课题学习最短路径问题

合集下载

13.4课题学习 最短路径问题教学设计

13.4课题学习 最短路径问题教学设计

13.4 课题学习最短路径问题(第一课时)一、内容和内容解析1.内容利用轴对称研究某些最短路径问题。

2.内容解析最短路径问题是人教版八年级上册第十三章第四节内容,本节课以一个实际问题为载体开展对“最短路径问题”的课题研究,让学生将实际问题抽象为数学中线段之和最小问题,并建立数学模型,学会用数学的眼光观察现实世界.初步了解利用图形变换——轴对称的方法来解决最值问题,体会用数学的思维思考现实世界。

从内容上来看,在本章节之前学生已经学习了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,以及简单的轴对称知识,这为过渡到本节的学习起着铺垫作用。

本节课既轴对称知识运用的延续,从初中数学的角度来看,也是中考数学的热点问题之一,本节课的教学内容是解决中考最值综合问题的基础,具有承上启下作用。

本节课的教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。

二、目标和目标解析1.目标(1)能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想。

(2)通过实际问题的提出,能够抽象为数学问题,并建立数学模型,利用所掌握的数学知识完成严谨的推理过程,然后再解决实际问题。

体会数学在实际生活中的价值。

2.目标解析达成目标 1 的标志是:学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线",把实际问题抽象为数学的线段和最小问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想。

达成目标 2 的标志是:课题学习本身是考察综合能力,注重现实背景,学生能从生活中自己发现问题,并抽象成数学模型,掌握转化的探究方法,将不熟悉的模型转化成所学过简单的数学模型,通过合作探究,解决问题。

三、教学问题诊断分析已形成的:我校八年级学生已经学习轴对称相关的简单知识,掌握了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,思维活跃,敢于尝试,具备一定的动手操作能力和小组合作意识,同时也具备一定的数学抽象能力和数学建模能力。

13-4课题学习最短路径问题课件

13-4课题学习最短路径问题课件
地的方周,长可最使小所. 用的输气管线最短?
E1
A
B
P E
A
B
C
F
P B1
34、如图,,AO牧B童内在一A点处P放,P牛1、,P家2分在别B是处P,关A于、OBA到、
O河B岸的的对距称离点分,P别1P为2交AOCA和于BMD,点且,AC交=OBBD于,若N点点A.若到 Δ河P岸MCND的的周中长点为的5c距m离,为则5P010P米2的,长则为牧()童从A处把 A牛.3牵cm到B河.4边cm饮C.水5c再mD回.6家cm,最短距离是() A.750米B.1000米C.1500米D.2000米
P1
A
AP1Q1的周长

Q1 Q Q
l
AP1 P1Q1 AQ1
A2 P1 P1Q1 A1Q1
A1
A1 A2
解:最短路径是AP+PQ+AQ.
NOTE:ΔAPQ的周长是A人从A地出发,先到草地边某处牧马,再到河边饮马, 然后回到B处,请画出最短路径.
13.4课题学习 最短路径问题
问题一:牧马人从A处回到B处休息,怎么走可使路径最短?
问题二:牧马人从A处到河边l处饮马,怎么走可使路径最短?
问题三:牧马人从A地出发,先到一条笔直的河边l处饮马,
然后到B地休息.牧马人到河边的什么地方饮马,可 使所走的路径最短?
草地
牧马人
A
营地
B
河D
C
l
13.4课题学习 最短路径问题
关于直线l的对称点B1,连接AB1,与直线l的交
点,即为直线l上到A、B距离之和最短的点.
“牧马饮水问题3”:
如图,牧马人从A地出发,先到草地边某处牧马,再到河边饮马, 然后回到A处,请画出最短路径.

课题学习--最短路径问题 优秀教案

课题学习--最短路径问题 优秀教案

课题学习---最短路径问题游戏规则发生了变化,如图,则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到终点处?问题1:前面我们已经解决了A、B两点在直线两侧的最短问题,下面请同学们思考并尝试,若这两点居于直线的同侧,该怎样找到那样的点P,使得AP与BP的和最小?问题2:若找到了那样的点,请证明结论的正确性(化异侧为同侧)点点l求.证明:如图,在直线上取一点P质,AP=PAB=AP+PB=AP+PB.由此可知:点距离最短学以致用(将军饮马)传说在古罗马时代的亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位将军专程去拜访他,向他请教一个百思不得其解的问题.A边岸的同侧该怎样走才能使路程最短?据说当时海伦略加思索就解决了它们,你知道问题的答案吗?l小明终点现如今,将军遇到了新的问题,你能够替代海伦帮助将军解决这个问题吗?(造桥选址问题)将军从图中的A 地出发,到一条笔直的河边l 饮马,然后淌水到B 地(要求淌水的距离最短).问到河边什么地方饮马并淌水可使他所走的路线全程最短?问题3:本问题又变成了点在直线两侧的问题,但一条直线拓宽成了一条河,请同学们思考,要饮马并淌水过河,饮马点M应选在何处,才能使从A到B的路径AMNB最短?问题4:如何证明你的结论?如图,由于河岸宽度是固定的,淌水的路径最短要与河岸垂直,因此路径AMNB中的MN的长度是固定的. 因此要使AM+MN+NB的值最小,只需AM+NB的值最小即可.如图,几何画板验证,然后使用逻辑推理问题探究经验基础上,把问题引向深入,使得平移变换自然呈现,进一步体现图形变换在最短路径问题中的价值。

课题学习最短路径问题

课题学习最短路径问题

13.4 课题学习最短路径问题一、教课方案理念最短路径问题在现实生活中常常碰到,初中阶段主要以“两点之间线段最短”、“连结直线外一点与直线上各点的全部线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变化进行研究。

本节课以数学史中的两个经典问题——“将军饮马”“造桥选址”为载体睁开对“最短路径问题”的课题研究,让学生经历将实质问题转变为数学识题,利用轴对称、平移等变化再把数学识题转变为线段和最小问题,并运用“两点之间线段最短”(或“三角形两边之和大于第三边”)解决问题,表现了数学化的过程和转变思想。

最短路径问题从实质上说是最值问题,作为初中生,此前极少在几何中接触最值问题,解决此类问题的数学经验尚显不足,特别是面对拥有实质背景的最值问题,更会感觉陌生,无从下手.解答“当点 A、B 在直线 l 的同侧时,如安在直线 l 上找到点 C,使 AC 与 CB的和最小”,需要将其转变为“在直线 l 异侧两点的线段和最小值问题”,为何需要这样转变、如何经过轴对称、平移变化实现转变,一些学生在理解和操作上存在困难.在证明作法的合理性时,需要在直线上任取点 (与所求作的点不重合 ),证明所连线段和大于所求作的线段和,这种思路、方法,一些学生想不到.因此在讲堂上特别对这几个问题进行了针对性的设计。

二、教课对象剖析八年级的学生已经学习研究过一些“两点之间,线段最短”、“垂线段最短”等问题。

向来以来,学生对多媒体环境下的几何研究都十分感兴趣,有较强的好奇心,在学习上有较强的求知欲念,学习投入程度大。

他们察看、操作、猜想能力较强,但演绎推理、概括、运用数学意识的思想比较单薄,思想的广阔性、矫捷性、灵巧性比较短缺,自主研究和合作学习能力也需要在讲堂教课中进一步增强和指引。

学生在数学识题的提出和解决上有必定的方法,但不够深入和全面,需要教师的指引和帮助,学生自己拥有必定的研究精神和合作意识,能在亲自的经历体验中获得必定的数学新知识,但在数学的说理上还不规范,几何演绎推理能力有待增强。

13.4课题学习 最短路径问题

13.4课题学习 最短路径问题

作法:作点B关于直线 a 的对称点C,连接AC交直线a于点D,则点D为建抽 水站的位置。
证明:在直线 a 上另外任取一点E,连接AE,CE,BE,BD。
∵点B,C关于直线 a 对称,
点D,E在直线 a上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC,
A
·

a
AE+EB=AE+EC
在△ACE中,AE+EC>AC,
M
C
∴AC+CE+MN>AE+MN, 即AC+CD+DB >AM+MN+BN
ND E
所以桥的位置建在CD处,A、B两地的路程最短。
B
2. 如图,A、B是两个蓄水池,都在河流a的同侧,为了方便 灌溉作物, 要在河边建一个抽水站,将河水送到A、B两地 问该站建在河边什么地方, 可使所修的渠道最短,试在图 中确定该点。
谢谢பைடு நூலகம்赏
You made my day!
我们,还在路上……
即 AE+EC>AD+DB 所以抽水站应建在河边的点D处
D E
C
再见!
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 •4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3

【教学设计】 课题学习 最短路径问题

【教学设计】 课题学习 最短路径问题

课题学习最短路径问题一、内容和内容解析1.内容利用轴对称研究某些最短路径问题.2.内容解析最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为基础知识,有时还要借助轴对称、平移、旋转等变换进行研究.本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题.基于以上分析,确定本节课的教学重点是:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力.二、目标和目标解析1.教学目标能利用轴对称解决简单的最短路径问题,体会图形的变换在解决最值问题中的作用,感悟转化思想,进一步获得数学活动的经验,增强应用意识.2. 教学目标解析学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”,把实际问题抽象为数学问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.三、教学问题诊断分析最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手.对于直线异侧的两点,怎样在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路.在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,学生想不到,不会用.教学时,教师可从“直线异侧的两点”过渡到“直线同侧的两点”,为学生搭建“脚手架”.在证明“最短”时,教师可告诉学生,证明“最大”“最小”这类问题,常常要另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明.由于另取的点具有任意性,所以结论对于直线上的每一点(C点除外)都成立本节课的教学难点是:如何利用轴对称将最短路径问题转化为线段和最小问题.四、教学过程设计1.创设问题情境问题1 如图,从A地到B地有三条路可供选择,你会选择哪条路距离最短?说说你的理由.师生活动:学生回答问题,说出理由:两点之间,线段最短.【设计意图】让学生回顾“两点之间,线段最短”,为引入新课作准备.问题2:如图,要在燃气管道l上修建一个泵站,分别向A、B两村供气,泵站修在管道的什么地方,可使所用的输气管线最短?师生活动:学生回答,连接AB,线段AB与l的交点即为泵站修建的位置.【设计意图】让学生进一步感受“两点之间,线段最短”,为把“同侧的两点”转化为“异侧的两点”做铺垫.2.将实际问题抽象为数学问题问题3 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?师生活动:学生尝试回答,并相互补充,最后达成共识:(1)将A,B 两地抽象为两个点,将河l 抽象为一条直线;(2)在直线l上找到一点C,使AC与BC 的和最小?【设计意图】学生通过动手操作,在具体感知轴对称图形特征的基础上,抽象出轴对称图形的概念.3.解决数学问题问题4 如图,点A,B 在直线l 的同侧,在直线l上找到一点C,使AC 与BC 的和最小?师生活动:学生独立思考,尝试画图,相互交流.如果学生有困难,教师可作如下提示:(1)如果点B在点A的异侧,如何在直线l上找到一点C,使AC 与BC的和最小(2)现在点B与点A在同侧,能否将点B移到l 的另一侧点处,且满足直线l上的任意一点C,都能保持?(3)你能根据轴对称的知识,找到(2)中符合条件的点吗?师生共同完成作图,如下图.作法:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 相交于点C.则点C 即为所求.【设计意图】教师一步一步引导学生,如何将同侧的两点转化为异侧的两点,为问题的解决提供思路,渗透转化思想.4.证明AC +BC “最短”问题4 你能用所学的知识证明AC +BC最短吗?师生活动:学生独立思考,相互交流,师生共同完成证明过程.证明:如图,在直线l 上任取一点(与点C 不重合),连接AC′,BC′,.由轴对称的性质知,,.∴,.在△中,,∴.即AC +BC 最短.追问1:证明AC +BC最短时,为什么要在直线l上任取一点(与点C但不重合)?师生活动:学生相互交流,教师适时点拨,最后达成共识:若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC +BC,就说明AC +BC最小.【设计意图】让学生体会作法的正确性,提高逻辑思维能力.追问2:回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?师生活动:学生回答,相互补充.【设计意图】学生在反思中,体会轴对称的桥梁作用,感悟转化思想,丰富数学活动经验.5.巩固练习如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.师生活动:学生分析解题思路,独立完成画图,教师适时点拨.【设计意图】让学生进一步巩固解决最短路径问题的基本策略和基本方法.6.归纳小结教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)本节课研究问题的基本过程是什么?(2)轴对称在所研究问题中起什么作用?师生活动:教师引导,学生小结.【设计意图】:引导学生把握研究问题的基本策略和方法,体会轴对称在解决最短路径问题中的作用,感悟转化思想的重要价值.7.布置作业:教科书复习题13第15题.五、目标检测设计某实验中学八(1)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?【设计意图】考查学生解决“最短路径问题”的能力.。

13.4课题学习-最短路径问题

13.4课题学习-最短路径问题

B A C
L
B
/
证明:
在L 上任取另一点C ',连结AC ' 、BC'、B'C'. ∵ 直线 L 是点B、B'的对称轴,点C、C' 在对称轴上, ∴CB=CB',C'B=C'B'. B ∴AC+CB=AC+CB'=AB'
A
C'
在△AC'B'中, AC'+C'B'>AB', ∴AC'+C'B>AC+CB, 即AC+CB 最小.
13.4课题学习 最短路径问题
提出问题
八年级(1)班同学做游戏,在活动区 域边放了一些球(如下图),小华按怎 样的路线跑,去捡哪个位置的球,才 能最快拿到球跑到目的地A?
A
B小华 l
探究一
如图,直线L两侧有两点A、B。 在直线L上求一点C,使它到A、B两 点的距离之和最小?
C 两点之间,线段最短。
A/


A C B小明 l
巩固新知
练 习 一
A
龟兔赛跑新规则:参赛者从A点出发到达直 线a上任意一点后,再回到直线a同侧的终点B, 最先达到终点者胜。下面是小猫、小猪、小猴、 小熊为他们设计的路线,其中路程最短的是()
B A a B A B A a B
C
C
a
C
a
C
小猫
小猪
A‘
小猴
小熊
练 习 二
巩固新知
A/

l2 N M A
B/

B小华
l1

人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题

人教版八年级数学上册教学设计:13.4  课题学习  最短路径问题

人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。

通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。

同时,学生也学习了一定的算法知识,如排序、查找等。

因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。

三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。

2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。

3.增强学生合作交流的意识,提高学生的团队协作能力。

四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。

2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。

2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。

3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。

六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。

2.准备算法教学的PPT,以便在课堂上进行讲解和演示。

3.准备练习题和拓展题,以便进行课堂练习和课后巩固。

七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。

提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。

2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。

通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知:如图,A,B在直线L的两侧,在L上 求一点P,使得PA+PB最小。
A
为什么?
P B
l
连接AB,线段AB与直线L的交点P ,就是所求
探索新知
问题1 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?
你能利用轴对称的有关 知识,找到上问中符合条件的 点B′吗?
·
A
·
B
l
如图,点A,B 在直线l 的同侧,点C 是直线上的一个 动点,当点C 在l 的什么位置时,与CB 的和最小?
作法: (1)作点B 关于直线l 的对称 点B′; (2)连接AB′,与直线l 相交 于点C. 则点C 即为所求.
M 当AB、BC和AC三条边的长度 恰好能够体现在一条直线上时, 三角形的周长最小
B A
O C
N
布置作业
教科书复习题13第15题.
(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和; B ·
A· l
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗? (3)现在的问题是怎样找出使两条线段长度之和为最 短的直线l上的点.设C 为直线上的一个动点,上 面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图). B
l
证明AC +BC 最短时,为什么要在直线l 上 任取一点C′(与点C 不重合),证明AC +BC <AC′ +BC′?这里的“C′”的作用是什么?
若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
·
A
·
B
C′ C
l
B′
回顾前面的探究过程,我们是通过怎样的过程、借 助什么解决问题的? B
A M A' M' N'
a
b B
N
将AM沿与河岸方向垂直的方向平移,点M移动 到点N,点A移动到点A',则 AA'=MN,AM+NB=A'N+NB,这样问题就转化为: 当点N在直线b的什么位置时,A'N+NB最小?
A M A'
a
b
N B
回顾前面的探究过程,我们是通过怎样的过程、借 助什么解决问题的?
轴对称
·
A
·
C′ C
l
B′
(造桥选址问题)如图,A.B两地在一条河的两岸, 现要在河上建一座桥MN,桥造在何处才能使从A到B 的路径AMNB最短?(假设河的两岸是平行的直线, 桥要与河垂直)
A
M
N
B
我们可以把河的两岸看成两条平行线a和b,N 为直线b上的一个动点,MN垂直于直线b,交 直线a于点M,这样,上面的问题可以转化 为下面的问题:当点N在直线b的什么位置时, AM+MN+NB最小?
·
A
·
B
C
l
B′
问题3
你能用所学的知识证明AC +BC最短吗?
·
A
·
B
C
l
B′
你能用所学的知识证明AC +BC最短吗? 证明:如图,在直线l 上任取一点C′(与点C 不 重合),连接AC′,BC′,B′C′. 由轴对称的性质知, B · BC =B′C,BC′=B′C′. A · ∴ AC +BC = AC +B′C = AB′, C′ C AC′+BC′ = AC′+B′C′. 在△AB′C′中, B′ AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短.
A M b
a
N B
由于河岸宽度是固定的,因此当AM+NB最 小时,AM+MN+NB最小。这样问题可转化 为:当点N在直线b的什么位置时, AM+NB最小。
A M
a
b N B
作法:1.将点A沿垂直与河岸的方向平移一个河宽到E, 2.连接AB交河对岸于点N, 则点N为建桥的位置,MN为所建的桥。 证明:由平移的性质,得 AM∥A'N 且AM=A'N, MN=M'N', 所以A.B两地的距离:AM+MN+BN=A'N+MN+NB=A'B+MN, 若桥的位置建在N'处,过N'作N'M'⊥a,垂足为M',连接AM'.A'N'.BN', 则AB两地的距离为: AM'+M'N'+N'B=A'N'+M'N'+N'B, 在△A'N'B中,∵A'N'+N'B>A'B, ∴A'N'+N'B+MN>A'B+MN, 即AM'+M'N'+N'B >AM+MN+BN 所以在点N的位置建桥MN,AB两地的路径AMNB最短。
平移
勇攀高峰
练习 如图,一个旅游船从大桥AB 的P 处前往山 脚下的Q 处接游客,然后将游客送往河岸BC 上,再返 回P 处,请画出旅游船的最短路径. C 山
Q
P
河岸
A
大桥
B
基本思路: 由于两点之间线段最短,所以首先可连接PQ,线 段PQ 为旅游船最短路径中的必经线路.将河岸抽象为 一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到 C 一点R,使PR与QR 的和最 Q 山 小”. 河岸 P A B 大桥
B
A l
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马 问题”. 你能将这个问题抽象为数学问题吗?
B
A
l
这是一个实际问题,你打算首先做什么?
将A,B 两地抽象为两个点,将河l 抽象为一条直线. · A· l
B
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
小结
(1)本节课研究问题的基本过程是什么?
(2)轴对称和平移在所研究问题中起什么作用? 能利用轴对称和平移解决简单的最短路径问题,体 会图形的变化在解决最值问题中的作用,感悟转化 思想. 利用轴对称和平移将最短路径问题转化为“两点之 间,线段最短”问题.
已知:如图A是锐角∠MON内部任意一点, 在∠MON的两边OM,ON上各取一点B, C,组成三角形,使三角形周长最小.
A
C l
如图,点A,B 在直线l 的同侧,点C 是直线上的一 个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
如何将B“移”到l 的另一 侧B′处,满足直线l 上的任意 一点C,都保持CB 与CB′的长 度相等?
·
A
·
B
l
如图,点A,B 在直线l 的同侧,点C 是直线上的一 个动点,当点C 在l 的什么位置时,AC 与CB的和最小?
八年级
上册
13.4 课题学习 最短路径问题
蒲团中学
程 巍
温故知新
如图所示,从A地到B地有三条路可供选择,你会选 走哪条路最近?你的理由是什么?
C A
①D ②
E B

两点之间,线段最短
F
要在河边修建一个泵站向张村引水,在何 处修建才能使所用引水管道最短?为什么?
张村
泵站
河流
垂线段最短
前面我们研究过一些关于“两点的所有连线中,线 段最短”、“连接直线外一点与直线上各点的所有线段 中,垂线段最短”等的问题,我们称它们为最短路径问 题.现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数学史中著名的“将军饮马问 题”.
相关文档
最新文档