∞lgnn=0. 从而当a ≥1时,0<lgn n a ≤lgn n→0(n →∞).由迫敛性定理可知:limn →∞lgn n a=0(a ≥1).(3)任给ε>0,令M=1ε,则limn →∞M nn!=0.又对ε0=1,存在自然数N ,使得当n>N 时,M nn!<1,即1n!<εn , ∴当n>N 时,有0< n !n <ε,∴limn →∞ n !n=0.3、设lim n →∞a n =a ,证明:(1)limn →∞a 1+a 2+⋯+a nn=a(又问由此等式能否反过来推出lim n →∞a n =a );(2)若a n >0,(n=1,2,…),则lim n →∞a 1a 2…a n n =a.证:(1)∵lim n →∞a n =a ,∴对任意的ε>0,必存在N 1,使当n>N 1时,|a n -a|<ε,令m=max{|a 1-a|,|a 2-a|,…,|a n -a|},于是n>N 1时,a 1+a 2+⋯+a nn −a =a 1−a +a 2−a +⋯+a n −an≤1n (|a 1-a|+|a 2-a|+…+|a N 1+1-a|+|a N 1+2-a|+…+|a n -a|)<N 1m n+(n −N 1)nε<N 1m n+ε.又limn →∞N 1m n=0. ∴对已给的ε>0,存在N 2,当n>N 2时,N 1mn<ε.取N=max{N 1,N 2},则当n>N 时, a 1+a 2+⋯+a nn−a <2ε,∴limn →∞a 1+a 2+⋯+a nn=a. 此等式反过来不能推出lim n →∞a n =a .例如a n =(-1)n 不收敛,但limn →∞a 1+a 2+⋯+a nn=0.(2)对任意自然数n ,a n >0,∴当a ≠0,lim n →∞1a n=1a .又11a 1+1a 2+⋯+1a nn=n1a 1+1a 2+⋯+1a n≤ a 1a 2…a n ≤a 1+a 2+⋯+a nn→a (n →∞).由迫敛性定理可知:lim n →∞a 1a 2…a n n =a.当a=0时,对任给的ε>0,存在N 1,使当n>N 1时,0<a n <ε,于是当n>N 1时,0< a 1a 2…a n n = a 1a 2…a N 1n · a N 1+1a N 1+2…a n n< a 1a 2…a N 1n·εn −N 1n< a 1a 2…a N 1·ε−N 1n·ε,∵lim n →∞a 1a 2…a N 1·ε−N 1n=1,从而存在N 2,使当n>N 2时,a 1a 2…a N 1·ε−N 1n<2,故当n>N=max{N 1,N 2}时,必有0< a 1a 2…a n n <2ε,∴lim n →∞a 1a 2…a n n=a.4、应用上题的结论证明下列各题: (1)limn →∞1+12+⋯+1nn=0;(2)lim n →∞a n =1(a>0);(3)lim n →∞n n=1;(4)limn →∞n !n=0;(5)limn →∞ n !n=e ;(6)lim n →∞1+ 2+⋯+ n nn =1;(7)若limn →∞b n +1b n=a (b n >0),则lim n →∞b n n =a ;(8)若lim n →∞a n −a n−1 =d ,则limn →∞a nn=d .证:(1)∵lim n →∞1n =0;∴limn →∞1+12+⋯+1nn =0;(2)设a 1=a, a n =1 (n=2,3…),则lim n →∞a n =1;∴lim n →∞a n=lim n →∞a 1a 2…a n n =1.(3)设a 1=1, a n =nn −1 (n=2,3…),则lim n →∞a n =1;∴lim n →∞n n=lim n →∞a 1a 2…a n n =1.(4)limn →∞n !n=lim n →∞11·12···1n n=limn →∞1n=0.(5)设a n =n nn ! (n=1,2…),则a 1=1;limn →∞ n !n=lim n →∞a n n=lim n →∞a 2a 1·a 3a 2···a nan −1n=limn →∞a na n −1=lim n →∞1+1n−1n−1=e.(6)lim n →∞1+ 2+⋯+ n nn =lim n →∞n n=1. (7)令b 0=1,则lim n →∞b n n =lim n →∞b 1b 0·b 2b 1·b3b 2···b nb n −1n=limn →∞b n +1b n=a (b n >0).(8) lim n →∞a nn=lim n →∞(a 2−a 1)+(a 3−a 2)+⋯+(a n −a n −1)n+a1n =lim n →∞a n −a n−1 =d .5、证明:若{a n }为递增数列,{b n }为递减数列,且lim n →∞(a n −b n )=0,则lim n →∞a n 与lim n →∞b n 都存在且相等.证:∵lim n →∞(a n −b n )=0,∴{a n -b n }有界,不妨设A ≤a n -b n ≤B ,A,B 为常数. ∵{a n }递增,{b n }递减,∴a n ≤B+b n ≤B+b 1,b n ≥a n -B ≥a 1-B. ∴{a n }{b n }单调有界 ∴{a n }{b n }都有极限. 而lim n →∞(a n −b n )= lim n →∞a n −lim n →∞b n =0,∴lim n →∞a n =lim n →∞b n .6、设数列{a n }满足:存在正数M ,对一切n 有: A n =|a 2-a 1|+|a 3-a 2|+…+|a n -a n-1|≤M 证明:{a n }与{A n }都收敛。

高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必

高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必

第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。

数列练习题_附答案

数列练习题_附答案

数列练习题_附答案强⼒推荐⼈教版数学⾼中必修5习题第⼆章数列1.{a n }是⾸项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).A .667B .668C .669D .6702.在各项都为正数的等⽐数列{a n }中,⾸项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都⼤于零的等差数列,公差d ≠0,则( ).A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知⽅程(x 2-2x +m )(x 2-2x +n )=0的四个根组成⼀个⾸项为41的等差数列,则|m -n |等于( ).A .1B .43C .21D . 83 5.等⽐数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .1926.若数列{a n }是等差数列,⾸项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成⽴的最⼤⾃然数n 是( ).A .4 005B .4 006C .4 007D .4 0087.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等⽐数列, 则a 2=( ).A .-4B .-6C .-8D .-108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1 B .-1 C .2 D .21 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等⽐数列,则212b a a 的值是( ).A .21B .-21C .-21或21D .4110.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38B .20C .10D .9⼆、填空题11.设f (x )=221+x ,利⽤课本中推导等差数列前n 项和公式的⽅法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等⽐数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6=.(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6=.(3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .13.在38和227之间插⼊三个数,使这五个数成等⽐数列,则插⼊的三个数的乘积为. 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 .15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平⾯内有n 条直线(n ≥3),其中有且仅有两条直线互相平⾏,任意三条直线不过同⼀点.若⽤f (n )表⽰这n 条直线交点的个数,则f (4)=;当n >4时,f (n )=.三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证a c b +,b a c +,cb a +也成等差数列.18.设{a n }是公⽐为 q 的等⽐数列,且a 1,a 3,a 2成等差数列.(1)求q 的值;(2)设{b n }是以2为⾸项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,⽐较S n 与b n 的⼤⼩,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n n 2 S n (n =1,2,3…).求证:数列{nS n }是等⽐数列.第⼆章数列参考答案⼀、选择题1.C解析:由题设,代⼊通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699.2.C解析:本题考查等⽐数列的相关概念,及其有关计算能⼒.设等⽐数列{a n }的公⽐为q (q >0),由题意得a 1+a 2+a 3=21,即a 1(1+q +q 2)=21,⼜a 1=3,∴1+q +q 2=7.解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84.3.B .解析:由a 1+a 8=a 4+a 5,∴排除C .⼜a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.4.C解析:解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,⽽⽅程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4,∴d =21,a 1=41,a 4=47是⼀个⽅程的两个根,a 1=43,a 3=45是另⼀个⽅程的两个根.∴167,1615分别为m 或n ,∴|m -n |=21,故选C .解法2:设⽅程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .由等差数列的性质:若+s =p +q ,则a +a s =a p +a q ,若设x 1为第⼀项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47,∴m =167,n =1615,∴|m -n |=21. 5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27,∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120. 6.B解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有⼀正数⼀负数,⼜a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0,∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0,故4 006为S n >0的最⼤⾃然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最⼤值.∵S n 是关于n 的⼆次函数,如草图所⽰,∴2 003到对称轴的距离⽐2 004到对称轴的距离⼩,∴20074在对称轴的右侧.根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最⼤⾃然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6,⼜由a 1,a 3,a 4成等⽐数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8,∴a 2=-8+2=-6.(第6题)8.A 解析:∵59S S =2)(52)(95191a a a a ++=3559a a ??=59·95=1,∴选A . 9.A解析:设d 和q 分别为公差和公⽐,则-4=-1+3d 且-4=(-1)q 4,∴d =-1,q 2=2,∴212b a a -=2q d -=21. 10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,⼜a n ≠0,∴a n =2,{a n }为常数数列,⽽a n =1212--n S n ,即2n -1=238=19,∴n =10.⼆、填空题11.23.解析:∵f (x )=221+x ,∴f (1-x )=2211+-x =x x 2222?+=x x 22221+,∴f (x )+f (1-x )=x 221++x x 22221+?=x x 222211+?+=x x 22)22(21++=22.设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6),则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62,∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121==+=+q q a a a a ,∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q qS S a a a S a a a a S ,∴a 17+a 18+a 19+a 20=S 4q 16=32.13.216.解析:本题考查等⽐数列的性质及计算,由插⼊三个数后成等⽐数列,因⽽中间数必与38,227同号,由等⽐中项的中间数为22738?=6,∴插⼊的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10,∴6(a 4+a 10)=24,a 4+a 10=4,∴S 13=2+13131)(a a =2+13104)(a a =2413?=26. 15.-49.解析:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10 =2+7104)(a a =25++-755)(d a d a =7(a 5+2d )=-49.16.5,21(n +1)(n -2).解析:同⼀平⾯内两条直线若不平⾏则⼀定相交,故每增加⼀条直线⼀定与前⾯已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5,f (5)=f (4)+4=2+3+4=9,……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2).三、解答题17.分析:判定给定数列是否为等差数列关键看是否满⾜从第2项开始每项与其前⼀项差为常数.证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5,n =1时,亦满⾜,∴a n =6n -5(n ∈N*).⾸项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*),∴数列{a n }成等差数列且a 1=1,公差为6.(2)∵a 1,b 1,c 1成等差数列,∴b 2=a 1+c1化简得2ac =b (a +c ). a c b ++cb a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·bc a +,∴a c b +,b a c +,cb a +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,∵a 1≠0,∴2q 2-q -1=0,∴q =1或-21.(2)若q =1,则S n =2n +21-)(n n =23+2n n .当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n .若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n .当n ≥2时,S n -b n =S n -1=4-11-)0)((n n ,故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n ,∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n ,所以1+1+n S n =n S n 2.故{n S n }是以2为公⽐的等⽐数列.。

2022年高中数学第二章数列2-2等差数列的性质练习含解析新人教A版必修

2022年高中数学第二章数列2-2等差数列的性质练习含解析新人教A版必修

课时训练8 等差数列的性质一、等差数列性质的应用1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=( )A.12B.16C.20D.24答案:B2.等差数列{a n}中,若a2+a4 024=4,则a2 013=( )A.2B.4C.6D.-2答案:A解析:2a2013=a2+a4024=4,∴a2013=2.3.在等差数列{a n}中,a3+3a8+a13=120,则a3+a13-a8等于( )A.24B.22C.20D.-8答案:A解析:根据等差数列的性质可知a3+a13=2a8,所以已知等式可变为2a8+3a8=120,解得a8=24,所以a3+a13-a8=2a8-a8=a8=24.4.如果等差数列{a n}中,a1=2,a3=6,则数列{2a n-3}是公差为 的等差数列.答案:4解析:设数列{a n}的公差为d,则a3-a1=2d=4,∴d=2.∴数列{2a n-3}的公差为4.5.在等差数列{a n}中,a3=7,a5=a2+6,则a6= .答案:13解析:设等差数列{a n}的公差为d.∵a5=a2+6,∴a5-a2=6,即3d=6,d=2.∴a6=a3+3d=7+3×2=13.6.(2015河南郑州高二期末,14)若2,a,b,c,9成等差数列,则c-a= .答案:72解析:由等差数列的性质可得2b=2+9,解得b=112.又可得2a=2+b=2+112=152,解得a=154,同理可得2c=9+112=292,解得c=294,故c-a=294−154=144=72.二、等差数列的综合应用7.已知等差数列{a n}中,a7=π4,则tan(a6+a7+a8)等于( )A.-√33B.-√2C.-1D.1答案:C解析:在等差数列中,a6+a7+a8=3a7=3π4,∴tan(a6+a7+a8)=tan3π4=-1.8.已知数列{a n}是等差数列,a4=15,a7=27,则过点P(3,a3),Q(5,a5)的直线斜率为( )A.4B.14C.-4 D.-14答案:A解析:由数列{a n}是等差数列,知a n是关于n的一次函数,其图象是一条直线上的等间隔的点(n,a n),因此过点P(3,a3),Q(5,a5)的直线斜率即过点(4,15),(7,27)的直线斜率,所以直线的斜率k=27-157-4 =4.9.在等差数列{a n}中,若a4+a6+a8+a10+a12=90,则a10-13a14的值为( )A.12B.14C.16D.18答案:A解析:由等差数列的性质及a4+a6+a8+a10+a12=90得5a8=90,即a1+7d=18,∴a10-13a14=a1+9d-13(a1+13d)=23(a1+7d)=23×18=12,故选A.10.数列{a n}满足a1=1,a n+1=(n2+n-λ)a n(n=1,2,…),λ是常数.(1)当a2=-1时,求λ与a3的值;(2)数列{a n}是否可能为等差数列?若可能,求出它的通项公式;若不可能,请说明理由.解:(1)由条件得a2=(2-λ)a1,又a1=1,a2=-1,所以λ=3,从而a3=(22+2-3)a2=-3.(2)假设数列{a n}是等差数列,由a1=1,a n+1=(n2+n-λ)a n得a2=2-λ,a3=(6-λ)(2-λ),a4=(12-λ)(6-λ)(2-λ).由假设知2a2=a1+a3,即2(2-λ)=1+(6-λ)(2-λ),解得λ=3,于是a2=-1,a3=-3,a4=-27,所以a2-a1=-2,而a4-a3=-24,与数列{a n}是等差数列矛盾,故数列{a n}不可能是等差数列.(建议用时:30分钟)1.已知{a n}为等差数列,a2+a8=12,则a5等于( )A.4B.5C.6D.7答案:C解析:由等差数列性质得a2+a8=2a5=12,所以a5=6.2.在等差数列{a n}中,a1+3a8+a15=120,则3a9-a11的值为( )A.6B.12C.24D.48答案:D解析:∵a1+a15=2a8,∴a1+3a8+a15=5a8.∴5a8=120,a8=24.而3a9-a11=3(a8+d)-(a8+3d)=2a8=48.∴选D.3.若数列{a n}为等差数列,a p=q,a q=p(p≠q),则a p+q为( )A.p+qB.0C.-(p+q)D.p+q2答案:B解析:公差d=p-qq-p=-1,∴a p+q=a p+(p+q-p)d=q+q×(-1)=0.4.由公差d≠0的等差数列a1,a2,…,a n,…组成一个数列a1+a3,a2+a4,a3+a5,…,下列说法正确的是( )A.该新数列不是等差数列B.是公差为d的等差数列C.是公差为2d的等差数列D.是公差为3d的等差数列答案:C解析:∵(a n+1+a n+3)-(a n+a n+2)=(a n+1-a n)+(a n+3-a n+2)=2d,∴数列a1+a3,a2+a4,a3+a5,…是公差为2d的等差数列.5.已知{a n}为等差数列,若a1+a5+a9=8π,则cos(a3+a7)的值为( )A.√32B.-√32C.12D.-12答案:D解析:∵{a n}为等差数列,a1+a5+a9=8π,∴a5=83π,cos(a3+a7)=cos(2a5)=cos163π=-12.6.等差数列{a n}中,已知a3=10,a8=-20,则公差d= . 答案:-6解析:由题知d=a8-a38-3=-305=-6.7.在等差数列{a n}中,已知a8+m=10,a8-m=6,其中m∈N*,且1≤m≤7,则a8= . 答案:8解析:∵a 8+m +a 8-m =2a 8,∴a 8=8.8.如果有穷数列a 1,a 2,…,a m (m 为正整数)满足条件:a 1=a m ,a 2=a m-1,…,a m =a 1,则称其为“对称”数列.例如数列1,2,5,2,1与数列8,4,2,4,8都是“对称”数列.已知在21项的“对称”数列{c n }中,c 11,c 12,…,c 21是以1为首项,2为公差的等差数列,c 2= .答案:19解析:因为c 11,c 12,…,c 21是以1为首项,2为公差的等差数列,又{c n }为21项的对称数列,所以c 2=c 20=c 11+9d=1+9×2=19.9.已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.解:∵a 1+a 7=2a 4,∴a 1+a 4+a 7=3a 4=15.∴a 4=5.又∵a 2a 4a 6=45,∴a 2a 6=9.即(a 4-2d )(a 4+2d )=9,即(5-2d )(5+2d )=9,解得d=±2.若d=2,a n =a 4+(n-4)d=2n-3;若d=-2,a n =a 4+(n-4)d=13-2n.10.已知{a n }为等差数列,a 15=8,a 60=20,求a 75.解:解法一:因为{a n }为等差数列,∴a 15,a 30,a 45,a 60,a 75也成等差数列,设其公差为d ,a 15为首项,则a 60为其第4项,∴a 60=a 15+3d ,得d=4.∴a 75=a 60+d=20+4=24.解法二:设{a n }的公差为d ,因为a 15=a 1+14d ,a 60=a 1+59d ,∴{a 1+14d =8,a 1+59d =20,解得{a 1=6415,d =415.故a 75=a 1+74d=6415+74×415=24.。

2022年高中数学第二章数列4等比数列第1课时练习含解析人教版必修

第1课时一、选择题1.等比数列{a n}中,a1=4,a2=8,则公比等于( )A.1 B.2C.4D.8[答案] B[解析] ∵a1=4,a2=8,∴公比q==2.2.若等比数列的首项为,末项为,公比为,则这个数列的项数为( ) A.3 B.4C.5 D.6[答案] B[解析] ·()n-1=,∴()n-1==()3∴n=4.3.已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7=( )A.64B.81C.128D.243[答案] A[解析] ∵{a n}是等比数列,a1+a2=3,a2+a3=6,∴设等比数列的公比为q,则a2+a3=(a1+a2)q=3q=6,∴q=2.∴a1+a2=a1+a1q=3a1=3,∴a1=1,∴a7=a1q6=26=64.4.已知等比数列{a n}的公比为正数,且a3·a9=2a,a2=1,则a1=( ) A. B.C.D.2[答案] B[解析] 设公比为q,由已知得a1q2·a1q8=2(a1q4)2,即q2=2,因为等比数列{a n}的公比为正数,所以q=,故a1===,故选B.5.如果-1,a,b,c,-9成等比数列,那么( )A.b=3,ac=9B.b=-3,ac=9C.b=3,ac=-9D.b=±3,ac=9[答案] B[解析] 由条件知,∵,∴a2>0,∴b<0,∴b=-3,故选B.6.已知{a n}是公比为q(q≠1)的等比数列,a n>0,m=a5+a6,k=a4+a7,则m与k的大小关系是( )A.m>kB.m=kC.m<kD.m与k的大小随q的值而变化[答案] C[解析] m-k=(a5+a6)-(a4+a7)=(a5-a4)-(a7-a6)=a4(q-1)-a6(q-1)=(q-1)(a4-a6)=(q-1)·a4·(1-q2)=-a4(1+q)(1-q)2<0(∵a n>0,q≠1).二、填空题7.已知等比数列{a n}中,a3=3,a10=384,则该数列的通项a n=__________.[答案] 3·2n-3[解析] ∵,∴∴q7=128,∴q=2,∴a1=,∴a n=a1q n-1=3·2n-3.8.已知等比数列前3项为,-,,则其第8项是________.[答案] -[解析] ∵a1=,a2=a1q=q=-,∴q=-,∴a8=a1q7=×(-)7=-.三、解答题9.若a,2a+2,3a+3成等比数列,求实数a的值.[解析] ∵a,2a+2,3a+3成等比数列,∴(2a+2)2=a(3a+3),解得a=-1或a=-4.当a=-1时,2a+2,3a+3均为0,故应舍去.当a=-4时满足题意,∴a=-4.10.已知:数列{a n}的首项a1=5,前n项和为S n,且S n+1=2S n+n+5(n∈N*).求证:数列{a n+1}是等比数列.[证明] 由已知S n+1=2S n+n+5(n∈N*).当n≥2时,S n=2S n-1+n+4.两式相减得S n+1-S n=2(S n-S n-1)+1,即a n+1=2a n+1,从而a n+1+1=2(a n+1).当n=1时,S2=2S1+1+5,∴a2+a1=2a1+6.又∵a1=5,∴a2=11,从而a2+1=2(a1+1),故总有a n+1+1=2(a n+1),n∈N*.又∵a1=5,a1+1≠0.从而=2,即数列{a n+1}是首项为6,公比为2的等比数列.一、选择题1.各项都是正数的等比数列{a n}的公比q≠1,且a2,a3,a1成等差数列,则的值为( )A. B.C.D.或[答案] C[解析] ∵a2,a3,a1成等差数列,∴a3=a2+a1,∵{a n}是公比为q的等比数列,∴a1q2=a1q+a1,∴q2-q-1=0,∵q>0,∴q=.∴===.2.数列{a n}是公差不为0的等差数列,且a1、a3、a7为等比数列{b n}的连续三项,则数列{b n}的公比为( )A.B.4C.2D.[答案] C[解析] ∵a1、a3、a7为等比数列{b n}中的连续三项,∴a=a1·a7,设{a n}的公差为d,则d≠0,∴(a1+2d)2=a1(a1+6d),∴a1=2d,∴公比q===2,故选C.3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为( ) A.16B.27C.36D.81[答案] B[解析] 设公比为q,由题意,得,∴q2=9,∵a n>0,∴q=3.∴a1=,∴a4=a1q3=,a5=a1q4=,∴a4+a5=+==27.4.若正数a,b,c依次成公比大于1的等比数列,则当x>1时,log a x,log b x,log x( )cA.依次成等差数列B.依次成等比数列C.各项的倒数依次成等差数列D.各项的倒数依次成等比数列[答案] C[解析] +=log x a+log x c=log x(ac)=log x b2=2log x b=∴,,成等差数列.二、填空题5.在8和5 832之间插入5个数,使它们组成以8为首项的等比数列,则此数列的第5项是__________.[答案] 648[解析] 设公比为q,则8q6=5 832,∴q6=729,∴q2=9,∴a5=8q4=648.6.在等比数列{a n}中,a n>0,且a n+2=a n+a n+1,则数列的公比q=________.[答案] [解析] ∵a n+2=a n+a n+1,∴q2a n=a n+qa n.∵a n>0,∴q2-q-1=0,q>0,解得q=,或q=(舍去).三、解答题7.等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式;(2)若a3、a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n 项和S n.[解析] (1)设{a n}的公比为q,由已知得16=2q3,解得q=2,∴a n=a1q n-1=2n.(2)由(1)得a3=8,a5=32,则b3=8,b5=32,设{b n}的公差为d,则有解得从而b n=-16+12(n-1)=12n-28,∴数列{b n}的前n项和S n==6n2-22n.8.在各项均为负数的数列{a n}中,已知2a n=3a n+1,且a2·a5=,证明{a n}是等比数列,并求出通项公式.[证明] ∵2a n=3a n+1,∴=,故数列{a n}是公比q=的等比数列.又a2·a5=,则a1q·a1q4=,即a·()5=()3.由于数列各项均为负数,则a1=-.∴a n=-×()n-1=-()n-2.。

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修51.等比数列{a n}的各项都是正数,若a1=81,a5=16,则它的前5项和是( B )(A)179 (B)211 (C)248 (D)275解析:由16=81×q4,q>0得q=,所以S5==211.故选B.2.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( A )(A)(B)-(C)±(D)±3解析:依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6==.故选A.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( C )(A)(B)-(C)(D)-解析:设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=.故选C.4.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( C )(A)2 (B)(C)4 (D)解析:因为a3=3S2+2,a4=3S3+2,所以a4-a3=3(S3-S2)=3a3,即a4=4a3,所以q==4,故选C.5.等比数列{a n}的前n项和S n=3n-a,则实数a的值为( B )(A)0 (B)1 (C)3 (D)不存在解析:法一当n≥2时,a n=S n-S n-1=3n-3n-1=2·3n-1,==3.又a1=S1=3-a,a2=2×3=6,则=.因为{a n}是等比数列,所以=3,得a=1.故选B.法二由等比数列前n项和公式知,3n系数1与-a互为相反数,即-a=-1,则a=1.故选B.6.在14与之间插入n个数组成等比数列,若各项和为,则数列的项数为( B )(A)4 (B)5 (C)6 (D)7解析:设公比为q,由等比数列的前n项和公式及通项公式得解之,得则数列的项数为5.故选B.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( C )(A)24里(B)12里(C)6里(D)3里解析:记每天走的路程里数为{a n},易知{a n}是公比q=的等比数列,S6=378,S6==378,所以a1=192,所以a6=192×=6,故选C.8.设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,所以公比q=3,故等比数列通项a n=a1q n-1=3n-1.答案:3n-19.在等比数列{a n}中,已知a1+a2+a3=1,a4+a5+a6=-2,则该数列的前15项和S15= .解析:记b1=a1+a2+a3,b2=a4+a5+a6,…,b5=a13+a14+a15,依题意{b n}构成等比数列,其首项b1=1,公比为q==-2,则{b n}的前5项和即为{a n}的前15项和S15==11.答案:1110.在等比数列{a n}中,公比q=,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10= .解析:据题意知log2(·q1+2+…+9)=log2(·q45)=55,即=2100.又a n>0,所以a1=210,所以S10=211-2.答案:211-211.已知等比数列前20项和是21,前30项和是49,则前10项和是.解析:由S10,S20-S10,S30-S20成等比数列,所以(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21).所以S10=7或S10=63.答案:7或6312.已知数列{a n} 的前n项和为S n,a1=1,S n=2a n+1,求S n的值.解:因为S n=2a n+1,所以n≥2时,S n-1=2a n.因为a n=S n-S n-1=2a n+1-2a n,所以3a n=2a n+1,所以=.又因为S1=2a2,所以a2=,所以=,所以{a n}从第二项起是以为公比的等比数列.所以S n=a1+a2+a3+…+a n=1+=()n-1.13.知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.解:(1)设等差数列{a n}的公差为d,由题意得d===3,所以a n=a1+(n-1)d=3n(n=1,2,…).设等比数列{b n-a n}的公比为q,由题意得q3===8,解得q=2.所以b n-a n=(b1-a1)q n-1=2n-1.从而b n=3n+2n-1(n=1,2,…).(2)由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为=2n-1.所以数列{b n}的前n项和为n(n+1)+2n-1.14.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)求证是等比数列,并求{a n}的通项公式;(2)求证++…+<.证明:(1)由a n+1=3a n+1得a n+1+=3(a n+).又a1+=,所以是首项为,公比为3的等比数列.所以a n+=,因此{a n}的通项公式为a n=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=(1-)<.所以++…+<.15.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则+++…+等于( B )(A)(3n-1)2(B)(9n-1)(C)9n-1 (D)(3n-1)解析:因为a1+a2+…+a n=3n-1,n∈N*,n≥2时,a1+a2+…+a n-1=3n-1-1,所以当n≥2时,a n=3n-3n-1=2·3n-1,又n=1时,a1=2适合上式,所以a n=2·3n-1,故数列{}是首项为4,公比为9的等比数列.因此++…+==(9n-1).故选B.16.已知S n是等比数列{a n}的前n项和,若存在m∈N*,满足=9,=,则数列{a n}的公比为( B )(A)-2 (B)2 (C)-3 (D)3解析:设公比为q,若q=1,则=2,与题中条件矛盾,故q≠1.因为==q m+1=9,所以q m=8.所以==q m=8=,所以m=3,所以q3=8,所以q=2.故选B.17.设各项都是正数的等比数列{a n},S n为前n项和且S10=10,S30=70,那么S40= .解析:依题意,知数列{a n}的公比q≠-1,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30;又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,S40=150.答案:15018.已知等差数列{a n}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{b n}的第2项,第3项,第4项.(1)求数列{a n}与{b n}的通项公式;(2)设数列{c n}对于任意n∈N*均有+++…+=a n+1成立,求c1+c2+c3+…+c2 015+c2 016的值. 解:(1)依题意得b2=a2=a1+d,b3=a5=a1+4d,b4=a14=a1+13d,由等比中项得(1+4d)2=(1+d)(1+13d),解得d=2或d=0(舍去),因此a n=1+2(n-1)=2n-1,b2=3,b3=9,b4=27,故数列{b n}是首项为1,公比为3的等比数列.因此b n=3n-1.(2)因为+++…+=a n+1,所以当n≥2时,+++…+=a n,两式作差得=a n+1-a n=d,又d=2,故c n=2×3n-1,又=a2,所以c1=3,因此数列c n=。

(数学分析习题内容答案)第二章

第二章 数列极限习题2.按N -ε定义证明:(1)11lim=+∞→n nn证明 因为 n n n n 11111<+=-+,所以0>∀ε,取ε1=N ,N n >∀,必有ε<<-+n n n 111. 故11lim =+∞→n n n(2)23123lim 22=-+∞→n n n n 证明 因为 n n n n n n n n n n n n n 32525)1(232)12(23223123222222<=<-++<-+=--+)1(>n ,于是0>∀ε,取}3,1max{ε=N ,N n >∀,有 ε<<--+n n n n 32312322. 所以23123lim 22=-+∞→n n n n(3)0!lim =∞→n n n n证明 因为n n n n n n n n n n n n n n nn 11211)1(!0!≤⋅⋅⋅-=⋅⋅⋅-==-ΛΛΛ,于是0>∀ε,取ε1=N ,N n >∀,必有ε<≤-n n n n10!. 所以0!lim =∞→n n n n(4)sinlim =∞→nn π证明 因为n nnπππ≤=-sin0sin,于是0>∀ε,取επ=N ,N n >∀,必有εππ<≤-nn0sin. 所以sinlim =∞→nn π(5))1(0lim>=∞→a a nnn证明 因为1>a ,设)0(1>+=h h a ,于是222)1(2)1(1)1(h n n h h n n nh h a n n n -≥++-++=+=Λ,从而22)1(22)1(0h n hn n n a n a n n n -=-≤=-,所以0>∀ε,取122+=h N ε,N n >∀,有ε<-≤-2)1(20h n a n n . 故0lim =∞→n n a n3.根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列:(1)n n 1lim∞→;(2)n n 3lim ∞→;(3)31limn n ∞→(4)n n 31lim ∞→;(5)n n 21lim ∞→;(6)n n 10lim ∞→;(7)n n 21lim ∞→ 解 (1)01lim 1lim 21==∞→∞→n nn n (用例2的结果,21=a ),无穷小数列.(2)13lim =∞→n n ,(用例5的结果,3=a )(3)01lim3=∞→n n ,(用例2的结果,3=a ),无穷小数列.(4)031lim 31lim =⎪⎭⎫ ⎝⎛=∞→∞→nn n n ,(用例4的结果,31=q ),无穷小数列.(5)021lim 21lim =⎪⎭⎫ ⎝⎛=∞→∞→nn n n ,(用例4的结果,21=q ),无穷小数列. (6)110lim =∞→n n ,(用例5的结果,10=a ).(7)121lim 21lim==∞→∞→nn nn ,(用例5的结果,21=a ). 4.证明:若a a n n =∞→lim ,则对任一正整数 k ,有a a k n k =+∞→lim证明 因为aa n n =∞→lim ,所以εε<->∀>∃>∀||,,0,0a a N n N n ,于是,当Nk >时,必有N k n >+,从而有ε<-+||a a k n ,因此a a k n k =+∞→lim .5.试用定义1证明:(1)数列⎭⎬⎫⎩⎨⎧n 1不以1为极限;(2)数列}{)1(n n -发散.证明(用定义1证明) 数列}{n a 不以 a 为极限(即a a n n ≠∞→lim )的定义是:00>∃ε,0>∀N ,N n >∃0,0||0ε≥-a a n(1)取210=ε,0>∀N ,取N N n >+=20,有0021)1(212112111ε==++≥++=-+=-N N N N N n ,故数列⎭⎬⎫⎩⎨⎧n 1不以1为极限.另证(用定义1’证明) 取210=ε,则数列⎭⎬⎫⎩⎨⎧n 1中满足2>n 的项(有无穷多个)显然都落在1的邻域)23,21();1(0=εU 之外,故数列⎭⎬⎫⎩⎨⎧n 1不以1为极限.(2)数列}{)1(nn-=},6,51,4,31,2,1{Λ,对任何R a ∈,取10=ε,则数列}{)1(n n -中所有满足“n 为偶数,且1+>a n ”的项(有无穷多个),都落在 a 的邻域)1,1();(0+-=a a a U ε之外,故数列}{)1(nn -不以任何数 a 为极限,即数列}{)1(nn -发散.6.证明定理,并应用它证明数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 定理 数列}{n a 收敛于 a 充要条件是:}{a a n -为无穷小数列. (即a a n n =∞→lim 的充要条件是0)(lim =-∞→a a n n )证明 (必要性)设aa n n =∞→lim ,由数列极限的定义,,0,0>∃>∀N εN n >∀,有ε<--=-|0)(|||a a a a n n ,所以 0)(lim =-∞→a a n n .(充分性)设0)(lim =-∞→a a n n ,由数列极限的定义,,0,0>∃>∀N εN n >∀,有ε<-=--|||0)(|a a a a n n ,所以a a n n =∞→lim .下面证明:数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 因为⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧--+n n n n )1(1)1(1是无穷小数列,所以数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 7.证明:若a a n n =∞→lim ,则||||lim a a n n =∞→. 当且仅当 a 为何值时反之也成立?证明 设aa n n =∞→lim ,由数列极限的定义,,0,0>∃>∀N εN n >∀,ε<-≤-||||||a a a a n n ,所以也有||||lim a a n n =∞→. 但此结论反之不一定成立,例如数列})1{(n -.当且仅当 a = 0 时反之也成立. 设0||lim =∞→n n a ,于是,0,0>∃>∀N εN n >∀,ε<=||||n n a a ,所以aa n n =∞→lim .8.按N -ε定义证明:(1)0)1(lim =-+∞→n n n ; (2)0321lim3=++++∞→n nn Λ(3)1lim =∞→n n a ,其中⎪⎪⎩⎪⎪⎨⎧+-=为奇数为偶数n n n n n nn a n 2,1证明 (1)因为n nn n n 111|1|<++=-+. 于是0>∀ε,取21ε=N ,N n >∀,必有ε<<-+nn n 1|1|,从而0)1(lim =-+∞→n n n .(2)因为n n n n n n n n n n n 12212)1(3212233=+<+=+=++++Λ,于是0>∀ε,取ε1=N ,N n >∀,必有ε<<-++++n n n 103213Λ,所以0321lim 3=++++∞→n n n Λ(3)因为当 n 为偶数时,n n n a n 111|1|=--=-当 n 为奇数时,nnn n nnn n n nn a n 111|1|222<++=-+=-+=-,故不管n 为偶数还是奇数,都有n a n 1|1|<-. 于是0>∀ε,取ε1=N ,N n >∀,必有ε<<-n a n 1|1|,所以 1lim =∞→n n a .习题1.求下列极限:⑴ 根据例2 01lim=∞→an n ,0>a ,可得4131241131lim 32413lim 323323=++++=++++∞→∞→n n n n n n n n n n⑵ 0)21(lim 21lim 22=+=+∞→∞→n n n n n n⑶根据例4 0lim =∞→n n q ,1||<q ,可得313)32(31)32(lim 3)2(3)2(lim 111=+-⋅+-=+-+-+∞→++∞→n nn n n nnn⑷ 211111lim lim )(lim 22=++=++=-+∞→∞→∞→n n n n n n n n n n n这是因为由例1若aa n n =∞→lim ,则aa n n =∞→lim . 于是由1)11(lim =+∞→n n ,得1111lim ==+∞→n n .⑸ 10)1021(lim =+++∞→n n n n Λ,因为1lim =∞→n n a (0>a )⑹ 23113113121121121lim 313131212121lim 22=--⋅--⋅=++++++∞→∞→nn n n n n ΛΛ2.设a a n n =∞→lim ,b b n n =∞→lim ,且b a <. 证明:存在正数N ,使得当N n >时,有n n b a <.证明 由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞→,由保号性定理,存在01>N ,使得当1N n >时有2b a a n +<. 又因为2lim b a b b n n +>=∞→,所以,又存在02>N ,使得当2N n >时有2b a b n +>. 于是取},m ax {21N N N =,当N n >时,有nn b b a a <+<2. 3.设}{n a 为无穷小数列,}{n b 为有界数列,证明:}{n n b a 为无穷小数列.证明 因为}{n b 为有界数列,所以存在0>M ,使得Λ,2,1,||=≤n M b n. 由}{n a 为无穷小数列,知,0,0>∃>∀N εN n >∀,M a n ε<||. 从而当N n >时,有εε=⋅<⋅=M Mb a b a n n n n ||||||,所以0lim =∞→n n n b a ,即}{n n b a 为无穷小数列.4.求下列极限(1)1111lim 11131212111lim )1(1321211lim =⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-++-+-=⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→∞→∞→n n n n n n n n ΛΛ(2)因为nnn n212112181412128422222222===-+++ΛΛ,而)(12221121∞→→=<<n nnn,于是12lim 21=∞→nn ,从而222lim2222lim 21284==∞→∞→nnn n Λ(3)32323lim 23221229272725253lim 2122321lim 13222=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+++-+-+-=⎪⎭⎫ ⎝⎛-+++∞→-∞→∞→n n n n n n n n n n n ΛΛ(4)当2>n 时,11121<-<n ,n n n n 11121<-<,而11lim 21lim ==∞→∞→n n n n ,所以111lim =-∞→n n n .(5)因为)(,0111)2(1)1(11022222∞→→+=+≤++++<n n n n n n n n Λ,所以 0)2(1)1(11lim 222=⎪⎪⎭⎫⎝⎛++++∞→n n n n Λ(6)因为1112111222222=≤+≤++++++≤+nn n n n n n n nn n Λ,且1111limlim2=+=+∞→∞→nnn n n n ,所以112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n Λ 5.设}{n a 与}{n b 中一个是收敛数列,另一个是发散数列,证明}{n nb a ±是发散数列. 又问}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 是否必为发散数列.证明 (用反证法证明)不妨设}{n a 是收敛数列,}{n b 是发散数列. 假设数列}{n n b a +收敛,则n n n n a b a b -+=)(收敛,这与}{n b 是发散数列矛盾,所以,数列}{n n b a +发散.同理可得数列}{n n b a -发散.}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 不一定是发散数列. 例如,若}{n a 是无穷小数列,}{n b 是有界的发散数列. 则}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 是无穷小数列,当然收敛.但是,有下列结果:如果0lim ≠=∞→a a n n ,}{n b 是发散数列,则}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n a a b 一定是发散数列.6.证明以下数列发散:(1)⎭⎬⎫⎩⎨⎧+-1)1(n n n证明 设1)1(+-=n n a nn ,则)(,11222∞→→+=n n n a n ,而121212-→--=-n n a n ,由,定理 知⎭⎬⎫⎩⎨⎧+-1)1(n n n发散. (2){}nn )1(-证明{}nn )1(- 的偶数项组成的数列n a n 22=,发散,所以{}nn)1(-发散.(3)⎭⎬⎫⎩⎨⎧4cos πn 证明 设4cosπn a n =,则子列 )(,118∞→→=n a n ,子列 )(,1148∞→-→-=+n a n ,故⎭⎬⎫⎩⎨⎧4cos πn 发散. 7.判断以下结论是否成立(若成立,说明理由;若不成立,举出反例): (1)若}{12-k a 和}{2k a 都收敛,则}{n a 收敛.解 结论不一定成立. 例如,设nn a )1(-=,则12=ka ,112-=-k a 都收敛,但n n a )1(-=发散.注 若}{12-k a 和}{2k a 都收敛,且极限相等(即kk k k a a 212lim lim ∞→-∞→=),则}{n a 收敛.(2)若}{23-k a ,}{13-k a 和}{3k a 都收敛,且有相同的极限,则}{n a 收敛.证明 设aa a a k k k k k k ===∞→-∞→-∞→31323lim lim lim ,则由数列极限的定义,知0>∀ε,01>∃K ,1K k >∀,ε<--||23a a k ;同样也有02>∃K ,2K k >∀,ε<--||13a a k ;03>∃K ,3K k >∀,ε<-||3a a k . 取}3,3,3m ax {321K K K N =,当N n >时,对任意的自然数 n ,若23-=k n ,则必有1K k >,从而ε<-||a a n;同样若13-=k n ,则必有2K k >,从而也有ε<-||a a n;若k n 3=,则必有3K k >,从而ε<-||a a n . 所以aa n k =∞→lim ,即}{n a 收敛.8.求下列极限:(1)n n k 2124321lim-∞→Λ解 因为n n 2126543210-<Λ121)12)(12(12)12)(32(32755533311+=+-----⋅⋅⋅<n n n n n n n Λ而0121lim =+∞→n k ,所以 02124321lim =-∞→n n k Λ 另解 因为12254322124321+<-n n n n ΛΛ,设n n S n 2124321-=Λ,1225432+=n n T n Λ,则n n T S <. 于是121+=⋅<n S T S S n n n n ,所以121+<n S n .(2) 答案见教材提示. (3)10],)1[(lim <<-+∞→αααn n k解 ]1)11[(]1)11[()1(0-+<-+=-+<n n n n n n ααααα)(,011∞→→==-n n n n αα所以,0])1[(lim =-+∞→ααn n k另解 因为01<-α,所以11)1(--<+ααn n ,于是11)1()1(--+=+<+ααααn n n n n ,从而)(,0)1(01∞→→<-+<-n n n n ααα.(4) 答案见教材提示. 9.设m a a a Λ,,21为 m 个正数,证明:},,max {lim 2121m n nn n n n a a a a a a ΛΛ=+++∞→证明 因为 },,max{},,max{212121m n n nn n n m a a a n a a a a a a ΛΛΛ≤+++≤而1lim =∞→n n n ,所以},,max {lim 2121m n nn n n n a a a a a a ΛΛ=+++∞→10.设aa n n =∞→lim ,证明:(1)a n na n n =∞→][lim; (2)若0,0>>n a a ,则1lim =∞→n n n a .证明 (1)因为1][][+<≤n n n na na na ,所以nn n a n na n na ≤<-][1. 由于a n a n na n n n n =⎪⎭⎫ ⎝⎛-=-∞→∞→1lim 1lim ,且a a n n =∞→lim ,从而a n na n n =∞→][lim .(2)因为 0lim >=∞→a a n n ,由 定理,存在0>N ,使得当N n >时,有a a a n232<<. 于是 n n n na a a 232<<,并且123lim 2lim ==∞→∞→n n n n a a ,所以1lim =∞→n n n a .习题1.利用e n nn =⎪⎭⎫⎝⎛+∞→11lim 求下列极限:(1)e n n n n n n n nn nn 11111111lim 1lim 11lim 1=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--∞→∞→∞→(2)e n n n nn n n =⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+∞→+∞→1111lim 11lim 1(3)e n n n n n nn =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+++∞→∞→111111lim 111lim 1(4)en n n nn n n nn =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+∞→⋅∞→∞→2212211lim 211lim 211lim注:此题的求解用到事实(例1):若aa n n =∞→lim ,且Λ,2,1,0=≥n a n ,则aa n n =∞→lim .(5)nn n ⎪⎭⎫ ⎝⎛+∞→211lim 解 因为数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11单调增加,且有上界 3,于是 )(,1311111222∞→→<⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+<n n n n n n n,所以111lim 2=⎪⎭⎫ ⎝⎛+∞→nn n2.试问下面的解题方法是否正确:求nn 2lim ∞→解 不正确. 因为极限nn 2lim ∞→是否存在还不知道(事实上极限nn 2lim ∞→不存在),所以设an n =∞→2lim 是错误的.3.证明下列数列极限存在并求其值: (1)设Λ,2,1,2,211===+n a a a n n证明 先证数列}{n a 的有界性,用数学归纳法证明:2是}{n a 的一个上界.221<=a ,假设2<n a ,则22221=⋅<=+n n a a ,所以}{n a 有上界2.其次证明}{n a 单调增加. 02)2(21>+-=-=-+n n n n n n n n a a a a a a a a ,所以n n a a >+1,即}{n a 单调增加. 从而}{n a 极限存在,设a a n n =∞→lim ,在n n a a 221=+的两端取极限,得a a 22=,解之得 a = 0 (舍去) 和 2,所以2lim =∞→n n a .注:}{n a 的单调增加也可以如下证明:122221=>==+n n n n n a a a a a ,所以n n a a >+1.还可以如下得到:121214121214121122++++++++=<=+n na a n n nΛΛ(2)设Λ,2,1,),0(11=+=>=+n a c a c c a n n证明 先证数列}{n a 的有界性,用数学归纳法证明:}{n a 的一个上界是 1 + c .c c a +<=11,假设c a n +<1,则c c c c a c a n n +=++<+<+=+1121221,所以}{n a 有上界1 + c .其次证明}{n a 单调增加(用数学归纳法证明). 21a c c c a =+<=,假设n n a a <-1,于是n n a c a c +<+-1,从而n n a c a c +<+-1,即1+<n n a a . 故}{n a 单调增加. 所以}{n a 极限存在,设a a n n =∞→lim ,在n n a c a +=+21的两端取极限,得a c a +=2,解之得 2411ca +±=. 由于a n > 0 ,所以 a > 0 . 故 2lim =∞→n n a . (3)Λ,2,1),0(!=>=n c n c a nn证明 先证}{n a 从某一项以后单调减少. 取自然数 N 使得 N > c ,于是当N n >时,nn n n n n a a N ca n c n c n c n c a <+<+=+=+=++11!1)!1(11,即从第N 项开始}{n a 单调减少.由于}{n a 的各项都大于零,所以}{n a 有下界0. 从而}{n a 极限存在. 设a a n n =∞→lim ,在n n a n c a 11+=+的两端取极限,得a a ⋅=0,故0=a ,即0lim =∞→n n a .4.利用⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+n n 11为递增数列的结论,证明⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++nn 111为递增数列. 证明 设nn n n n n a ⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=12111,要证:Λ,3,2,1=≤-n a a n n ,即 因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为递增数列,所以有111111+⎪⎭⎫ ⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n , 即1121+⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n n n ,于是nnn n n n a n n n n n n n n n n n n n n a =⎪⎭⎫⎝⎛++<+⋅++⋅⎪⎭⎫ ⎝⎛++=+⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+=+--12112121121111.其中用到事实:1)1()2(1122≤++=+⋅++⋅n n n n n n n .5.应用柯西收敛准则,证明以下数列}{n a 收敛:(1)n n na 2sin 22sin 21sin 2+++=Λ 证明 不妨设m n >,则有n m m m n nm m a a 2sin 2)2sin(2)1sin(||21+++++=-++Λn m m n m m n m m 2121212sin 2)2sin(2)1sin(2121+++≤+++++≤++++ΛΛ ⎪⎭⎫ ⎝⎛+++++<⎪⎭⎫ ⎝⎛+++=---+--+ΛΛΛm n m n m m n m 21212112121211211111 m m m 1212211<=⋅=+ 所以,0>∀ε,取ε1=N ,N m n >∀,,有ε<-||m n a a ,由柯西收敛准则,}{n a 收敛. (2)222131211n a n ++++=Λ 证明 不妨设m n >,则有2221)2(1)1(1||n m m a a m n +++++=-Λ n n m m m m )1(1)2)(1(1)1(1-++++++≤Λ m n m n n m m m m 1111112111111<-=--+++-+++-=Λ所以,0>∀ε,取ε1=N ,N m n >∀,,有ε<-||m n a a ,由柯西收敛准则,}{n a 收敛.6.证明:若单调数列}{n a 含有一个收敛子列,则}{n a 收敛.证明 不妨设}{n a 是单调增加数列,}{k n a 是其收敛子列. 于是}{k n a 有界,即存在0>M ,使得Λ,2,1,=≤k M a kn . 对单调增加数列}{n a 中的任一项m a 必有M a a km m ≤≤,即}{n a 单调增加有上界,从而收敛.7.证明:若0>n a ,且1lim1>=+∞→l a a n nn ,则0lim =∞→n n a证明 因为1lim 1>=+∞→l a a n n n ,所以存在 r 使得1lim 1>>=+∞→r l a a n n n . 于是由数列极限的保号性定理(),存在0>N ,当N n >时,ra a n n>+1,1+>n nra a . 从而有n N n N N N a r a r ra a 13221--+++>>>>Λ, 因此,)(,0011∞→→<<--+n r a a N n N n , 故lim =∞→n n a .8.证明:若}{n a 为递增有界数列,则}sup{lim n n n a a =∞→;若}{n a 为递减有界数列,则}inf{lim n n n a a =∞→. 又问逆命题成立否?证明 证明过程参考教材,定理(单调有界定理).逆命题不一定成立. 例如数列⎪⎩⎪⎨⎧-=为偶数为奇数n n n a n 111,1}sup{lim ==∞→nn n a a ,但}{n a 不单调.9.利用不等式 0),()1(11>>-+>-++a b a b a n a bn n n ,证明:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列,并由此推出⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为有界数列.证明 设111+⎪⎭⎫⎝⎛+=n n n a ,由不等式 )()1(11a b a n a b n n n -+>-++,有 1111++++-+->-n n n n n n a b a na b na a b ,于是b a na b na b n n n n +->++11, b na a na b n n n n 1+-+>.在上式中令1111,111-=-+=+=+=n n n b n n n a ,a b >,得 nn n n n n a ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-+=-11111nn nnn n n n n n n n n n n ⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+>11111nn n n a n n n n n n n =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=+11111即n n a a >-1,故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列.而4111111111=⎪⎭⎫ ⎝⎛+≤⎪⎭⎫⎝⎛+<⎪⎭⎫ ⎝⎛++n nn n ,所以⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为有界数列. 10.证明:n n e n 3)11(<+- 证 由上题知⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列,于是对任何n m >有, 111111++⎪⎭⎫ ⎝⎛+>⎪⎭⎫⎝⎛+m n n n ,令∞→m ,取极限得,en n >⎪⎭⎫ ⎝⎛++111 ①又因为nnnn n n n n n n ⎪⎭⎫⎝⎛++⋅<⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⋅=⎪⎭⎫ ⎝⎛++113111111111②由①、②得nn n n n e ⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+<+113111,从而 n n e n e n n 3)11()11(<+-=+-11.给定两正数 a 1 与 b 1 ( a 1 > b 1 ),作出其等差中项2112b a a +=与等比中项112b a b =,一般地令21nn n b a a +=+,Λ,2,1,1==+n b a b n n n证明:nn a ∞→lim 与nn b ∞→lim 皆存在且相等.证明 因为11b a >,所以有nnn n n n a a a b a a =+<+=+221,即}{n a 单调减少. 同样可得}{n b 单调增加. 于是有11112b b b a b a a a n n n n n n ≥=≥+=≥++,即}{n a 单调减少有下界,}{n b 单调增加有上界,故n n a ∞→lim 与nn b ∞→lim 皆存在.在n n n b a a +=+12的两端取极限,可得n n n n b a ∞→∞→=lim lim12.设}{n a 为有界数列,记},,sup{1Λ+=n n n a a a ,},,inf{1Λ+=n n n a a a证明:⑴ 对任何正整数n ,n na a ≥;⑵}{n a 为递减有界数列,}{n a 为递增有界数列,且对任何正整数n ,m 有m n a a ≥;⑶ 设a 和a 分别是}{n a 和}{n a 的极限,则a a ≥;⑷ }{n a 收敛的充要条件是a a =证 ⑴ 对任何正整数n ,n n n n n n n a a a a a a a =≥≥=++},,inf{},,sup{11ΛΛ⑵ 因为1211},,sup{},,sup{++++=≥=n n n n n na a a a a a ΛΛ,Λ,2,1=n ,所以}{na 为递减有界数列.由1211},,inf{},,inf{++++=≤=n n n n n n a a a a a a ΛΛ,知}{n a 为递增有界数列.对任何正整数n ,m ,因为}{n a 为递减有界数列,}{n a 为递增有界数列,所以有m m n m n n a a a a ≥≥≥++.⑶ 因为对任何正整数n ,m 有m n a a ≥,令∞→n 得,mn n a a a ≥=∞→lim ,即m a a ≥,令∞→m 得aa a m m =≥∞→lim ,故a a ≥.⑷ 设}{n a 收敛,a a n n =∞→lim . 则0>∀ε,0>∃N ,N n >∀,ε<-||a a n,εε+<<-a a a n . 于是有εε+≤<-a a a n ,从而a a a n n ==∞→lim . 同理可得a a a n n ==∞→lim ,所以aa =反之,设a a =. 由a a n n =∞→lim , a a a n n ==∞→lim ,得0>∀ε,0>∃N ,N n >∀, 有εε+<<-a a a n 及εε+<<-a a a n ,从而εε+<≤≤<-a a a a a n n n总练习题1.求下列数列的极限: (1)n nn n 3lim 3+∞→解 当3>n 时,有nn 33<,于是)(,323323333∞→→⋅=⋅<+<=n n n n n n n n n ,所以33lim 3=+∞→n n n n(2)nn e n 5lim∞→解 设h e +=1,则当6>n 时,62!6)5()1(!2)1(1)1(hn n n h h n n nh h e n n n --≥++-++=+=ΛΛ,于是)(,0)5)(4)(3)(2)(1(!60655∞→→-----⋅<<n h n n n n n n n e n n ,所以0lim 5=∞→n n e n解法2 用 习题7的结论. 设nn e n a 5=,1)1(lim lim 5151>=+=+∞→+∞→e n e e n a a n n n n n n ,从而0lim lim 5==∞→∞→n n n n a e n .解法3 用 习题2⑸的结果0))((lim lim 5515==∞→∞→n n n n e ne n解法4 用单调有界定理. 令nn e n a 5=,则51)11(1n e a a n n +=+. 因为e n n <=+∞→1)11(lim 5,所以存在0>N ,当N n >时,e n <+5)11(,从而当N n >时,1)11(151<+=+n e a a n n . 于是从N n >起数列}{n a 递减,且有下界0,因此}{n a 收敛. 设a a n n =∞→lim ,在等式nn a n e a ⋅+=+51)11(1的两端取极限,得a e a ⋅=1,所以0=a .(3))122(lim n n n n ++-+∞→解 )]1()12[(lim )122(lim +-++-+=++-+∞→∞→n n n n n n n n n011121lim =⎥⎦⎤⎢⎣⎡++-++++=∞→n n n n n2.证明: (1))1|(|0lim 2<=∞→q q n n n证明 当0=q 时,结论成立.当1||0<<q 时,有1||1>q ,令0,1||1>+=h h q ,于是有nn h q )1(1+=,而由牛顿二项式定理,当3>n 时有3!3)2)(1()1(hn n n h n --≥+,从而)(0!3)2)(1()1(03222∞→→--≤+=<n h n n n n h n q n nn,所以lim 2=∞→n n q n另解 用 习题2⑸的结果)(sgn ))||1((lim lim 22==∞→∞→n nn n n q q n q n(2))1(,0lg lim≥=∞→ααn nn证明 因为0,lg ><x x x ,于是)(,022lg 2lg 021∞→→=<=<-n n n n n n n n αααα,所以0lg lim =∞→αn n n .(3)0!1lim =∞→n n n 证明 先证明不等式:nn n ⎪⎭⎫⎝⎛>3!. 用数学归纳法证明,当1=n 时,显然不等式成立;假设nn n ⎪⎭⎫⎝⎛>3!成立,当 n + 1 时 nn n n n n n n n n n n ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅+=⎪⎭⎫ ⎝⎛⋅+>⋅+=+131)1(3)1(!)1()!1(113111331++⎪⎭⎫ ⎝⎛+>⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛+=n nn n n n故不等式nn n ⎪⎭⎫⎝⎛>3!成立. 由此可得)(,03!10∞→→<<n n n n ,所以0!1lim =∞→n n n另解 用数学归纳法证明不等式:n n n≥!3.设aa n n =∞→lim ,证明:(1)a n a a a nn =+++∞→Λ21lim(又问由此等式能否反过来推出a a n n =∞→lim )证明 因为aa n n =∞→lim ,于是有11,0,0N n N >∀>∃>∀ε,2||ε<-a a n . 从而当1N n >时,有n naa a a a n a a a n n -+++=-+++ΛΛ212122||||||||||||12121111εε+≤⋅-+≤-++-+-+-++-+-≤++n A n N n n A na a a a a a n a a a a a a n N N N ΛΛ其中||||||121a a a a a a A N -++-+-=Λ是一个定数. 再由0lim =∞→n A n ,知存在02>N ,使得当2N n >时,2ε<n A . 因此取},m ax {21N N N =,当N n >时,有εεεε=+<+≤-+++22221n A a n a a a n Λ.反过来不一定成立. 例如nn a )1(-=不收敛,但0lim21=+++∞→n a a a nn Λ.练习:设+∞=∞→n n a lim ,证明:+∞=+++∞→n a a a n n Λ21lim(2) 若),2,1(0Λ=>n a n ,则a a a a n n n =∞→Λ21lim证明 先证算术平均值—几何平均值—调和平均值不等式:na a a a a a a a a nnn n n+++≤≤+++ΛΛΛ212121111算术平均值—几何平均值不等式:n a a a a a a nnn +++≤ΛΛ2121对任何非负实数1a ,2a 有2)(212121a a a a +≤,其中等号当且仅当21a a =时成立. 由此推出,对4个非负实数1a ,2a ,3a ,4a 有2143212121432121414321)22(])()[()(a a a a a a a a a a a a +⋅+≤=422243214321a a a a a a a a +++=+++≤按此方法继续下去,可推出不等式n a a a a a a nn n +++≤ΛΛ2121对一切kn 2=(Λ,2,1,0=k )都成立,为证其对一切正整数n 都成立,下面采用所谓的反向归纳法,即证明:若不等式对某个)2(≥n 成立,则它对1-n 也成立.设非负实数121,,,-n a a a Λ,令)(11121-+++-=n n a a a n a Λ,则有)1(1)1()(12112111211121-+++++++≤-+++⋅----n a a a a a a n n a a a a a a n n n n nn ΛΛΛΛ整理后得)(11)(12111121---+++-≤n n n a a a n a a a ΛΛ,即不等式对1-n 成立,从而对一切正整数n 都成立.几何平均值—调和平均值不等式n nna a a a a a nΛΛ2121111≤+++的证明,可令i i x y 1=,再对i y (n i ,,2,1Λ=)应用平均值不等式.由),2,1(0Λ=>n a n ,知0lim ≥=∞→a a n n . 若0≠a ,则a a n n 11lim=∞→. 由上一小题的结论,有)(,111212121∞→→+++≤≤+++n a na a a a a a a a a nnn n nΛΛΛ而a an a a a a a a n n n n n ==+++=+++∞→∞→111111lim 111lim 2121ΛΛ,所以aa a a n n n =∞→Λ21lim .若0=a ,即0lim =∞→n n a ,则11,0,0N n N >∀>∃>∀ε,ε<na . 从而当1N n >时,有n N n n N n n N N nn a a a a a a a a a a a 11112112121-+⋅≤⋅=εΛΛΛΛεεεε⋅=⋅=⋅=--n n N N nN n n N A a a a a a a 11112121ΛΛ其中1121N N a a a A -=εΛ,是定数,故21lim <=∞→nn A ,于是存在02>N ,使得当2N n >时,2<n A . 因此取},m ax {21N N N =,当N n >时,有εε221<⋅≤n nn A a a a Λ,故0lim 21=∞→n n n a a a Λ4.应用上题的结论证明下列各题:(1)0131211lim=++++∞→n n n Λ证明 令n a n 1=,则01lim lim ==∞→∞→n a n n n ,所以0131211lim =++++∞→n n n Λ.(2))0(1lim >=∞→a a n n证明 令a a =1,Λ,3,2,1==n a n ,则1lim =∞→n n a ,从而1lim lim lim 21===∞→∞→∞→n n n n n n n a a a a a Λ(3)1lim =∞→n n n证明 令11=a ,Λ,3,2,1=-=n n na n ,则1lim =∞→n n a ,于是1lim lim 13423121lim lim 21===-⋅⋅⋅⋅⋅=∞→∞→∞→∞→n n n n n n n n n a a a a n nn ΛΛ.(4)!1lim=∞→nn n证明 令Λ,2,1,1==n n a n ,则0lim =∞→n n a ,所以1lim 1211lim 3211lim !1lim==⋅⋅⋅=⋅⋅⋅⋅=∞→∞→∞→∞→n n n n n n n n n n n ΛΛ(5)e n n n n =∞→!lim 证明 令Λ,3,2,111111=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-=--n n n n a n n n ,则ea n n =∞→lim ,所以en n n n n n n n n n n n n n nn n n =⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==-∞→-∞→∞→∞→114321lim 14534232lim !lim !lim另证 令Λ,2,1,!==n n n a nn ,则e n a a n n n n n =⎪⎭⎫ ⎝⎛-+=-∞→-∞→11111lim lim . 于是e a a a a a a a a a n nn n n n n n n n n n n n ==⋅⋅⋅==-∞→-∞→∞→∞→112312lim lim lim !lim Λ. (6)1321lim 3=++++∞→n nn n Λ证明 因为1lim =∞→n n n ,所以1lim 321lim 3==++++∞→∞→n n nn n n n Λ(7)若)0(lim 1>=+∞→n n n n b a b b,则a b n n n =∞→lim证明n n n n n n n nn n n n n n b b b b bb b b b b b b b b b 112312112312lim lim lim lim ∞→+∞→+∞→∞→⋅⋅⋅⋅=⋅⋅⋅⋅=ΛΛab b n n n =⋅=+∞→1lim1(8)若d a a n n n =--∞→)(lim 1,则d n a nn =∞→lim证明 设10=a⎥⎦⎤⎢⎣⎡-++-+-+=-∞→∞→n a a a a a a n an a n n n n n )()()(lim lim112010Λd a a n a a a a a a n a n n n n n n n =-+=-++-+-+=-∞→-∞→∞→)(lim 0)()()(lim lim1112010Λ5.证明:若}{n a 为递增数列,}{n b 为递减数列,且 0)(lim =-∞→n n n b a ,则n n a ∞→lim 与nn b ∞→lim 都存在且相等.证明 因为)(lim =-∞→n n n b a ,所以}{n n b a -有界,于是存在0>M ,使得M b a M n n ≤-≤-. 从而有1b M b M a n n +≤+≤, M a M a b n n -≥-≥1,因此}{n a 为递增有上界数列,}{n b 为递减有下界数列,故n n a ∞→lim 与nn b ∞→lim 都存在. 又因为0)(lim lim lim =-=-∞→∞→∞→n n n n n n n b a b a ,所以 nn n n b a ∞→∞→=lim lim .6.设数列}{n a 满足:存在正数M ,对一切 n 有M a a a a a a A n n n ≤-+-+-=-||||||12312证明:数列}{n a 与}{n A 都收敛.证明 数列}{n A 单调增加有界,故收敛. 由柯西收敛准则,0,0>∃>∀N ε,当N n m >>时,ε<-||n m A A . 于是ε<-=-++-+-≤-+---n m n n m m m m n m A A a a a a a a a a ||||||||1211Λ所以由柯西收敛准则,知数列}{n a 收敛.7.设⎪⎭⎫ ⎝⎛+=>>a a a a σσ21,0,01,⎪⎪⎭⎫ ⎝⎛+=+n n n a a a σ211, Λ,2,1=n , 证明:数列}{n a 收敛,且其极限为σ证明 因为σσσ=⋅≥⎪⎪⎭⎫ ⎝⎛+=+n n n n n a a a a a 211,故数列}{n a 有下界σ.112112121=⎪⎭⎫⎝⎛+≤⎪⎪⎭⎫ ⎝⎛+=+σσσn n n a a a ,于是n n a a ≤+1,即数列}{n a 单调减少,从而数列}{n a 收敛. 设A a n n =∞→lim ,由⎪⎪⎭⎫ ⎝⎛+=+n n n a a a σ211,得σ+=+212n n n a a a ,两端取极限得,σ+=222A A ,解得σ=A ,所以σ=∞→n n a lim .8.设011>>b a ,记211--+=n n n b a a ,11112----+⋅=n n n n n b a b a b ,Λ,3,2=n . 证明:数列}{n a 与}{n b 的极限都存在且等于11b a .证 因为 111121111212111112)(2--------------+⋅-+=++≤+⋅=n n n n n n n n n n n n n n n b a b a b a b a b a b a b a b n n n n n n n n n b b a b a b a b a -+=+⋅-+=--------111111112,所以nn n n a b a b =+≤--211,Λ,3,2=n数列}{n a 是递减的:n nn n n n a a a b a a =+≤+=+221,Λ,2,1=n数列}{n a 有下界:0211≥+=--n n n b a a ,Λ,2,1=n ,所以}{n a 收敛,设a a n n =∞→lim .数列}{n b 是递增的:11111111122---------=+⋅≥+⋅=n n n n n n n n n n b a a ba b a b a b ,Λ,3,2=n数列}{n b 有上界:1a a b n n ≤≤,Λ,2,1=n ,所以}{n b 收敛,设b b n n =∞→lim .令∞→n 在211--+=n n n b a a 的两端取极限,得b a =.211--+=n n n b a a 与11112----+⋅=n n n n n b a b a b 两端分别相乘,得11--=n n n n b a b a ,Λ,3,2=n 所以有11b a b a nn =,Λ,3,2=n ,令∞→n 取极限得11b a ab =,从而11b a a =。

2019_2020学年高中数学第二章数列2.3.1等差数列的前n项和练习(含解析)新人教A版必修5

第11课时 等差数列的前n 项和知识点一 等差数列前n 项和公式的简单应用1.已知等差数列{a n }中,a 2=7,a 4=15,则S 10等于( ) A .100 B .210 C .380 D .400 答案 B 解析 ∵d =a 4-a 24-2=15-72=4,又a 2=a 1+d =7,∴a 1=3.∴S 10=10a 1+10×92d =10×3+45×4=210.故选B .2.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .48 答案 B 解析 ∵S 10=10a 1+a 102=5(a 2+a 9)=120,∴a 2+a 9=24.3.设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=( ) A .8 B .7 C .6 D .5 答案 D 解析 ∵S 7=a 1+a 72×7=35,∴a 1+a 7=10,∴a 4=a 1+a 72=5.知识点二 “知三求二”问题4.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9 B .10 C .11 D .12 答案 B解析 a 1=1,a 3+a 5=2a 1+6d =14,∴d =2,∴S n =n +n n -12×2=100.∴n =10.5.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________. 答案 2n解析 由已知⎩⎪⎨⎪⎧a 1+5d =12,3a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2.故a n =2n .知识点三 a n 与S n 的关系6.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2 B .-32n 2-n2C .32n 2+n 2D .32n 2-n 2 答案 A解析 易知{a n }是等差数列且a 1=-1,所以S n =n a 1+a n2=n 1-3n2=-32n 2+n2.故选A .7.已知等差数列{a n }的前n 项和S n =n 2+n ,则过P (1,a 1),Q (2,a 2)两点的直线的斜率是( )A .1B .2C .3D .4 答案 B解析 ∵S n =n 2+n ,∴a 1=S 1=2,a 2=S 2-S 1=6-2=4.∴过P ,Q 两点直线的斜率k =a 2-a 12-1=4-21=2.8.已知{a n }的前n 项之和S n =2n+1,则此数列的通项公式为________.答案 a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2解析 当n =1时,a 1=S 1=2+1=3, 当n ≥2时,a n =S n -S n -1=2n +1-(2n -1+1)=2n -1,又21-1=1≠3,所以a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2.易错点一 等差数列的特点考虑不周全9.已知数列{a n }的前n 项和S n =n 2+3n +2,判断{a n }是否为等差数列.易错分析 本题容易产生如下错解:∵a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2.a n +1-a n =[2(n +1)+2]-(2n +2)=2(常数),∴数列{a n }是等差数列.需注意:a n =S n -S n -1是在n ≥2的条件下得到的,a 1是否满足需另外计算验证. 解 a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2,∴a n =⎩⎪⎨⎪⎧6n =1,2n +2n ≥2,显然a 2-a 1=6-6=0,a 3-a 2=2,∴{a n }不是等差数列.易错点二 忽略对项数的讨论10.已知等差数列{a n }的第10项为-9,前11项和为-11,求数列{|a n |}的前n 项和T n . 易错分析 对于特殊数列求和,往往要注意项数的影响,要对部分特殊项进行研究,否则计算易错.解 设等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n ,则⎩⎪⎨⎪⎧a 1+9d =-9,11a 1+11×102d =-11,解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以a n =9-2(n -1)=11-2n . 由a n >0,得n <112,则从第6项开始数列各项均为负数,那么 ①当n ≤5时,数列{a n }的各项均为正数,T n =n a 1+a n 2=n 9+11-2n 2=n (10-n );②当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5)=-S n +2S 5=n 2-10n +2×(10×5-52)=n 2-10n +50.所以T n =⎩⎪⎨⎪⎧n 10-n ,1≤n ≤5,n 2-10n +50,n ≥6.一、选择题1.在各项均不为零的等差数列{a n }中,若a n +1-a 2n +a n -1=0(n ≥2),则S 2n -1-4n =( ) A .-2 B .0 C .1 D .2 答案 A解析 ∵{a n }是等差数列,∴2a n =a n -1+a n +1(n ≥2).又a n +1-a 2n +a n -1=0(n ≥2),∴2a n-a 2n =0.∵a n ≠0,∴a n =2,∴S 2n -1-4n =(2n -1)×2-4n =-2.故选A .2.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是( )A .14斤B .15斤C .16斤D .18斤 答案 B解析 由题意可知等差数列中a 1=4,a 5=2,则S 5=a 1+a 5×52=4+2×52=15, ∴金杖重15斤.故选B .3.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-1 答案 B解析 由⎩⎪⎨⎪⎧a 1+a 3+…+a 2n -1=na 1+n n -12×2d =90,a 2+a 4+…+a2n=na 2+n n -12×2d =72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.4.一同学在电脑中打出如下图案:○●○○●○○○●○○○○●○○○○○●…若将此图案依此规律继续下去,那么在前120个中的●的个数是( )A .12B .13C .14D .15 答案 C解析 S =(1+2+3+…+n )+n =n n +12+n ≤120,∴n (n +3)≤240,∴n =14.故选C .5.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .663 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15.∴n =14,S 14=14×2+12×14×13×7=665.二、填空题6.已知数列{a n }的前n 项和S n =n 2+1,则a 1+a 5=________. 答案 11解析 由S n =n 2+1,得a 1=12+1=2,a 5=S 5-S 4=(52+1)-(42+1)=9.∴a 1+a 5=2+9=11.7.S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________.答案 35解析 ∵S n 是等差数列{a n }的前n 项和,S n S 2n =n +14n +2, ∴S 1S 2=a 1a 1+a 1+d =26=13,∴3a 1=2a 1+d ,∴a 1=d ,∴a 3a 5=a 1+2d a 1+4d =3d 5d =35.8.在等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10=________. 答案 -15解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9, ∵a n <0,∴a 3+a 8=-3. ∴S 10=10a 1+a 102=10a 3+a 82=10×-32=-15. 三、解答题9.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解 设等差数列{a n }的公差为d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n n -12×12=14n 2-94n . 10.已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n ,令c n =(-1)nS n (n ∈N *),{c n }的前20项和T 20=330.数列{b n }满足b n =2(a -2)dn -2+2n -1,a ∈R .(1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∈N *,求a 的取值范围. 解 (1)设等差数列的公差为d ,因为c n =(-1)nS n ,所以T 20=-S 1+S 2-S 3+S 4+…+S 20=330, 则a 2+a 4+a 6+…+a 20=330,则10(3+d )+10×92×2d =330,解得d =3,所以a n =3+3(n -1)=3n . (2)由(1)知b n =2(a -2)3n -2+2n -1,b n +1-b n=2(a -2)3n -1+2n-[2(a -2)3n -2+2n -1]=4(a -2)3n -2+2n -1=4·3n -2⎣⎢⎡⎦⎥⎤a -2+12⎝ ⎛⎭⎪⎫23n -2,由b n +1≤b n ⇔(a -2)+12⎝ ⎛⎭⎪⎫23n -2≤0⇔a ≤2-12⎝ ⎛⎭⎪⎫23n -2,因为2-12⎝ ⎛⎭⎪⎫23n -2随着n 的增大而增大,所以n =1时,2-12⎝ ⎛⎭⎪⎫23n -2最小值为54,所以a ≤54.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章数列
1.写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1) 1,-12
,13
,-14
; (2) 1, 0, 1, 0; (3) 12
,45

910,1617; (4) 1, -1, 1, -1; (5)121-
⨯,122⨯,123-⨯,124⨯
2.已知数列2,74
,2,…的通项公式为2
n an b a cn +=,求这个数列的第四项和第五项.
3. 下列说法正确的是( ). A. 数列中不能重复出现同一个数 B. 1,2,3,4与4,3,2,1是同一数列 C. 1,1,1,1…不是数列
D. 两个数列的每一项相同,则数列相同
4. 下列四个数中,哪个是数列{(1)}n n +中的一项( ). A. 380 B. 392 C. 321 D. 232
5. 一个等差数列中,1533a =,2566a =,则35a =( ).
A. 99
B. 49.5
C. 48
D. 49
6. 等差数列{}n a 中7916a a +=,41a =,则12a 的值为( ). A . 15 B. 30 C. 31 D. 64
7. 等差数列
{}n a 中,3a ,10a 是方程2350x x --=,则56a a +=( ).
A. 3
B. 5
C. -3
D. -5
8. 等差数列1,-1,-3,…,-89的项数是( ). A. 92 B. 47 C. 46 D. 45 9. 数列
{}n a 的通项公式25n
a
n =+,则此数列是( ).
A.公差为2的等差数列
B.公差为5的等差数列
C.首项为2的等差数列
D.公差为n 的等差数列
10. 等差数列的第1项是7,第7项是-1,则它的第5项是( ).
A. 2
B. 3
C. 4
D. 6
11. 在{}n a 为等比数列中,0n a >,224355216a a a a a ++=,那么35a a +=
( ).
A. ±4
B. 4
C. 2
D. 8
12. 若-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( ). A .8 B .-8 C .±8 D .98
13.是它的第项. 14. 等差数列
n a 中,25a =-,611a =,则公差d =.
15. 若48,a ,b ,c ,-12是等差数列中连续五项,则a =,b =,c = 16. 在△ABC 中,三个内角A ,B ,C 成等差数列,则∠B =. 17. 等差数列的相邻4项是a +1,a +3,b ,a +b ,那么a =,b = 18. 在横线上填上适当的数:3,8,15,,35,48. 19.数列(1)
2
{(1)
}n n --的第4项是.
20. 在两数1,16之间插入三个数,使它们成为等比数列,则中间数等于. 21. 在各项都为正数的等比数列{}n a 中,965=a a , 则log 31a + log 32a +…+ log 310a =. 22.在等差数列{}n a 中,
⑴已知12a =,d =3,n =10,求n a ;
⑵已知13a =,21n a =,d =2,求n ;
⑶已知112a =,627a =,求d ;
⑷已知d =-13
,78a =,求1a .
(5)已知510a =,1231a =,求首项1a 与公差d .
(6)若56a =,815a =,求公差d 及14a
(7)已知23101136a a a a +++=,求58a a +和67a a +.
(8)已知234534a a a a +++=,且2552a a = ,求公差d ..
23.已知数列{}n a 的前n 项为212
n S n n =+,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?
24.已知数列{}n a 的前n 项为212343
n S n n =++,求这个数列的通项公式
25.在{}n a 为等比数列中,6491=a a ,3720a a +=,求11a 的值.
26.已知等差数列{}n a 的公差d ≠0,且1a ,3a ,9a 成等比数列,求139
2410
a a a a a a ++++.
27. 等比数列的前n 项和12n
n s =-,求通项n a .
28.设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和;
29.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,
3521a b +=,5313a b +=
(Ⅰ)求{}n a ,{}n b 的通项公式;
(Ⅱ)求数列n n a b ⎧⎫
⎨⎬⎩⎭的前n 项和n S .
29.已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令2
1
1
n n b a =-(n N +∈),求数列{}n b 的前n 项和n T .
30.(){213}.n n n -⋅求数列
前项和。

相关文档
最新文档