学校2014-2015学年度10月同步练习导数

合集下载

湖北省宜昌市葛洲坝中学2015届高三10月月考数学理试卷

湖北省宜昌市葛洲坝中学2015届高三10月月考数学理试卷

湖北省宜昌市葛洲坝中学2015届高三10月月考数学理试卷考试时间2014年10月一、选择题(本大题共10个小题,每小题5分,共50分.)1.设全集U R =,集合{}|,|32xM x y N y y ⎧⎪====-⎨⎪⎪⎩⎭,则图中阴影部分表示的集合是A.3|32x x ⎧⎫<≤⎨⎬⎩⎭B. 3|32x x ⎧⎫<<⎨⎬⎩⎭C.3|22x x ⎧⎫≤<⎨⎬⎩⎭D. 3|22x x ⎧⎫<<⎨⎬⎩⎭ 2.i 是虚数单位,复数1312ii-+=+ A .1+i B.5+5i C.-5-5i D.-1-i3.已知为{}n a 等比数列,S n 是它的前n 项和,若35114a a a =,且a 4与a 7的等差中项为98,则5S 的值A .35B .33C .31D .29 4.给出如下四个命题:①若“p q ∧”为假命题,则,p q 均为假命题②命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”; ③“2,11x R x ∀∈+≥”的否定是“2,11x R x ∃∈+≤”④设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的必要不充分条件其中不正确...的命题个数是 A .4 B .3 C .2 D .1视图如图所示,则该几何体的表面积为A 、21680+B 、21664+C 、96D 、806.已知0,0a b >>,则11a b++正视图侧视图 俯视图A .2 B. 4C. D. 5 7.若函数R x x x x f ∈+=,cos sin )(ωω3,又02=-=)(,)(βαf f ,且βα-的最小值为43π,则正数ω的值是A. 31B. 32C.34D.238.已知)(x f 为定义在),(+∞-∞上的可导函数,且)()('x f x f < 对于任意R x ∈恒成立,则 A. )0()2010(),0()2(20102f e f f e f ⋅>⋅> B. )0()2010(),0()2(20102f e f f e f ⋅>⋅< C. )0()2010(),0()2(20102f e f f e f ⋅<⋅> D. )0()2010(),0()2(20102f e f f e f ⋅<⋅<9.由约束条件0,02x y y x y kx ≥≥⎧⎪≤-+⎨⎪≤⎩确定的可行域D 能被半径为1的圆面完全覆盖,则实数k 的取值范围是A .12k ≤B .102k <≤C .12k ≥D .12k < 10.已知f (x )是定义在R 上的偶函数,对任意的x ∈R ,都有f (2 +x )=-f (x ),且当时x ∈[0,1]时2()1f x x =-+,则方程[)(),0,1f x k k =∈在[-1,5]的所有实根之和为 A . 0 B .2 C . 4 D .8二、填空题:(本大题共5小题,每小题5分,共25分)11.一物体在变力F(x )=5-x 2(x 的单位:m ,F 的单位:N)的作用下,沿着与F (x )成30°方 向做直所做的功为12.在四边形ABCD中,若2AC BD =,则()()AB DC AC BD +⋅+= 13. 在ABC ∆中,若2,AB AC ==,则ABC ∆面积的最大值为14. 设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前项和为n S ,满足34150S S +=,则d 的取值范围为15.已知函数f (x )=3sin2x +2cos 2x +m 在区间[0,π2]上的最大值为3,则 (Ⅰ)m = ; (Ⅱ)对任意a ∈R ,f (x )在[a ,a +20π]上的零点个数为 . 三.解答题16.(本小题满分12分)17.(本小题满分12分)设等差数列{}na 的前n 项和为n S .且12,4224+==n n a a S S .(1)求数列{}na 的通项公式;(2)数列{}nb 满足:,31=b 11+-=-n n n a b b )2(≥n ,求数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和n T .18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,已知1CA CB ==,12AA =,o 90BCA ∠=. (1)求异面直线1BA 与1CB 夹角的余弦值; (2)求二面角1B AB C --平面角的余弦值.19.(本小题满分12分)已知关于x 的不等式(kx-k 2-4)(x -4)>0,其中k ∈R . (1)求上述不等式的解;(2)是否存在实数k ,使得上述不等式的解集A 中只有有限个整数?若存在,求出使得A 中整数个数最少的k 的值;若不存在,请说明理由.20.(本小题满分12分)某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品, 根据经验知道,其次品率P 与日产量x (万件)之间满足关系:1,1,62,3x c xP x c ⎧≤≤⎪⎪-=⎨⎪>⎪⎩(其中c 为小于6的正常数)(第18题图)A B CA 1B 1C 1(注:次品率=次品数/生产量,如0.1P 表示每生产10件产品,有1件为次品,其余为合格品) 已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.(1)试将生产这种仪器的元件每天的盈利额T (万元)表示为日产量x (万件)的函数; (2)当日产量为多少时,可获得最大利润?21.(本小题满分14分)(1)已知函数f (x )=e x -1-tx ,∃x 0∈R ,使f (x 0)≤0,求实数t 的取值范围; (2)证明:b -a b <ln b a <b -aa ,其中0<a <b ;(3)设[x ]表示不超过x 的最大整数,证明:[ln(1+n )]≤[1+12+…+1n ]≤1+[ln n ](n ∈N *)10月月考答案 BACCA BBAAD 10.J 1 5d r d ≤-≥ 0;40或41 15(2)16.17.{}111111143144(2)1,,,22(21)22(1)1n a a d a d a a d d a n d a n d ⋅⎧=+=+⎧⎪⎨⎨=⎩⎪+-=+-+⎩解:()由题设等差数列的首项为,公差为则解得12-=∴n a n .(5分))12.(462324321112112121111114121311211111),211(2118).1(2)()()()(2,32212121341112232111分分)(也成立时,当)由题(+++-=⎥⎦⎤⎢⎣⎡+-+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=++++=∴+-=∴=+=+++++=+-+-++-+-=≥=-+---n n n n n n n n n b b b b T n n b n n n b a a a a b b b b b b b b b b n b n n n n n n n n n n n 18. 9、如图,以{}1,,CA CB CC 为正交基底,建立空间直角坐标系C xyz -.则(1,0,0)A ,(0,1,0)B ,1(1,0,2)A ,1(0,1,2)B ,所以1(0,1,2)CB =,(1,1,0)AB =-,1(1,1,2)AB =-,1(1,1,2)BA =-.(1)因为111111cos ,6CB BA CBBA CB BA ⋅===所以异面直线1BA 与1CB . …………………………5分(2)设平面1CAB 的法向量为(,,)x y z =m ,则110,0,AB CB ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,20,x y z y z -++=⎧⎨+=⎩取平面1CAB 的一个法向量为(0,2,1)=-m ;所以二面角1B AB C --. …………………………12分 19.20.解:(Ⅰ)当x c >时,23P =,1221033T x x ∴=⋅-⋅=------------------------2分当1x c ≤≤时,16P x =-,21192(1)2()1666x x T x x x x x-∴=-⋅⋅-⋅⋅=---综上,日盈利额T (万元)与日产量x (万件)的函数关系为:292,160,x x x c T xx c ⎧-≤≤⎪=-⎨⎪>⎩-------------------------------------6分 (Ⅱ)由(1)知,当x c >时,每天的盈利额为0当1x c ≤≤时,2926x x T x-=-9152[(6)]6x x =--+-15123≤-= 当且仅当3x =时取等号------------------8分 所以()i 当36c ≤<时,max 3T =,此时3x =()ii 当13c ≤<时,由222224542(3)(9)(6)(6)x x x x T x x -+--'==--知函数2926x x T x -=-在[1,3]上递增,2max 926c c T c-∴=-,此时x c =--------------------11分综上,若36c ≤<,则当日产量为3万件时,可获得最大利润若13c ≤<,则当日产量为c 万件时,可获得最大利润--------------------------13分21. 解:(Ⅰ)若t <0,令x =1t ,则f (1t )=e t 1-1-1<0;若t =0,f (x )=e x -1>0,不合题意;若t >0,只需f (x )min ≤0.求导数,得f ′(x )=e x -1-t . 令f ′(x )=0,解得x =ln t +1. 当x <ln t +1时,f ′(x )<0,∴f (x )在(-∞,ln t +1)上是减函数; 当x >ln t +1时,f ′(x )>0,∴f (x )在(ln t +1,+∞)上是增函数. 故f (x )在x =ln t +1处取得最小值f (ln t +1)=t -t (ln t +1)=-t ln t . ∴-t ln t ≤0,由t >0,得ln t ≥0,∴t ≥1.综上可知,实数t 的取值范围为(-∞,0)∪[1,+∞).…………………………4分 (Ⅱ)由(Ⅰ),知f (x )≥f (ln t +1),即e x -1-tx ≥-t ln t .取t =1,e x -1-x ≥0,即x ≤e x -1.当x >0时,ln x ≤x -1,当且仅当x =1时,等号成立, 故当x >0且x ≠1时,有ln x <x -1.令x =b a ,得ln b a <b a -1(0<a <b ),即ln b a <b -a a .令x =a b ,得ln a b <a b -1(0<a <b ),即-ln b a <a -b b ,亦即ln b a >b -a b . 综上,得b -a b <ln b a <b -aa .……………………………………9分 (Ⅲ)由(Ⅱ),得b -a b <ln b a <b -aa .令a =k ,b =k +1(k ∈N *),得1k +1<ln k +1k <1k .对于ln k +1k <1k ,分别取k =1,2,…,n , 将上述n 个不等式依次相加,得 ln 21+ln 32+…+ln n +1n <1+12+…+1n , ∴ln(1+n )<1+12+…+1n . ①对于1k +1<ln k +1k ,分别取k =1,2,…,n -1,将上述n -1个不等式依次相加,得12+13+…+1n <ln 21+ln 32+…+ln n n -1,即12+13+…+1n <ln n (n ≥2), ∴1+12+…+1n ≤1+ln n (n ∈N *). ② 综合①②,得ln(1+n )<1+12+…+1n ≤1+ln n .易知,当p <q 时,[p ]≤[q ],∴[ln(1+n )]≤[1+12+…+1n ]≤[1+ln n ](n ∈N *). 又∵[1+ln n ]=1+[ln n ],∴[ln(1+n )]≤[1+12+…+1n ]≤1+[ln n ](n ∈N *).……………………………14分。

2014-2015学年人教a版数学选修2-2第1章《导数及其应用》综合检测(含答案)

2014-2015学年人教a版数学选修2-2第1章《导数及其应用》综合检测(含答案)

第一章综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2013·天津红桥区高二段测)二次函数y =f (x )的图象过原点且它的导函数y =f ′(x )的图象是如图所示的一条直线,y =f (x )的图象的顶点在( )A .第Ⅰ象限B .第Ⅱ象限C .第Ⅲ象限D .第Ⅳ象限[答案] A[解析] 设f (x )=ax 2+bx +c ,∵二次函数y =f (x )的图象过原点,∴c =0,∴f ′(x )=2ax +b ,由y =f ′(x )的图象可知,2a <0,b >0,∴a <0,b >0,∴-b 2a >0,4ac -b 24a =-b 24a>0,故选A.2.(2013·华池一中高二期中)曲线y =-1x 在点(12,-2)处的切线方程为( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x -4[答案] B[解析] ∵y ′=1x 2,∴y ′|x =12=4,∴k =4,∴切线方程为y +2=4(x -12),即y =4x -4.3.(2014·淄博市临淄区学分认定考试)下列函数中,x =0是其极值点的函数是( ) A .f (x )=-x 3B .f (x )=-cos xC .f (x )=sin x -xD .f (x )=1x[答案] B[解析] 对于A,f′(x)=-3x2≤0恒成立,在R上单调递减,没有极值点;对于B,f′(x)=sin x,当x∈(-π,0)时,f′(x)<0,当x∈(0,π)时,f′(x)>0,故f(x)=-cos x在x=0的左侧区间(-π,0)内单调递减,在其右侧区间(0,π)内单调递增,所以x=0是f(x)的一个极小值点;对于C,f′(x)=cos x-1≤0恒成立,在R上单调递减,没有极值点;对于D,f(x)=1x在x=0没有定义,所以x=0不可能成为极值点,综上可知,答案选B.4.(2013·北师大附中高二期中)已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是( )A.(-∞,-3),∪(3,+∞) B.(-3,3)C.(-∞,-3]∪[3,+∞) D.[-3,3][答案] D[解析] f′(x)=-3x2+2ax-1,∵f(x)在(-∞,+∞)上是单调函数,且f′(x)的图象是开口向下的抛物线,∴f′(x)≤0恒成立,∴Δ=4a2-12≤0,∴-3≤a≤3,故选D.5.(2013·武汉实验中学高二期末)设函数f(x)在定义域内可导,y=f(x)的图象如下图所示,则导函数y=f′(x)的图象可能是( )[答案] A[解析] f(x)在(-∞,0)上为增函数,在(0,+∞)上变化规律是减→增→减,因此f′(x)的图象在(-∞,0)上,f′(x)>0,在(0,+∞)上f′(x)的符号变化规律是负→正→负,故选A.6.(2012·陕西文,9)设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点[答案] D[解析] 由f ′(x )=-2x 2+1x =1x (1-2x)=0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减,当x >2时f ′(x )>0,f (x )单调递增.所以x =2为极小值点.7.(2014·天门市调研)已知函数f (x )=a sin x -b cos x 在x =π4时取得极值,则函数y=f (3π4-x )是( )A .偶函数且图象关于点(π,0)对称B .偶函数且图象关于点(3π2,0)对称C .奇函数且图象关于点(3π2,0)对称D .奇函数且图象关于点(π,0)对称 [答案] D[解析] ∵f (x )的图象关于x =π4对称,∴f (0)=f (π2),∴-b =a ,∴f (x )=a sin x -b cos x =a sin x +a cos x =2a sin(x +π4),∴f (3π4-x )=2a sin(3π4-x +π4)=2a sin(π-x )=2a sin x .显然f (3π4-x )是奇函数且关于点(π,0)对称,故选D.8.(2013·武汉实验中学高二期末)定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为( )A .{x |-1<x <1}B .{x |x <1}C .{x |x <-1或x >1}D .{x |x >1}[答案] B[解析] 令g (x )=2f (x )-x -1,∵f ′(x )>12,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数,∵f(1)=1,∴g(1)=2f(1)-1-1=0,∴当x <1时,g (x )<0,即2f (x )<x +1,故选B.9.(2013·华池一中高二期中)若关于x 的方程x 3-3x +m =0在[0,2]上有根,则实数m 的取值范围是( )A .[-2,2]B .[0,2]C .[-2,0]D .(-∞,-2)∪(2,+∞)[答案] A[解析] 令f (x )=x 3-3x +m ,则f ′(x )=3x 2-3=3(x +1)(x -1),显然当x <-1或x >1时,f ′(x )>0,f (x )单调递增,当-1<x <1时,f ′(x )<0,f (x )单调递减,∴在x =-1时,f (x )取极大值f (-1)=m +2,在x =1时,f (x )取极小值f (1)=m -2.∵f (x )=0在[0,2]上有解,∴⎩⎪⎨⎪⎧f1<0,f 2>0,∴⎩⎪⎨⎪⎧m -2≤0,2+m ≥0,∴-2≤m ≤2.10.(2013·河南安阳中学高二期末)f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )[答案] A[解析] 令F (x )=xf (x ),(x >0),则F ′(x )=xf ′(x )+f (x )≤0,∴F (x )在(0,+∞)上为减函数,∵0<a <b ,∴F (a )>f (b ),即af (a )>bf (b ),与选项不符; 由于xf ′(x )+f (x )≤0且x >0,f (x )≥0,∴f ′(x )≤-f xx≤0,∴f (x )在(0,+∞)上为减函数,∵0<a <b ,∴f (a )>f (b ), ∴bf (a )>af (b ),结合选项知选A.11.(2014·天门市调研)已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )[答案] D[解析] 由导函数图象可知,当x <0时,函数f (x )递减,排除A ,B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.12.(2013·泰安一中高二段测)已知函数f (x )的导函数的图象如图所示,若△ABC 为锐角三角形,则一定成立的是( )A .f (sin A )>f (cosB ) B .f (sin A )<f (cos B )C .f (sin A )>f (sin B )D .f (cos A )<f (cos B )[答案] A[解析] 由导函数图象可知,x >0时,f ′(x )>0,即f (x )单调递增,又△ABC 为锐角三角形,则A +B >π2,即π2>A >π2-B >0,故sin A >sin(π2-B )>0,即sin A >cos B >0,故f (sin A )>f (cos B ),选A.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2013·华池一中高二期中)已知f (x )=x 3+3x 2+a (a 为常数),在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.[答案] 57[解析] f ′(x )=3x 2+6x =3x (x +2),当x ∈[-3,-2)和x ∈(0,3]时,f ′(x )>0,f (x )单调递增,当x ∈(-2,0)时,f ′(x )<0,f (x )单调递减,∴极大值为f (-2)=a +4,极小值为f (0)=a ,又f (-3)=a ,f (3)=54+a ,由条件知a =3,∴最大值为f (3)=54+3=57.14.(2014·湖北重点中学高二期中联考)已知函数f (x )=13ax 3+12ax 2-2ax +2a +1的图象经过四个象限,则实数a 的取值范围是________.[答案] (-65,-316)[解析] f ′(x )=ax 2+ax -2a =a (x -1)(x +2), 由f (x )的图象经过四个象限知,若a >0,则⎩⎪⎨⎪⎧f-2>0,f 1<0,此时无解;若a <0,则⎩⎪⎨⎪⎧f-2<0,f 1>0,6 5<a<-316,综上知,-65<a<-316.∴-15.(2014·泉州实验中学期中)已知函数f (x )=x 3-3x ,若过点A (1,m )(m ≠-2)可作曲线y =f (x )的三条切线,则实数m 的取值范围为________.[答案] (-3,-2)[解析] f ′(x )=3x 2-3,设切点为P (x 0,y 0),则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),∵切线经过点A (1,m ),∴m -(x 30-3x 0)=(3x 20-3)(1-x 0),∴m =-2x 30+3x 20-3,m ′=-6x 20+6x 0,∴当0<x 0<1时,此函数单调递增,当x 0<0或x 0>1时,此函数单调递减,当x 0=0时,m =-3,当x 0=1时,m =-2,∴当-3<m <-2时,直线y =m 与函数y =-2x 30+3x 20-3的图象有三个不同交点,从而x 0有三个不同实数根,故过点A (1,m )可作三条不同切线,∴m 的取值范围是(-3,-2).16.如图阴影部分是由曲线y =1x、y 2=x 与直线x =2、y =0围成,则其面积为______.[答案] 23+ln2[解析] 由⎩⎪⎨⎪⎧y 2=x ,y =1x ,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x得交点B ⎝ ⎛⎭⎪⎫2,12.故所求面积S =⎠⎛01x d x +⎠⎛121xd x=23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f(x)的定义域为(0,2),f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x 2-x ,∴当x ∈(0,2)时,f ′(x )>0,当x ∈(2,2)时,f ′(x )<0,所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx 2-x+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)(2014·韶关市曲江一中月考)已知函数f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,当x =1时,f (x )取得极值-2.(1)求函数f (x )的解析式;(2)求函数f (x )的单调区间和极大值;(3)证明:对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立. [解析] (1)∵f (x )是R 上的奇函数, ∴f (-x )=-f (x ),即-ax 3-cx +d =-ax 3-cx -d ,∴d =-d , ∴d =0(或由f (0)=0得d =0). ∴f (x )=ax 3+cx ,f ′(x )=3ax 2+c , 又当x =1时,f (x )取得极值-2,∴⎩⎪⎨⎪⎧f 1=-2,f ′1=0,即⎩⎪⎨⎪⎧a +c =-2,3a +c =0,解得⎩⎪⎨⎪⎧a =1,c =-3.∴f (x )=x 3-3x .(2)f ′(x )=3x 2-3=3(x +1)(x -1),令f ′(x )=0,得x =±1, 当-1<x <1时,f ′(x )<0,函数f (x )单调递减; 当x <-1或x >1时,f ′(x )>0,函数f (x )单调递增;∴函数f (x )的递增区间是(-∞,-1)和(1,+∞);递减区间为(-1,1). 因此,f (x )在x =-1处取得极大值,且极大值为f (-1)=2.(3)由(2)知,函数f (x )在区间[-1,1]上单调递减,且f (x )在区间[-1,1]上的最大值为M =f (-1)=2.最小值为m =f (1)=-2.∴对任意x 1、x 2∈(-1,1),|f (x 1)-f (x 2)|<M -m =4成立.即对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立.19.(本题满分12分)(2014·北京海淀期中)已知函数f (x )=x 2-2(a +1)x +2a ln x (a >0).(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求f(x)的单调区间;(3)若f(x)≤0在区间[1,e]上恒成立,求实数a的取值范围.[解析] (1)∵a =1,∴f (x )=x 2-4x +2ln x , ∴f ′(x )=2x 2-4x +2x(x >0),f (1)=-3,f ′(1)=0,所以切线方程为y =-3.(2)f ′(x )=2x 2-2a +1x +2a x=2x -1x -ax(x >0),令f ′(x )=0得x 1=a ,x 2=1,当0<a <1时,在x ∈(0,a )或x ∈(1,+∞)时,f ′(x )>0,在x ∈(a,1)时,f ′(x )<0,∴f (x )的单调递增区间为(0,a )和(1,+∞),单调递减区间为(a,1);当a =1时,f ′(x )=2x -12x≥0,∴f (x )的单调增区间为(0,+∞);当a >1时,在x ∈(0,1)或x ∈(a ,+∞)时,f ′(x )>0,在x ∈(1,a )时,f ′(x )<0,∴f (x )的单调增区间为(0,1)和(a ,+∞),单调递减区间为(1,a ).(3)由(2)可知,f (x )在区间[1,e]上只可能有极小值点,∴f (x )在区间[1,e]上的最大值必在区间端点取到,∴f (1)=1-2(a +1)≤0且f (e)=e 2-2(a +1)e +2a ≤0,解得a ≥e 2-2e2e -2.20.设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值; (2)若方程f (x )=0有且仅有一个实根,求a 的取值范围. [解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立. 所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0. 所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.21.(本题满分12分)(2014·荆州中学、龙泉中学、宜昌一中、襄阳四中期中联考)已知函数f (x )=ln x +ax +1,a 为常数.(1)若a =92,求函数f (x )在[1,e ]上的值域;(e 为自然对数的底数,e ≈2.72)(2)若函数g(x)=f(x)+x在[1,2]上为单调减函数,求实数a的取值范围.[解析] (1)由题意f ′(x )=1x-a x +12,当a =92时,f ′(x )=1x -92x +12=x -22x -12x x +12. ∵x ∈[1,e ],∴f (x )在[1,2)上为减函数,[2,e ]上为增函数, 又f (2)=ln2+32,f (1)=94,f (e )=1+92e +2,比较可得f (1)>f (e ),∴f (x )的值域为[ln2+32,94].(2)由题意得g ′(x )=1x-a x +12+1≤0在x ∈[1,2]上恒成立,∴a ≥x +12x+(x +1)2=x 2+3x +1x+3恒成立,设h (x )=x 2+3x +1x+3(1≤x ≤2),∴当1≤x ≤2时,h ′(x )=2x +3-1x2>0恒成立,∴h (x )max =h (2)=272,∴a ≥272,即实数a 的取值范围是[272,+∞).22.(本题满分14分)(2014·北京海淀期中)如图,已知点A (11,0),直线x =t (-1<t <11)与函数y =x +1的图象交于点P ,与x 轴交于点H ,记△APH 的面积为f (t ).(1)求函数f (t )的解析式; (2)求函数f (t )的最大值.[解析] (1)由已知AH =11-t ,PH =t +1,所以△APH 的面积为f (t )=12(11-t )t +1,(-1<t <11).(2)解法1:f ′(t )=33-t 4t +1,由f ′(t )=0得t =3,函数f (t )与f ′(t )在定义域上的情况如下表:t (-1,3) 3 (3,11)所以当t =3时,函数f (t )取得最大值8. 解法2.由f (t )=12(11-t )t +1=1211-t2t +1,-1<t <11,设g (t )=(11-t )2(t +1),-1<t <11,则g ′(t )=-2(11-t )(t +1)+(11-t )2=(t -11)(t -11+2t +2)=3(t -3)(t -11).g (t )与g ′(t )在定义域上的情况见下表:t (-1,3) 3 (3,11) g ′(t ) + 0 - g (t )单调递增极大值单调递减所以当t =3所以当t =3时,函数f (t )取得最大值12g3=8.一、选择题1.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1[答案] A[解析] y ′=2x +a ,∴y ′|x =0=(2x +a )|x =0=a =1, 将(0,b )代入切线方程得b =1.2.(2014·浙江杜桥中学期中)已知函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a =( )A .2B .3C .4D .5[答案] D[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是方程f ′(x )=0的实数根,∴a =5.3.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值,最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15D .5,-16[答案] A[解析] ∵y ′=6x 2-6x -12=0,得x =-1(舍去)或x =2,故函数y =f (x )=2x 3-3x2-12x +5在[0,3]上的最值可能是x 取0,2,3时的函数值,而f (0)=5,f (2)=-15,f (3)=-4,故最大值为5,最小值为-15,故选A.4.⎠⎛241xd x 等于( )A .-2ln2B .2ln2C .-ln2D .ln2[答案] D[解析] 因为(ln x )′=1x,所以 ⎠⎛241xd x =ln x |42=ln4-ln2=ln2.5.(2013·吉林白山一中高二期末)已知定义在R 上的函数f (x )的导函数f ′(x )的大致图象如图所示,则下列结论一定正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e)C .f (c )>f (b )>f (a )D .f (c )>f (e)>f (d )[答案] C[解析] 由图可知f ′(x )在(-∞,c )和(e ,+∞)上取正值,在(c ,e)上取负值,故f (x )在(-∞,c )和(e ,+∞)上单调递增,在(c ,e)上单调递减,∵a <b <c ,∴f (a )<f (b )<f (c ),故选C.6.已知函数f (x )=4x +3sin x ,x ∈(-1,1),如果f (1-a )+f (1-a 2)<0成立,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(-2,-2)D .(-∞,-2)∪(1,+∞)[答案] B[解析] ∵f (x )=4x +3sin x ,x ∈(-1,1),∴f ′(x )=4+3cos x >0在x ∈(-1,1)上恒成立,∴f (x )在(-1,1)上是增函数,又f (x )=4x +3sin x ,x ∈(-1,1)是奇函数,∴不等式f (1-a )+f (1-a 2)<0可化为f (1-a )<f (a 2-1),从而可知,a 须满足⎩⎪⎨⎪⎧-1<1-a <1,-1<a 2-1<1,1-a <a 2-1.解得1<a < 2.7.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一个直角坐标系中,不可能正确的是( )[答案] D[解析] A 中,当f (x )为二次函数时,f ′(x )为一次函数,由单调性和导数值的符号关系知A 可以是正确的,同理B 、C 都可以是正确的,但D 中f (x )的单调性为增、减、增,故f ′(x )的值应为正负正,因此D 一定是错误的.8.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )[答案] D[解析] 由f (x )的图象知,f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴在(0,+∞)上f ′(x )≤0,在(-∞,0)上f ′(x )≥0,故选D.9.如果1N 能拉长弹簧1cm ,为了将弹簧拉长6cm ,所耗费的功为( ) A .0.18J B .0.26J C .0.12JD .0.28J[解析] 设F(x)=kx,当F(x)=1时,x=0.01m,则k=100,∴W=∫0.060100x d x=5010.(2014·甘肃省金昌市二中、临夏中学期中)已知函数f (x )=ln x ,则函数g (x )=f (x )-f ′(x )的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[答案] B[解析] 由题可知g (x )=ln x -1x ,∵g (1)=-1<0,g (2)=ln2-12=ln2-ln e>0,∴选B.11.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确[答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7) =64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.12.(2014·浙江省五校联考)已知函数f (x )=13x 3+12mx 2+m +n2x 的两个极值点分别为x 1、x 2,且0<x 1<1<x 2,点P (m ,n )表示的平面区域内存在点(x 0,y 0)满足y 0=log a (x 0+4),则实数a 的取值范围是( )A .(0,12)∪(1,3)B .(0,1)∪(1,3)C .(12,1)∪(1,3]D .(0,1)∪[3,+∞)[答案] B[解析] f ′(x )=x 2+mx +m +n2,由条件知,方程f ′(x )=0的两实根为x 1、x 2且0<x 1<1<x 2,∴⎩⎪⎨⎪⎧f ′0>0,f ′1<0,∴⎩⎪⎨⎪⎧m +n2>0,1+m +m +n2<0,∴⎩⎪⎨⎪⎧m +n >0,3m +n <-2,由⎩⎪⎨⎪⎧m +n =0,3m +n =-2,得⎩⎪⎨⎪⎧m =-1,n =1,∴⎩⎪⎨⎪⎧x 0<-1,y 0>1.由y 0=log a (x 0+4)知,当a >1时,1<y 0<log a 3,∴1<a <3;当0<a <1时,y 0=log a (x 0+4)>loga3,由于y 0>1,log a 3<0,∴对∀a ∈(0,1),此式都成立,从而0<a <1,综上知0<a <1或1<a <3,故选B.二、填空题13.(2014·杭州七校联考)若函数f (x )=x 3-3bx +b 在区间(0,1)内有极值,则实数b 的取值范围是________.[答案] (0,1)[解析] f ′(x )=3x 2-3b ,∵f (x )在(0,1)内有极值, ∴f ′(x )=0在(0,1)内有解,∴0<b <1.14.(2013·泰州二中高二期中)函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =________.[答案] 5[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是f ′(x )=0的根,即f ′(-3)=0,∴27-6a +3=0,∴a =5.15.对正整数n ,设曲线y =x n(1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和是__________________. [答案] 2n +1-2[解析] ∵y =x n(1-x ),∴y ′=(x n)′(1-x )+(1-x )′·x n=n ·x n -1(1-x )-x n.f ′(2)=-n ·2n -1-2n =(-n -2)·2n -1.在点x =2处点的纵坐标为y =-2n. ∴切线方程为y +2n=(-n -2)·2n -1(x -2).令x =0得,y =(n +1)·2n, ∴a n =(n +1)·2n,∴数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为22n-12-1=2n +1-2.16.(2014·哈六中期中)已知函数f (x +2)是偶函数,x >2时f ′(x )>0恒成立(其中f ′(x )是函数f (x )的导函数),且f (4)=0,则不等式(x +2)f (x +3)<0的解集为________.[答案] (-∞,-3)∪(-2,1)[解析] ∵函数y =f (x +2)是偶函数,∴其图象关于y 轴对称,∵y =f (x +2)的图象向右平移两个单位得到y =f (x )的图象,∴函数y =f (x )的图象关于直线x =2对称,∵x >2时,f ′(x )>0,∴f (x )在(2,+∞)上单调递增,在(-∞,2)上单调递减,又f (4)=0,∴f (0)=0,∴0<x <4时,f (x )<0,x <0或x >4时,f (x )>0,由(x +2)f (x +3)<0得⎩⎪⎨⎪⎧x +2<0,fx +3>0,(1)或⎩⎪⎨⎪⎧x +2>0,f x +3<0.(2)由(1)得⎩⎪⎨⎪⎧x <-2,x +3<0或x +3>4,∴x <-3;由(2)得⎩⎪⎨⎪⎧x >-2,0<x +3<4.∴-2<x <1,综上知,不等式的解集为(-∞,-3)∪(-2,1) 三、解答题17.(2013·四川达州诊断)已知函数f (x )=x 3+ax 2-3bx +c (b >0),且g (x )=f (x )-2是奇函数.(1)求a 、c 的值;(2)若函数f (x )有三个零点,求b 的取值范围. [解析] (1)∵g (x )=f (x )-2是奇函数, ∴g (-x )=-g (x )对x ∈R 成立, ∴f (-x )-2=-f (x )+2对x ∈R 成立, ∴ax 2+c -2=0对x ∈R 成立, ∴a =0且c =2.(2)由(1)知f (x )=x 3-3bx +2(b >0), ∴f ′(x )=3x 2-3b =3(x -b )(x +b ), 令f ′(x )=0得x =±b ,x (-∞,-b )-b (-b ,b )b(b ,+∞)f ′(x ) + 0 - 0 + f (x )增极大值减极小值增依题意有⎩⎨⎧f -b >0,fb <0,∴b >1,故正数b 的取值范围是(1,+∞).18.在曲线y =x 3(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴围成图形的面积为112,试求过切点A 的切线方程. [解析] 设切点A (x 0,x 30),切线斜率k =y ′|x =x 0=3x 20.∴切线的方程为y -x 30=3x 20(x -x 0). 令y =0,得x =2x 03.依题意S =∫x 00x 3d x -12×(x 0-2x 03)·x 3=14x 40-16x 40=112x 40=112, ∵x 0≥0,∴x 0=1.∴切线方程为y -1=3(x -1),即3x -y -2=0.19.(2014·福建安溪一中、养正中学联考)已知函数f (x )=x 3+ax 2+bx +5,若曲线f (x )在点(1,f (1))处的切线斜率为3,且x =23时,y =f (x )有极值.(1)求函数f (x )的解析式;(2)求函数f (x )在[-4,1]上的最大值和最小值. [解析] f ′(x )=3x 2+2ax +b ,(1)由题意得,⎩⎪⎨⎪⎧f ′23=3×232+2a ×23+b =0,f ′1=3×12+2a ×1+b =3.解得⎩⎪⎨⎪⎧a =2,b =-4.经检验得x =23时,y =f (x )有极小值,所以f (x )=x 3+2x 2-4x +5.(2)由(1)知,f ′(x )=3x 2+4x -4=(x +2)(3x -2). 令f ′(x )=0,得x 1=-2,x 2=23,f ′(x ),f (x )的值随x 的变化情况如下表: x -4 (-4,-2)-2 (-2,23)23 (23,1) 1 f ′(x ) + 0 - 0 + f (x )单调递增极大值 单调递减极小值 单调递增函数值-111395274∵f (3)=27,f (-2)=13,f (-4)=-11,f (1)=4,∴f (x )在[-4,1]上的最大值为13,最小值为-11.20.(2013·海淀区高二期中)已知函数f (x )=a 23x 3-2ax 2+bx ,其中a 、b ∈R ,且曲线y=f (x )在点(0,f (0))处的切线斜率为3.(1)求b的值;(2)若函数f(x)在x=1处取得极大值,求a的值.[解析] (1)f′(x)=a2x2-4ax+b,由题意f′(0)=b=3.(2)∵函数f (x )在x =1处取得极大值, ∴f ′(1)=a 2-4a +3=0,解得a =1或a =3. ①当a =1时,f ′(x )=x 2-4x +3=(x -1)(x -3),x 、f ′(x )、f (x )的变化情况如下表:x (-∞,1)1 (1,3) 3 (3,+∞)f ′(x ) +0 -0 + f (x )极大值极小值②当a =3时,f ′(x )=9x 2-12x +3=3(3x -1)(x -1),x 、f ′(x )、f (x )的变化情况如下表:x (-∞,13)13 (13,1) 1 (1,+∞)f ′(x ) +0 -0 + f (x )极大值极小值综上所述,若函数f (x )在x =1处取得极大值,a 的值为1.21.(2013·武汉实验中学高二期末)已知曲线f (x )=ax 2+2在x =1处的切线与直线2x -y +1=0平行.(1)求f (x )的解析式;(2)求由曲线y =f (x )与y =3x 、x =0、x =1、x =2所围成的平面图形的面积. [解析] (1)由已知得:f ′(1)=2,求得a =1, ∴f (x )=x 2+2.(2)由题意知阴影部分的面积是:S =⎠⎛01(x 2+2-3x )d x +⎠⎛12(3x -x 2-2)d x=(13x 3+2x -32x 2)|10+(32x 2-13x 3-2x )|21=1. 22.(2013·福州文博中学高二期末)设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值; (2)讨论g (x )与g (1x)的大小关系;(3)求a 的取值范围,使得g (a )-g (x )<1a对任意x >0成立.[解析] (1)由题设知g (x )=ln x +1x,∴g ′(x )=x -1x 2,令g ′(x )=0,得x =1. 当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调递减区间. 当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调递增区间,因此,x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g (1)=1.(2)g (1x)=-ln x +x ,设h (x )=g (x )-g (1x )=2ln x -x +1x,则h ′(x )=-x -12x 2.当x =1时,h (1)=0,即g (x )=g (1x).当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此,h (x )在(0,+∞)内单调递减.文档可能无法思考全面,请浏览后下载!19 / 31 当0<x <1时,h (x )>h (1)=0,即g (x )>g (1x), 当x >1时,h (x )<h (1)=0,即g (x )<g (1x). (3)由(1)知g (x )的最小值为1,所以g (a )-g (x )<1a 对任意x >0成立⇔g (a )-1<1a, 即ln a <1,从而得0<a <e ,即a 的取值范围为(0,e).。

2015届厦门市海沧中学高职高考班10月月考数学试题(详解答案)

2015届厦门市海沧中学高职高考班10月月考数学试题(详解答案)

2015届厦门市海沧中学高职高考班10月月考数学试题【考试时间:2014年10月10日】一、选择题:本大题共14个小题,每小题5分,共70分。

在每小题给出的四个选项中,只有一项符合题目要求,请将答案填写在答题卡上. 1. A ={不大于6的正整数},正确的是.A A ⊆6 .B {}0,6A ⊆ .C {}A ∈6 .D A ∈62.已知集合{1,2,3,4}M =,集合{1,3,5}N =,则MN 等于.{2}A .{2,3}B .{1,3}C .{1,2,3,4,5}D3. 设集合{}1x 5|x A ≤≤-=,{|36}B x x =-≤<,则=B A.A {}|56x x -≤≤ .B {}|56x x -≤< .C {}|56x x -<≤ .D {}|56x x -<<4.已知命题2:,210,p x R x ∀∈+>则 .A 2:,210p x R x ⌝∃∈+≤ .B 2:,210p x R x ⌝∀∈+≤.C 2:,210p x R x ⌝∃∈+< .D 2:,210p x R x ⌝∀∈+<5. 函数x y e =的图象大致是6. "tan 1"α=是""4πα=的.A 充分而不必要条件 .B 必要而不充分条件 .C 充要条件 .D 既不充分也不必要条件7. 若幂函数),+在(∞=0)(kx x f 上是减函数,则k 可能是 .A 1 .B 2 .C 12.D 2- 8. 要得到函数22(1)y x =+的图象,只要将函数22y x =的图象.A 向左平移1个单位 .B 向右平移1个单位.C 向左平移12个单位 .D 向右平移12个单位AB CD9. 下列函数中,在),0(+∞上是减函数的是.A xy 1=.B 12+=x y .C x y 2= .D x y 3l o g = 10.与函数x y =属于同一函数的是 .A ()2x y =.B 2x y x= .C y = .D 2log 2x y =11. 设0.914y =,28log 0.48y =,430.9y =,则.A 123y y y << .B 321y y y << .C 231y y y << .D 213y y y <<12.已知一个算法,其流程图如右图所示,则输出的结果是.3A .9B .27C .81D13. 如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 的取值范围是.A 3a -≤ .B 3a -≥ .C a ≤5 .D a ≥514.如图所示是()y f x =的图象,下列四个结论:① ()f x 在区间(3,1)-上是增函数; ②导数(1)0f '-=;③导数()y f x '=在区间(1,3)上是减函数,在区间(3,)+∞上是增函数;④ ,x R ∀∈必有()(1)f x f ≤成立.其中正确的结论是.A ①②.B ②③.C ③④.D ①④2015届厦门市海沧中学高职高考班10月月考数学答题卡班级: 姓名: 座号: 得分 请将选择题答案填入下表:非选择题(共80分)二、 填空题:本大题共4个小题,每小题5分,共20分。

(完整版)导数的计算练习题及答案

(完整版)导数的计算练习题及答案

【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。

9.设y=(2x+a)2,且2'|20x y ==,则a=________。

10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。

太原五中2014—2015学年度第一学期月考(10月)高三数学(文)试题

太原五中2014—2015学年度第一学期月考(10月)高三数学(文)试题

密学校 班级姓名 学号密 封 线 内 不 得 答 题太原五中2014—2015学年度第一学期月考(10月)高 三 数 学(文)第I 卷一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,16,4}A x =,2{1,}B x =,若B A ⊆,则x =( ) A.0 B.4- C.0或4- D.0或4± 2.设函数)1(log 21-=x y 的定义域为,P 不等式022≤-x x 的解集为Q ,则P x ∈是Q x ∈的( )条件A .充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要3.下列命题中,正确的是( )A . 若d c b a >>,,则bd ac > B. 若bc ac >,则b a > C.若22cbc a <,则b a < D. 若d c b a >>,,则d b c a ->- 4.等差数列}{n a 中,9,3432=+=a a a ,则61a a 的值为( ) A .14 B. 18 C. 21 D. 275.函数2()sin ln(1)f x x x =⋅+的部分图像可能是( )Ox O yx O yx.Ox .6.设变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为( )A.9B.4C.3D.27. 若0,0≥≥y x 且12=+y x ,那么232y x +的最小值为( )A. 2B.43 C.32D.0 8.已知数列}{n a 的前n 项和n n S n -=2,在正项等比数列}{n b 中,32a b =,2134nn n b b b =-+*∈≥N n n ,2(),则=n b 2log ( ) A. 1-n B. 12-n C.2-n D.n9.已知)(x f 是定义在(,)-∞+∞上的偶函数,且在区间(,0]-∞上是增函数,设12730.64(log ),(log ),(0.2)a f b f c f -===,则,.a b c 的大小关系是 ( ) A .c a b << B. c b a << C. b c a << D. a b c << 10.定义在)2,0(π上的函数)(x f ,)(x f '是它的导函数,且恒有x x f x f tan )()('<成立,则 ( ) A . )3()6(3ππf f < B.1sin )6(2)1(πf f <C.)4()6(2ππf f > D.)3(2)4(3ππf f >11.已知函数⎪⎩⎪⎨⎧>≤⋅=0,log 0,2)(21x x x a x f x 若关于x 的方程0))((=x f f 有且仅有一个实数解,则实数a 的取值范围是( )A .)0,(-∞B .)1,0()0,(⋃-∞C .)1,0(D .),1()1,0(+∞⋃ 12.定义在R 上的函数)(x f y =的图象关于点)0,43(-成中心对称,对任意的实 数x 都有)23()(+-=x f x f ,且1)1(=-f ,2)0(-=f ,则 +++)3()2()1(f f f)2014(f +的值为( )A .2B .-2C .-1D .1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.不等式0412<--x x 的解集为 14. 若曲线x x y ln =上点P 处的切线平行于直线012=+-y x ,则P 点坐标是 15.已知函数))(()(b x a x x x f --=的导数为)(x f ',且,4)0(='f 则222b a +的最小值为16.设数列}{n a 满足9,4,1321===a a a ,),5,4(321 =-+=---n a a a a n n n n ,则=2014a三、解答题: 共70分, 解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知函数⎪⎪⎪⎩⎪⎪⎪⎨⎧>+≤≤-+-<--=21,15212,32,1)(x x x x x x x f R x ∈(1)求函数)(x f 的最小值;(2)已知R m ∈,命题:p 关于x 的不等式22)(2-+≥m m x f 对任意R x ∈恒成立;:q 函数x m y )1(2-=是增函数.若p 或q 为真,p 且q 为假,求实数m 的取值范围.18.(本小题满分12分)已知数列{}n a 是公比大于1的等比数列,a 1,a 3是函数()910f x x x=+-的两个零点. (1)求数列{}n a 的通项公式;(2)若数列{b n }满足3log 2n n b a n =++,且1280n b b b +++≥,求n 的最小值.19. (本小题满分12分) 设数列{n a }的前n 项和n S 满足: )1(2--=n n na S n n .等比数列{n b }的前n 项和为n T ,公比为1a ,且5T =3T +25b . (1)求数列{n a }的通项公式; (2)设数列{11n n a a +}的前n 项和为n M ,求证:15≤n M <14.20. (本小题满分12分) 设正项等比数列{}n a 的首项11,2a =前n 项和为n S ,且10103020102(21)0.S S S -++=(1)求{}n a 的通项; (2)求{}n nS 的前n 项n T .21.(本小题满分12分)已知函数)(ln 2)(2R a x a xa x x f ∈-+= (1)讨论函数)(x f y =的单调区间;(2)设2ln 42)(2-+-=bx x x g ,当 1=a 时,若对任意的],1[,21e x x ∈,(e 为自然对数的底数)都有)()(21x g x f ≥,求实数b 的取值范围. 22 . (本小题满分12分)已知函数)(ln )(R x ax x x f ∈-= (1)若函数)(x f 无零点,求实数a 的取值范围;(2)若存在两个实数21,x x 且21x x ≠,满足0)(1=x f ,0)(2=x f ,求证221e x x >.密学校 班级姓名 学号密 封 线 内 不 得 答 题参考答案:一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,13、 21|{<<x x 或}2-<x 14、515、 8052 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解(1) 17.解析: (1)作出函数f(x)的图象,可知函数f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,故f(x)的最小值为f(x)min =f(-2)=1.(2)对于命题p ,m2+2m -2≤1,故-3≤m≤1; 对于命题q ,m2-1>1,故m >2或m <- 2. 由于“p 或q”为真,“p 且q”为假,则①若p 真q 假,则⎩⎨⎧-3≤m≤1-2≤m≤2,解得-2≤m≤1.②若p 假q 真,则⎩⎨⎧m >1或m <-3m <-2或m >2,解得m <-3或m > 2.故实数m 的取值范围是(-∞,-3)∪[-2,1]∪(2,+∞)..18.解:(1) ∵a 1,a 3是函数f (x )=x +9x -10的两个零点,∴a 1,a 3是方程x 2-10x +9=0的两根,又公比大于1,故a 1=1,a 3=9,则q =3,∴等比数列{a n }的通项公式为a n =3n -1.(2)由(1)知b n =log 3a n +n +2=2n +1,∴数列{b n }是首项为3,公差为2的等差数列,∴b 1+b 2+…+b n =n 2+2n ≥80,解得n ≥8或n ≤-10(舍),故n 的最小值是8.19. (1)11==a q 34-=n a n , (2))1411(41+-=n M n 20. 20.解:(1)由 0)12(21020103010=++-S S S 得,)(21020203010S S S S -=-…2分即,)(220121*********a a a a a a +++=+++可得.)(22012112012111010a a a a a a q +++=+++⋅ …………4分因为0>n a ,所以 ,121010=q 解得21=q , …………5分因而.,2,1,2111 ===-n q a a n n n ……………………6分 (2)因为}{n a 是首项211=a 、公比21=q 的等比数列,故.2,211211)211(21n n n n n n n nS S -=-=--= ……………………8分 则数列}{n nS 的前n 项和),22221()21(2n n nn T +++-+++= ).2212221()21(212132++-+++-+++=n n n nn n T前两式相减,得 122)212121()21(212+++++-+++=n n n nn T密 封 线 内 不 得 答 题12211)211(214)1(++---+=n n n n n 即 .22212)1(1-+++=-n n n n n n T (12)分21.22. (1) ea 1>(2)略。

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.3 1.3.1 函数的单调性与导数

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.3 1.3.1 函数的单调性与导数

1
自 测 自 评
1 2 4.函数 y= x -ln x 的单调递减区间为( 2 A.(-1,1] C.[1,+∞) B.(0,1] D.(0,+∞)
)
栏 目 链 接
答案:B
栏 目 链 接
题型1
求函数的单调区间
例1 求下列函数的单调区间: (1)f(x)=ax2+bx+c(a>0); (2)f(x)=3x2-2ln x.
栏 目 链 接
题型2
证明函数的单调性
例2 求证:函数f(x)=ex-x+1在(0,+∞)内是增函数,
在(-∞,0)内是减函数.
栏 目 链 接
分析:先求导数,再推证在该区间内导数恒大于零或 恒小于零,即可证明函数单调性问题.
证明:由f(x)=ex-x+1,得f′(x)=ex-1. 当x∈(0,+∞)时,ex-1>0,即f′(x)>0,
跟 踪 训 练
1.求下列函数的单调区间: (1)f(x)=x4-2x2+3; ex (2)f(x)= . x-2
栏 目 链 接
解析:(1)函数 f(x) 的定义域为 R. f′(x)=4x3-4x=4x(x2-1)=4x(x+1)(x-1). 令 f′(x)>0,则 4x(x+1)(x-1)>0, 解得-1<x<0 或 x>1, 所以函数 f(x)的单调递增区间 为(-1,0)和(1,+∞).
栏 目 链 接
∴f(x)在(0,+∞)内是增函数.
当x∈(-∞,0)时,ex-1<0,f′(x)<0, ∴f(x)在(-∞,0)内是减函数.
点评: 函数 f(x) 在某一区间上 f′(x) > 0 是 f(x) 是增函
数的充分不必要条件,若在此区间内有有限个点使f′(x) =0,f(x)在该区间内为增函数,因此,在证明f(x)在给 定区间内是增函数时,证明f′(x)≥0(但f′(x)=0不恒成立) 即可.

2014-2015东北师大附属中学高三第一轮复习导学案--导数的概念及运算

导数的概念与运算(教案)一、 知识梳理:(阅读选修教材2-2第2页—第21页) 1、 导数及有关概念:函数的平均变化率:设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即0000()()()limx f x x f x f x x∆→+∆-'=∆在定义式中,设x x x ∆+=0,则0x x x -=∆,当x ∆趋近于0时,x 趋近于0x ,因此,导数的定义式可写成000000()()()()()limlim x ox x f x x f x f x f x f x x x x ∆→→+∆--'==∆-. 2.导数的物理意义和几何意义:导数0000()()()limx f x x f x f x x∆→+∆-'=∆是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化..的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为000()()()y f x f x x x -='- 3.导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数()f x ',从而构成了一个新的函数()f x ', 称这个函数()f x '为函数)(x f y =在开区间内的导函数,简称导数..,也可记作y ',即()f x '=y '=xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim00说明 :导数与导函数都称为导数,这要加以区分,求一个函数的导数,就是求导函数,求一个函数在给定点处的导数,就是求导函数值.函数)(x f y =在0x 处的导数0x x y ='就是函数)(x f y =在开区间),(b a )),((b a x ∈上导数()f x '在0x 处的函数值,即0x x y ='=0()f x '.所以函数)(x f y =在0x 处的导数也记作0()f x '4.可导: 如果函数)(x f y =在开区间),(b a 内每一点都有导数,则称函数)(x f y =在开区间),(b a 5.可导与连续的关系:如果函数)(x f y =在点0x 处可导,那么函数)(x f y =在点0x 处连续,反之不成立. 函数具有连续性是函数具有可导性的必要条件,而不是充分条件.6.求函数()y f x =的导数的一般步骤:()1求函数的改变量)()(x f x x f y -∆+=∆()2求平均变化率xx f x x f x y ∆-∆+=∆∆)()(; ()3取极限,得导数y '=()f x '=xyx ∆∆→∆0lim7.几种常见函数的导数: 0'=C (C 为常数); 1)'(-=n n nx x (Q n ∈);x x cos )'(sin =;x x sin )'(cos -=;1(ln )x x'=;1(log )log a a x e x'=, ()x x e e '= ;()ln x x a a a '=8.求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=法则3: '2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭9.复合函数的导数:(理科)设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',则复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅'10.复合函数的求导法则:(理科)复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数11.复合函数求导的基本步骤:分解——求导——相乘——回代12.导数的几何意义:是曲线)(x f y =在点()(,00x f x )处的切线的斜率,即0()k f x =',要注意“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不尽相同的,后者A 必为切点,前者未必是切点. 二、题型探究:探究一.用导数的定义求函数在某一点处的导函数值。

导数同步练习

导数同步练习(精简含答案)(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--导数训练题5.y =x 1x 2-2在点(1,-23)处的切线方程为________. 6.已知曲线y =x +x1,则y ′|x =1=________.3.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的倾斜角为A .90°B .0°C .锐角D .钝角 4.对任意x ,有34)('x x f =,f(1)=-1,则此函数为A .4)(x x f =B .2)(4-=x x fC .1)(4+=x x fD .2)(4+=x x f9.在抛物线2x y =上依次取两点,它们的横坐标分别为11=x ,32=x ,若抛物线上过点P 的切线与过这两点的割线平行,则P 点的坐标为_____________.10.曲线3)(x x f =在点A 处的切线的斜率为3,求该曲线在A 点处的切线方程.13.求经过点(2,0)且与曲线xy 1=相切的直线方程.3.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程为2x +y -1=0,则A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在4.已知命题p :函数y =f (x )的导函数是常数函数;命题q :函数y =f (x )是一次函数,则命题p 是命题q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___________.1.物体运动方程为s =41t 4-3,则t =5时的瞬时速率为A .5 m/sB .25 m/sC .125 m/sD .625 m/s4.f (x )与g (x )是定义在R 上的两个可导函数,若f ’(x )=g ’(x ),则f (x )与g (x )满足A .f (x )=g (x )B .f (x )-g (x )为常数函数C .f (x )=g (x )=0D .f (x )+g (x )为常数函数7.曲线y =x 4的斜率等于4的切线的方程是___________.9.过曲线y =cos x 上的点(21,6π)且与过这点的切线垂直的直线方程为_____________.10.在曲线y =sin x (0<x <π)上取一点M ,使过M 点的切线与直线y =x 23平行,则M 点的坐标为___________.14.已知直线x +2y -4=0与抛物线y 2=4x 相交于A 、B 两点,O 是坐标原点,试在抛物线的弧上求一点P ,使△PAB 面积最大.1.若f (x )=sin α-cos x ,则f ′(α)等于A .sin αB .cos αC .sin α+cos αD .2sin α2.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于A .319B .316C .313D .3103.函数y =x sin x 的导数为 A .y ′=2x sin x +x cos xB .y ′=xx 2sin +x cos x C .y ′=xx sin +x cos x D .y ′=xx sin -x cos x4.函数y =x 2cos x 的导数为 A .y ′=2x cos x -x 2sin x B .y ′=2x cos x +x 2sin x C .y ′=x 2cos x -2x sin x D .y ′=x cos x -x 2sin x5.若y =(2x 2-3)(x 2-4),则y ’= .6. 若y =3cosx -4sinx ,则y ’= .7.与直线2x -6y +1=0垂直,且与曲线y =x 3+3x 2-1相切的直线方程是______.2.函数y =xxsin 的导数为A .y ′=2sin cos x x x x +B .y ′=2sin cos x x x x -C .y ′=2cos sin x x x x -D .y ′=2cos sin x xx x +4.若423335,x x y x -+-=则y ’= . 5.若1cos ,1cos xy x+=-则y ’= .8.已知f (x )=x x2cos 12sin +,则f ′(x )=___________.2.已知y =21sin2x +sin x ,那么y ′是A .仅有最小值的奇函数B .既有最大值,又有最小值的偶函数C .仅有最大值的偶函数D .非奇非偶函数4.在曲线y =59++x x 的切线中,经过原点的切线为________________.6.函数y =x 2lnx 的导数为 .1.若f (x )在[a ,b ]上连续,在(a ,b )内可导,且x ∈(a ,b )时,f ′(x )>0,又f (a )<0,则A .f (x )在[a ,b ]上单调递增,且f (b )>0B .f (x )在[a ,b ]上单调递增,且f (b )<0C .f (x )在[a ,b ]上单调递减,且f (b )<0D .f (x )在[a ,b ]上单调递增,但f (b )的符号无法判断2.函数y =3x -x 3的单调增区间是A .(0,+∞)B .(-∞,-1)C .(-1,1)D .(1,+∞)3.三次函数y =f (x )=ax 3+x 在x ∈(-∞,+∞)内是增函数,则A .a >0B .a <0C .a =1D .a =314.f (x )=x +x2(x >0)的单调减区间是A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2)6.函数y =x ln x 在区间(0,1)上是A .单调增函数B .单调减函数C .在(0,e 1)上是减函数,在(e1,1)上是增函数D .在(0,e 1)上是增函数,在(e1,1)上是减函数8.函数y =2x +sin x 的增区间为___________.9.函数y =232+-x x x的增区间是___________.10.函数y =xxln 的减区间是___________.12.已知函数f (x )=kx 3-3(k +1)x 2-k 2+1(k >0).若f (x )的单调递减区间是(0,4).(1)求k 的值; (2)当k <x 时,求证:2x >3-x1.14.三次函数f (x )=x 3-3bx +3b 在[1,2]内恒为正值,求b 的取值范围.1.下列说法正确的是A .当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B .当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C .当f ′(x 0)=0时,则f (x 0)为f (x )的极值D .当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=03.函数y =216x x+的极大值为A .3B .4C .2D .54.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为A .0B .1C .2D .4 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于A .6B .0C .5D .1 7.函数f (x )=x 3-3x 2+7的极大值为___________. 8.曲线y =3x 5-5x 3共有___________个极值.9.函数y =-x 3+48x -3的极大值为___________;极小值为___________. 10.函数f (x )=x -3223x 的极大值是___________,极小值是___________.11.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =___________,b =___________.12.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7;当x =3时,取得极小值.求这个极小值及a 、b 、c 的值.13.函数f (x )=x +xa+b 有极小值2,求a 、b 应满足的条件.14.设y =f (x )为三次函数,且图象关于原点对称,当x =21时,f (x )的极小值为-1,求函数的解析式.同步练习 X030811.下列结论正确的是A .在区间[a ,b]上,函数的极大值就是最大值B .在区间[a ,b]上,函数的极小值就是最小值C .在区间[a ,b]上,函数的最大值、最小值在x=a 和x=b 时到达D .在区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值和最小值 2.函数14)(2+-=x x x f 在[1,5]上的最大值和最小值是A .f(1),f(3)B .f(3),f(5)C .f(1),f(5)D .f(5),f(2) 3.函数f(x)=2x-cosx 在(-∞,+∞)上A .是增函数B .是减函数C .有最大值D .有最小值 4.函数a ax x x f --=3)(3在(0,1)内有最小值,则a 的取值范围是 A .0<a<1 B .a<1 C .a>0 D .21<a 6.函数5224+-=x x y ,x∈[-2,2]的最大值和最小值分别为 A .13,-4 B .13,4 C .-13,-4 D .-13,4 7.函数xxe y =的最小值为________________. 8.函数f(x)=sinx+cosx 在]2,2[ππ-∈x 时函数的最大值,最小值分别是___. 9.体积为V 的正三棱柱,底面边长为___________时,正三棱柱的表面积最小.11.求下列函数的最大值和最小值(1))11(263)(23≤≤--+-=x x x x x f2.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )A .等于0B .大于0C .小于0D .以上都有可能3.函数y =234213141x x x ++,在[-1,1]上的最小值为A .0B .-2C .-1D .12136.设f (x )=ax 3-6ax 2+b 在区间[-1,2]上的最大值为3,最小值为-29,且a >b ,则A .a =2,b =29B .a =2,b =3C .a =3,b =2D .a =-2,b =-3 7.函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________.8.函数f (x )=sin2x -x 在[-2π,2π]上的最大值为______;最小值为_______.1.函数)0(ln )(>=x xxx f ,则A .在(0,10)上是减函数.B .在(0,10)上是增函数.C .在(0,e )上是增函数,在(e ,10)上是减函数.D .在(0,e )上是减函数,在(e ,10)上是增函数.3.函数142+=x xyA .有极大值2,无极小值B .无极大值,有极小值-2C .极大值2,极小值-2D .无极值4.函数)1|(|3)(3<-=x x x x fA .有最大值,但无最小值B .有最大值,也有最小值C .无最大值,也无最小值D .无最大值,但有最小值 5.函数234323)(x x x x f --=A .有最大值2,最小值-2B .无最大值,有最小值-2C .有最大值2,无最小值D .既无最大值,也无最小值 6.给出下面四个命题(1)函数)11(452≤≤-+-=x x x y 的最大值为10,最小值为49-(2)函数)42(1422<<+-=x x x y 的最大值为17,最小值为1 (3)函数)33(123<<--=x x x y 的最大值为16,最小值为-16。

2015年全国各地高考模拟数学试题汇编导数与定积分(理卷B)(2021年整理)

2015年全国各地高考模拟数学试题汇编导数与定积分(理卷B)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2015年全国各地高考模拟数学试题汇编导数与定积分(理卷B)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2015年全国各地高考模拟数学试题汇编导数与定积分(理卷B)(word版可编辑修改)的全部内容。

专题2 不等式、函数与导数 第4讲 导数与定积分(B 卷)一、选择题(每题5分,共30分)1、(2015·山东省滕州市第五中学高三模拟考试·4)01()x x e dx --⎰=( )A .11e--B .1-C .312e-+D .32-622a x x ⎛⎫+ ⎪⎝⎭展开2.(2015·德州市高三二模(4月)数学(理)试题·9)式的常数项是15,右图阴影部分是由曲线2y x =和圆22x y a x+=及轴围成的封闭图形,则封闭图形的面积为( )A .146π- B .146π+C .4πD .163。

(江西省新八校2014—2015学年度第二次联考·12)已知定义域为R 的奇函数)(x f 的导函数)(x f ',当0≠x 时,0)()(>+'xx f x f ,若)1(sin 1sin f a ⋅=,)3(3--=f b ,)3(ln 3ln f c =,则下列关于c b a ,,的大小关系正确的是( )A.a c b >>B.b c a >>> C 。

a b c >>D 。

《导数及其应用》同步练习(可编辑修改word版)

3 2 , 在区间≥新青蓝小班《导数及其应用》同步练习三1、将半径为 R 的球加热,若球的半径增加△R,则球的体积增加△y 约等于 ()A. 4R 3△R 3B. 4R 2△RC. 4R 2D. 4R △R 2、下列各式正确的是()A .(sin a )′=cos a (a 为常数)B .(cos x )′=sin x1C .(sin x )′=cos xD .(x -5)′=- x -653、下列函数在(-∞,+ ∞) 内为单调函数的是()A. y = x 2 - xB. y = x C. y = e -xD. y = sin x4、函数 y = x ln x 在区间(0,1) 上是() A. 单调增函数 B.单调减函数C.在⎛ 0,1 ⎫ 上是单调减函数,在⎛ 1,1⎫上是单调增函数e ⎪ e ⎪⎝ ⎭ ⎝ ⎭ D.在⎛ 0,1 ⎫ 上是单调增函数,在⎛ 1,1⎫上是单调减函数e ⎪ e ⎪ ⎝ ⎭ ⎝ ⎭5、已知函数 y =f (x ),其导函数 y =f ′(x )的图象如下图所示,则 y =f (x ) ( ) A .在(-∞,0)上为减函数 B .在 x =0 处取极小值C .在(4,+∞)上为减函数 D .在 x =2 处取极大值6、若函数 f (x ) =x ln x 在 x 0 处的函数值与导数值之和等于 1,则 x 0 的值等于( )A .1B .-1C .±1D .不存在 7、若函数 f (x )=x 3+ax 2-9 在 x =-2 处取得极值,则 a = ( )A .2B .3C .4D .58、函数 y 1 = x +x -3x -4 在[-4,2]上的最小值是 ( ) 3 A .-17 3 B.16 3 C .-64 3 D .-11 39、 若 f (x )= - x 2+ 2ax 与 g (x )= a[1,2]上都是减函数, 则 a 的取值范围是 x +1( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1] 2010 级C .(0,1) 班D 姓.(0名,1]10、若曲线 y x 4 的一条切线l 与直线 x 4 y 8 0 垂直, 则l 的方程为 A. 4 x y 3 0 B. x 4 y 5 0 C. 4 x y 3 0 D. x 4 y 3 0 11、若函数 f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数 m 取值范围为( )A. m >1 2B. m <1 2 C .m 1 2 D .m ≤1 212、函数 f (x )=x 3-3bx +3b 在(0,1)内有极小值,则 ( )A .0<b <1B .b <0C .b >0D .b <12 13、质点 M 按规律v (t )3 4t 做直线运动,则质点的加速度 a= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xxx学校2014-2015学年度10月同步练习
学校:___________姓名:___________班级:___________考号:___________
第I卷(选择题)
一、选择题(题型注释)
第II 卷(非选择题)
二、填空题(题型注释)
三、解答题(本题共3道小题,第1题0分,第2题0分,第3题0分,共0分)
1.已知函数bx ax x x f ++=23)(在2
3
x =-与1x =处都取得极值。

(1)求函数()f x 的解析式;
(2)求函数()f x 在区间[-2,2]的最大值与最小值 2.已知函数21()()ln ()2
f x a x x x R =-+∈。

(1)当a =1时,0[1,]x e ∃∈使不等式0()f x m ≤,求实数m 的取值范围;
(2)若在区间(1,+∞)上,函数f (x )的图象恒在直线y =2ax 的下方,求实数a 的取值范围。

3.(本小题13分)已知函数6
1
31)(23+++=cx bx x x f 的图象在点))1(,1(f M 处的切线方程
为02=+y x 。

(1)求函数)(x f y =的解析式;
(2)若关于x 的方程m x f =)(在区间]3,0[上恰有两个相异实根,求m 的取值范围.
试卷答案
1.
列表如
下: 2)2(,2
)1(,27)3(,6)2(=-==--=-f f f f 且
[]6)2(min )(,2)2(max )(2,2-=-===-∈f x f f x f x 时,所以当
2.
f (x )
3.(1)32111()2326f x x x x =--+;(2)194(,]63
m ∈--。

相关文档
最新文档