统计学中的抽样与推断
统计学第六章抽样推断

尖山一委…
尖山二委
居民一组
居民二
组
…
第六章 抽样推断
某外国公司在##进行 微波炉市场调查:
STAT
在商场的大门口
在微波炉柜台前
在市区街道旁边
在某个住宅小区
时间表抽样框
第六章 抽样推断
连续出产的产品总体 可以编制抽样框:均STAT 匀的出产时间、可以 预见到的产品总量.
连续到加油站加油的 汽车总体无法编制抽 样框:时间不定、总 量也无法确定.
抽样估计的特点
第六章 抽样推断
按随机原则抽取样本单位
目的是推断总体的数量特征
抽样推断的结果具有一定的可靠程度, 抽样误差可以事先计算并控制
抽样估计的应用
第六章 抽样推断
不可能进行全面调查时 不必要进行全面调查时 来不及进行全面调查时 对全面调查资料进行补充修正时
抽样调查研究
Sampling Study
P N nN N NN n
共n个
⒉ 不重复抽样的可能样本数目:
C N n N N 1 N n 1
第六章 抽样推断
第六章 抽样推断
STAT
★§1.1 抽样方案的设计 ★§1.2 简单随机抽样的抽样误差的测定
§1.3 简单随机抽样的抽样估计
第六章 抽样推断
§1.2 简单随机抽样的抽样误差的测定 STAT
n1 1{i n1E(xiX)2nn(E xX)2} 由E(于 xX)2D (x)D (i1 nxi)n 1 2i n1D (xi)n2
E(sn21)n11{n2nn2}
2
⒋ 样本成数:
pn1,qn0 1p nn
⒌ 样本单位是非标志的标准差:
第六章 抽样推断
统计学 任务一八 抽样推断

31
抽样平均误差
㈢影响抽样误差的主要因素
1.样本容量n。样本容量大小与抽样误差成反比。当 n=N,无抽样误差。此表明,若条件许可应尽量扩容。
2.总体各单位标志变异程度。如总体标准差σ或总体方 差 。标志变异程度大小与抽样误差成正比。当σ=0, 无抽样误差2 。
3.抽样组织形式。类型抽样和等距抽样的抽样误差较小, 整群抽样误差较大。实践中,可利用抽样误差的大小 来检验组织方式的有效性。
差的影响(对抽中群作全面调查,无抽样误差)。 因此群的划分,要尽量缩小群间的差异,加大群 内的差异。 由于样本单位过分集中在少数样本群,同样条件 下抽样误差较大。欲不扩大误差,则需要增加一 些样本群。
21
抽样组织形式
㈣等距抽样——机械抽样
等距抽样是先将总体单位按某一标志顺序排队,再按固 定顺序和相等距离(间隔k)抽取样本单位。
13
◎抽样方法
2.不重复抽样(不回置抽样)从总体中每次抽 取一个单位进行观察,登记后不再放回总体中, 依此直至抽取n 个单位。
不重复抽样的特点:
⑴ n次抽取实质上等于一次同时抽取n个单位; ⑵ n次抽取相互不独立(对下次抽取有影响); ⑶每个总体单位在各次被抽中的概率不同,即1~n次分
别是1/N,1/N-1,1/N-2,…,1/N-n+1,但在每次抽 取时机会仍然均等; ⑷每个总体单位不会被重复抽中。
○
(n-1)k nk
22
分任务二 抽样误差
抽样误差的概念 抽样平均误差 抽样极限误差与概率度
一.抽样误差的概念
抽样误差是一种调查误差。如前所述:
调 登记性误差 普遍存在可以防止
查
误
系统性误差
差 代表性误差
统计学中的抽样与推断

统计学中的抽样与推断在统计学中,抽样与推断是两个非常重要的概念和方法。
抽样是从总体中选择出一部分个体来进行观察和研究的过程,而推断则是根据样本的统计特征来对总体的特征进行推断和估计。
本文将从抽样方法、推断的基本原理和应用等方面进行阐述。
一、抽样方法抽样是进行统计研究的基础,良好的抽样方法能够保证样本的代表性和可靠性。
常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。
1. 简单随机抽样简单随机抽样是指从总体中随机选择出若干个体作为样本,每个个体被选中的概率相等且相互独立。
通过随机数表、随机数发生器等工具可以实现简单随机抽样。
2. 系统抽样系统抽样是按照一定的规则和间隔,从总体中选择个体作为样本。
例如,从一排座位上每隔固定的间隔选取个体作为样本。
3. 分层抽样分层抽样是将总体划分为若干个层次,然后从每个层次选择样本。
通过这种方法可以确保不同层次的个体在样本中的比例与总体中的比例保持一致。
4. 整群抽样整群抽样是将总体划分为若干个群体,然后从其中选择若干个群体作为样本。
这种抽样方法常用于人口调查或者地理区域的研究。
二、推断的基本原理推断是根据样本数据对总体的特征进行推断和估计的过程。
推断的基本原理包括参数估计和假设检验两方面。
1. 参数估计参数估计是通过样本数据对总体的参数进行估计。
常见的参数估计方法有点估计和区间估计。
点估计是通过样本数据得到总体参数的估计值,例如平均数的点估计是样本均值。
区间估计是通过样本数据得到总体参数的置信区间,可以对总体参数的范围进行估计。
2. 假设检验假设检验是通过样本数据对总体参数的假设进行检验。
常用的假设检验方法有单样本假设检验、两样本假设检验和方差分析等。
假设检验的基本步骤包括建立原假设和备选假设、选择适当的检验统计量、确定显著性水平和计算P值等。
三、抽样与推断的应用抽样与推断在实际问题中有着广泛的应用,特别是在市场调研、医学研究和社会科学等领域。
1. 市场调研市场调研是通过抽样方法对消费者的需求和偏好进行调查和研究。
统计学 第五章

第五章 抽样推断抽样推断定义:是一种非全面调查,是按随机原则,从总体中抽取一部分单位进行调查,并以其结果对总体某一数量特征作出估计和推断的一种统计方法。
(一) 总体和样本在抽样推断中面临两个不同的总体,即全及总体和样本总体,全及总体也叫母体,简称总体。
全及总体的单位数用N 表示全及总体⎪⎩⎪⎨⎧⎩⎨⎧属性总体有限总体无限总体变量总体样本总体又叫抽样总体、子样,简称样本,样本总体的单位数称样本容量,用n 表示。
(二) 参数和统计量参数亦称全及指标,由于全及总体是唯一确定的,故根据全及总体计算的参数也是个定值 对于属性总体,可以有如下参数,全及总体成数p ,全及总体标准差)(2p p σσ方差 属性总体标准差:()p p p-=1σ统计量即样本指标设样本总体有n 个变量:n x x x x ,...,,,321 则:样本平均数 nx x ∑=(三) 样本容量与样本个数样本容量是指一个样本所包含的单位数,用n 来表示,一般地,样本单位数达到或超过30个的样本称为大样本,而在30个以下称为小样本。
社会经济统计的抽样推断多属于大样本,而科学实验的抽样观察则多取小样本。
样本个数又称样本可能数目,是指从全及总体中可能抽取的样本的个数。
一个总体可能抽取多少样本,与样本容量大小有关,也与抽样的方法有关。
在样本容量确定之后,样本的可能数目便完全取决于抽样方法。
抽样误差是抽样调查自身所固有的,不可避免的误差,虽然不能消除这种误差,但有办法进行计算,并能对其加以控制。
抽样平均误差越大,表示样本的代表性越低;抽样平均误差越小,表示样本的代表性越高。
在重复简单随机抽样时,样本平均数的抽样分布有数学期望值E(a)=a(a代表全及总体平均数,即X)X⇔。
样本平均数的平均数=总体平均数抽样平均误差=抽样标准误差=样本平均数的标准差(它反映抽样平均数与总体平均数的平均误差程度)例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用重复简单随机抽样的方法从全及总体中抽选出容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(15501700160015001400元=+++=X全及总体标准差()4500002=-=∑NX Xσ抽样平均误差x μ=nnσσ=2=)(0569.792*450000元=例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用不重复简单随机抽样的方法从全部总体中抽选容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(155041700160015001400元=+++==∑NXX全及总体标准差()4500002=-=∑NX Xσx μ=⎪⎭⎫ ⎝⎛--∙12N n N n σ=)(55.6414244*250000元=--∙例题:某电子元件厂,生产某型号晶体管,按正常生产试验,产品中属于一级品的占70%,现在从10000件晶体管中,抽取100件进行抽查检验,求一级品率的抽样平均误差? 解:已知:P=0.7 , P(1-P)=0.21在重复抽样的情况下,抽样平均误差为:()np p p -=1μ=%58.410021.0=在不重复抽样的情况下,抽样平均误差为:()⎪⎭⎫⎝⎛-∙-=N n n p p p 11μ=%56.410000*********.0=⎪⎭⎫ ⎝⎛-∙参数估计()()⎪⎪⎩⎪⎪⎨⎧→-==+≤≤是概率度是置信度,极限误差)样本指标总体指标极限误差—(样本指标区间估计:求不高的情况准确程度与可靠程度要点估计:适用于推断的t t F t F P α1例题:已知某车间某产品的合格率在某个置信度下的估计区间是(85%,95%),还已知样本容量为100,求置信度?解:显然p p ∆-=85%,p p ∆+=95%,即p=90%,p ∆=5%p ∆=μ⋅t μpt ∆=⇒=()()67.1100%901%90%51=-∙=-∆np p p ()t F =0.9052即置信度为90.51% ★求置信度,只需要求出t影响抽样数目的因素⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∆样本单位不重置抽样可以少抽些单位,抽样需要多抽一些样本、在同等条件下,重置单位,则反之值越大,则多抽些样本、概率度则反之单位,的值大可以少抽些样本)、允许误差(极限误差越多,则反之值越大,必要抽样数目、总体标准差4321t x σ例题:某城市组织职工家庭生活抽样调查,职工家庭平均每户每月收入的标准差为11.50元,要求把握程度为95.45%,允许误差为1元,问需抽选多少户? 解:()t F =0.95452=⇒t , 元元,150.11=∆=x σxt n 222∆=σ=()户529150.1142=∙。
统计学的抽样与推断

统计学的抽样与推断统计学是一门研究数据收集、处理、分析和解释的学科,而抽样与推断则是其中非常重要的两个概念和方法。
抽样是指从总体中选择一部分样本进行数据收集和分析,而推断则是在收集到的样本数据的基础上对整个总体做出合理的推断和估计。
本文将从抽样的方法和推断的步骤两个方面来介绍统计学的抽样与推断。
一、抽样的方法在进行统计学调查或研究时,往往无法对整个总体进行数据收集,这时候就需要通过抽样的方法选取一部分样本来进行研究。
常用的抽样方法包括以下几种:1. 简单随机抽样:简单随机抽样是指通过随机抽取的方法,使得每个样本都有相同的机会被选中。
这样可以保证样本是来自总体的一个典型子集,能够准确反映总体的特征。
2. 分层抽样:分层抽样是将总体划分为若干个层次,然后在每个层次中进行简单随机抽样。
这样可以保证每个层次都有足够的代表性样本,从而更准确地推断每个层次的特征。
3. 系统抽样:系统抽样是指按照一定的规则从总体中选择样本,例如每隔一定间隔选取一个样本。
系统抽样的优点是可以保证样本均匀分布在总体中,同时又比随机抽样更具有操作性。
4. 整群抽样:整群抽样是将总体划分为若干个互不重叠的群组,然后随机选择一部分群组作为样本。
这样可以减少调查的工作量,同时又保持了群组内部的相似性。
二、推断的步骤在得到样本数据后,需要进行推断分析,从而对整个总体进行合理的推断和估计。
推断的步骤主要包括以下几个方面:1. 参数估计:参数估计是指通过样本数据对总体参数进行估计。
常用的参数估计方法包括点估计和区间估计。
点估计是通过样本数据计算出一个具体的数值作为总体参数的估计值,例如样本均值作为总体均值的估计值。
区间估计则是通过样本数据计算出一个区间,该区间可以包含真实总体参数的真值,例如置信区间。
2. 假设检验:假设检验是使用样本数据对总体参数的某个假设进行检验。
常用的假设检验方法包括单样本检验、双样本检验和方差分析等。
通过假设检验可以判断样本数据是否支持某个假设,并对总体参数的差异性进行推断。
《统计学原理》第5章:抽样推断

σ
n )
抽样推断的基本原理
抽样推断的优良标准
设θ 为待估计的总体参数, θ为样本统计量,则 θ的优良标 准为: 1若 E(θ ) =θ ,则称 θ为 θ 的无偏估计量(无偏性)
更有效的估计量(有效性) 2若σθ1 < σθ2,则称θ1为比θ2
3若 越大σθ 越小,则称 θ 为θ 的一致估计量(一 致性)
即中选成分相同但中选顺序不同的视为同一样本
抽样推断的一般问题
抽样组织方式
简单随机抽样 类型抽样 整群抽样 等距抽样 多阶段抽样 多重抽样
抽样推断的一般问题
样本可能数目
按照一定的抽样方法和组织方式,从总体N中抽取n个 单位构成样本,一共可以抽出的不同样本的数量,一般 用M表示. 考虑顺序的不重复抽样 考虑顺序的重复抽样 不考虑顺序的不重复抽样 不考虑顺序的重复抽样
抽样推断的一般问题
全及总体指标:参数 (未知量) 统计推断 样本总体指标:统计量 (已知量)
抽样推断的一般问题
抽样推断的特点 按随机原则抽取样本 运用概率论的理论和方法,用样本指标来推断 总体指标。 推断的误差可以事先计算和控制。
抽样推断的一般问题
抽样推断的应用 无法或 很难进行全面调查而又需要了解 其全面情况时 某些可以采用全面调查的社会经济现象, 也可采用抽样推断。 可用于生产过程的质量控制 进行假设检验
抽样推断的基本原理
抽样推断的优良标准——有效性 中位数的抽样分布
9 8 7 6 5 4 3 2 1 0 -1 45 50 55 60 65 70 75
平均数的抽样 分布
E(x) =
E ( me ) =
e
σx <σm
抽样推断的基本原理
《统计学》第七章抽样推断第二节 抽样误差

经济、管理类 基础课程
统计学
二、抽样误差的影响因素
差异越大,抽 样误差越大
单位数越多, 抽样误差越小
1.总体各单位标志值的差异程度; 2.样本的单位数; 3.抽样的方法; 4.抽样调查的组织形式。
重复抽样的抽 样误差比不重 复抽样的大 6-4 简单随机抽样 的抽样误差最 大
三、抽样平均误差
或
p p P
如果抽样极限误差用抽样平均误差来 衡量,则有: x t x 或 p t p
9
式中, N为总体单位数; n为样本容量;σP2 为总体成数方 差一般情况下是末知,可用样本成数方差替代σp2 。
8
四、抽样极限误差
抽样极限误差是指用绝对值形式表示的样本指 标与总体指标偏差可允许的最大范围。即:
x x X
即,抽样极限误差是 抽样平均误差的多少 式中, x样本平均指标 ;X 为总体平均指标 倍。我们把倍数 t称 p为样本成数;P 为总体成数 。 为抽样误差的概率度
2
n ( 1- ) 当N 很大时,可近似表示为: = n N
6
1. 重复抽样的条件下
平均数的抽样平均误差 : x
n
式中,n为样本容量; 为总体标准 。
成数的抽样平均误差 : p
p
n
式中,n为样本容量; 为总体成数标准差 P 一般情况下是末知,可用样本成数标准差替代 p。
P(1 P)
7
2. 不重复抽样的条件下
平均数的抽样平均误差 : x 当N很大时近似为 x
2 ( N n)
n( N 1)
;
2
统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断统计学是一门研究收集、分析和解释数据的学科,而抽样和抽样分布则是统计学中至关重要的概念。
本文将探讨统计学原理教案中的抽样和抽样分布,以揭示学生如何进行抽样和利用抽样分布进行推断。
首先,我们来理解抽样的概念。
在统计学中,抽样是指从总体中选择一部分个体进行观察和研究。
总体是指我们感兴趣的整体,而样本则是从总体中选取的一部分个体。
通过抽样,我们可以通过研究样本来推断总体的特征,这是由于抽样的随机性能够保证样本与总体的代表性。
接下来,让我们了解抽样的方法。
常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。
每种抽样方法都有其特点和适用范围。
简单随机抽样是一种随机选择样本的方法,每个个体被选择的概率相同。
系统抽样是按照一定的规律选择样本,例如每隔一定数量选择一个个体。
分层抽样是将总体分成若干层次,然后从每个层次中抽取样本。
整群抽样则是将总体分成若干群体,然后随机选择一些群体并全面调查其中的个体。
选择合适的抽样方法可以更好地保证样本的代表性和可靠性。
抽样之后,我们需要了解抽样分布的概念。
在统计学中,抽样分布是指根据大量抽样的结果所得到的分布。
常见的抽样分布包括正态分布、t分布和F分布等。
其中,正态分布是抽样分布的重要特例,它在许多情况下都可以作为近似的抽样分布来使用。
t分布则用于小样本情况下的推断,它相比于正态分布更为宽阔且更适用于样本数据较少的情况。
F分布常用于分析方差比较和回归模型中的显著性分析。
抽样分布的重要性在于它可以帮助我们进行推断。
根据抽样分布的性质,我们可以利用统计推断方法进行参数估计和假设检验。
参数估计是根据样本的统计量来估计总体的参数值,例如通过样本均值估计总体均值。
假设检验是用来判断总体参数是否在某个范围内或是否相等的统计方法。
通过抽样分布的理论知识,我们可以进行参数估计和假设检验,并对总体进行推断。
在统计学原理教案中,抽样和抽样分布是学生学习的重点内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学中的抽样与推断
在统计学中,抽样与推断是非常重要的概念。
它们涉及到我们如何从一小部分样本中推断出整个总体的特征。
在这篇文章中,我们将讨论抽样的不同方法以及如何使用样本数据进行推断。
一、抽样方法
在统计学中,我们通常使用以下三种抽样方法:
1. 简单随机抽样
这是最基本的抽样方法。
简单随机抽样意味着从总体中随机抽出样本,每个样本被抽样的概率相等。
这种方法可以确保样本的代表性。
例如,如果我们要调查一个城市的人口,我们可以从人口登记簿中随机抽取一定数量的人口作为样本。
2. 分层抽样
分层抽样是把总体划分为若干个层次,然后从每个层次中随机抽取样本。
这个方法可以减小代表性偏差。
例如,如果我们要调
查一个城市的人口,我们可以按照不同的年龄段对总体进行分层,然后从每个年龄段中随机抽取一定数量的人口作为样本。
3. 系统抽样
这是从总体中按照一定的规则抽样。
例如,如果我们要调查一
个工厂中的员工,我们可以按照员工的工号顺序每隔一定数量抽
取一个员工作为样本。
二、样本统计量的计算
在进行统计推断之前,我们需要先计算样本统计量。
样本统计
量是样本数据的数量指标,可以代表总体的特征。
常见的样本统
计量包括:
1. 样本均值
样本均值是样本数据的平均值。
它可以代表总体的平均值。
例如,我们可以从一个城市的人口中随机抽取一部分人口,计算他
们的平均收入,这个平均收入就是样本均值。
2. 样本标准差
样本标准差是样本数据的标准差。
它可以代表总体的方差。
例如,我们可以从一个工厂中随机抽取一部分产品,计算它们的重量,这个重量的标准差就是样本标准差。
三、参数估计
我们通常使用抽样中的样本统计量来估计总体参数。
例如,我们可以使用样本均值来估计总体均值,使用样本标准差来估计总体标准差。
常见的参数估计方法包括:
1. 点估计
点估计是用样本统计量来估计总体参数的方法。
例如,我们可以使用样本均值来估计总体均值,使用样本标准差来估计总体标准差。
2. 区间估计
区间估计是用一个区间来估计总体参数的方法。
例如,我们可以使用置信区间来估计总体均值和总体标准差。
置信区间定义为一个区间,在该区间内的概率为95%。
这种方法可以对总体参数进行更准确的估计。
四、假设检验
在统计学中,假设检验是一种用于检验总体参数假设的方法。
在假设检验中,我们首先提出一个关于总体参数的假设,然后采用适当的统计方法来检验这个假设是否成立。
常见的假设检验方法包括:
1. 单样本t检验
单样本t检验是检验总体均值是否等于一个已知值的方法。
例如,我们可以使用单样本t检验来检验一个城市的平均收入是否等于国家的平均收入。
2. 双样本t检验
双样本t检验是检验两个总体均值是否相等的方法。
例如,我
们可以使用双样本t检验来检验两个城市的平均收入是否相等。
3. 方差分析
方差分析是一种用于检验三个以上总体均值是否相等的方法。
例如,我们可以使用方差分析来检验不同年龄段人群的平均收入
是否相等。
综上所述,抽样与推断是统计学中非常重要的概念。
了解不同
的抽样方法、样本统计量的计算以及参数估计和假设检验等方法,可以帮助我们更准确地描述总体的特征,做出更可靠的判断和决策。