椭圆综合

椭圆综合
椭圆综合

高2017级高二下椭圆综合练习题

命 题 人:何优良 审核人:李长久 考试时间:120分钟 分 值:120分

一 选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)

1.椭圆36922=+y x 的短轴长为( )

A .2

B .4

C .6

D .12

2.若曲线

1112

2=++-k

y k x 表示椭圆,则k 的取值范围是( ) A .1>k B .1-

3.焦点在x 轴上的椭圆

122

=+y m

x

(0>m )的焦距为4,则长轴长是( ) A .3 B .6 C .52 D .5

4.设AB 是椭圆122

22=+b

y a x (0>>b a )的长轴,若把线段AB 100等分,过每个分点作AB 的垂线,交椭圆的

上半部分于1P 、2P 、...、99P ,1F 为椭圆的左焦点,则B F P F P F P F A F 199121111...+++++的值是( )

A .a 98

B .a 99

C .a 100

D .a 101

5.在椭圆122

22=+b

y a x (0>>b a )中,1F 、2F 分别是其左右焦点,P 是椭圆上一点,若212PF PF =,则该

椭圆离心率的取值范围是( )

A .)131(,

B .)131[,

C .)310(,

D .]3

1

0(, 6.已知椭圆C :13

42

2=+y x ,其左、右焦点分别为1F 、2F ,P 为椭圆上一动点,则满足21PF F ∠为?45的点P 有( )

A .0个

B .1个

C .2个

D .4个

7.若AB 是过椭圆14

82

2=+y x 中心的弦,F 为椭圆的一个焦点,则FAB ?面积的最大值为( ) A .4 B .8 C .12 D .24

8.椭圆C :

122

22=+b

y a x (0>>b a )的左,右焦点分别为1F 、2F ,点P 在椭圆C 上,且2POF ?为等边三角形,则椭圆C 的离心率=e ( )

A .13-

B .

22 C .21 D .3

3

9.已知A 、B 、C 为椭圆12

22

=+y x 上三个不同的点,O 为坐标原点,若=++,则ABC ?的面积为( ) A .

833 B .36 C .463 D .3

6

2 10.已知P 为曲线10)3()3(2

222=+-+++y x y x 上的一点,M 、N 分别为圆1)3(22=++y x 和圆

4)3-(22=+y x 上的点,则PN PM +的最小值为( )

A .5

B .7

C .13

D .15

二 填空题(本大题共5小题,每小题5分,共25分,把正确的答案填在横线上)

11.已知椭圆

116252

2=+y x 上的点P 到一个焦点的距离为3,则P 到另一个焦点的距离为________. 12.椭圆

150

252

2=+y x 的焦距是________. 13.已知椭圆122

22=+b y a x (0>>b a )的右焦点为)03(,

F ,过F 点的直线交椭圆于A 、B 两点.若线段AB 的中点坐标为)11(-,

,则椭圆的方程为__________________. 14.已知椭圆12222=+b

y a x (0>>b a )的半焦距为c ,且满足02

2<+-ac b c ,则该椭圆的离心率e 的取值范围

是________.

15.如图,1F 、2F 分别是椭圆122

22=+b

y a x (0>>b a )的左右焦点,

以21F F 为直径的圆O 与椭圆交于点A 、B 、C 、D ,若AB 所在直线垂直平分线段2OF ,则椭圆的离心率e 为_____.

三 解答题(本大题共4小题,共45分,解答应写出必要的文字说明,证明过程或演算步骤)

16.(10分)已知椭圆C :12222=+b y a x (0>>b a )过点)12(,-P ,且椭圆C 的离心率为

2

3

(1)求椭圆C 的方程;

(2)过点)02(,Q 的直线l 与C 相交于A 、B 两点,且PB PA ⊥,求直线l 的方程.

17.(11分)已知A 、B 、C 是椭圆E :122

22=+b

y a x (0>>b a )的三点,其中A 的坐标为)032(,,BC 过

椭圆E 的中心,且椭圆长轴的一个端点与短轴的两个端点构成正三角形. (1)求椭圆E 的方程;

(2)当直线BC 的斜率为1时,求ABC ?面积;

(3)设直线l :2+=kx y 与椭圆E 交于两点P 、Q ,且线段PQ 的中垂线过椭圆E 与y 轴负半轴的交点D ,求实数k 的值.

18.(12分)已知椭圆C :122

22=+b

y a x (0>>b a )的左、右焦点为1F 、2F ,且半焦距为1,直线l 经过点2F ,

当l 垂直于x 轴时,与椭圆C 交于1A 、1B 两点,且211=B A

(1)求椭圆C 的方程;

(2)当直线l 不与x 轴垂直时,与椭圆C 交于2A 、2B 两点,2222B F A F ?的取值范围.

19.(12分)已知椭圆C :12222=+b x a y (0>>b a )的短轴长为2,且离心率为2

2

(1)求椭圆C 的方程;

(2)过椭圆C 的上焦点作相互垂直的弦AB ,CD ,求证:

CD

AB 1

1+

为定值.

椭圆定义及应用

一、椭圆第一个定义的应用 1.1 椭圆的第一个定义平面内有两个定点F1、F2,和一个定长2a。若动点P到两个定点距离之和等于定长2a,且两个定点距离|F1F2|<2a.则动点轨迹是椭圆。两个定点F1、F2称为椭圆的焦点。 由此定义得出非常重要的等式,其中P为椭圆上一个点。此等式既表明作为椭圆这个点的轨迹的来源,也说明椭圆上每一个具有的共同性质。即椭圆上每一个点到两个焦点距离之和等于定长2a .在有关椭圆的问题中,若题设中含有有关椭圆上一点到两个焦点距离的信息,首先考虑的就是能否用上这个关系式。 1.2 应用举例 例1.已知点 1(3,0) F-,2(3,0) F,有 126 PF PF +=,则P点的轨迹是 . 例2.求证以椭圆 (a>b>0) 上任意一点P的 焦半径为直径画圆,这个圆必与圆相切. 解评:此题若用一般方法解或用椭圆参数方程解答,计算量都很大,解题过程冗长,属于中档题。我们若抓住PF2为一个圆直径,PF1为另一个圆半径的2倍,用公式,很容易得出正确解答。

例3. F 1、F 2是椭圆的两个焦点,P 是椭圆上一点, 求的面积.24 解评:题设中有椭圆上一点到两个焦点间距离的信息,即可试探是否能用 解决 例4.P 是椭圆2 2 145 20 x y + =上位于第一象限内的点, F 1、F 2是椭圆的左、右焦点, 若 则12PF PF -的值为( ) A. D. 3 例5. 在圆C:22(1)25x y ++=内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线线段CQ 的交点为M,求M 点的轨迹方程. 练:一动圆与圆⊙o 1:x 2+y 2+6x+5=0外切,同时与⊙o 2 : x 2+y 2_ 6x _ 91=0 内切, 求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

椭圆与双曲线综合练习题(培优专题练习)

椭圆与双曲线综合练习题 1.已知椭圆+=1(a >b >0)的离心率是,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为( ) A . B . - C . D . - 2. 若点P 为共焦点的椭圆1C 和双曲线2C 的一个交点,1F 、2F 分别是它们的左右焦点.设椭圆离心率为1e ,双曲线离心率为2e ,若021=?PF PF , ) A.4 B. 3 C. 2 D. 1 4.已知椭圆E :+=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于,则椭圆E 的离心率的取值范围是( ) A . (0,] B . (0,] C . [,1) D . [,1) 5.已知为椭圆的两个焦点,P 为椭圆上一点且,则此椭圆离心率的取值范围是( ) A. B. C. D. 6.椭圆C :+=1(a >b >0) 的右焦点为F ,椭圆C 与x 轴正半轴交于A 点,与y 轴正半轴交于B (0,2),且·=4+4,则椭圆C 的方程为( )A .+=1 B .+=1 C .+=1 D .+=1 7.过椭圆C :+y 2=1的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于点M ,若 =λ1,=λ2,则λ1+λ2等于( )A . 10 B . 5 C . -5 D . -10 8. 设F 1,F 2分别为双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A .3x ±4y =0 B .3x +5y =0 C .5x ±4y =0 D .4x ±3y =0 9.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +(a >0),则点P 的轨迹是( ) A . 椭圆 B . 线段 C . 不存在 D . 椭圆或线段 10.已知F 1,F 2是椭圆+=1(a >b >0)的左,右焦点,点P 是椭圆上的点,I 是△F 1PF 2内切圆的圆心,直线PI 交x 轴于点M ,则|PI |∶|IM |的值为( ) A . B . C . D . 11.已知双曲线-=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个

椭圆综合专题整理

椭圆专题总结 、直线与椭圆问题的常规解题方法 (提醒:①设直线时分斜率存在与不 -存在;②设为y=kx+b 与 (提醒「:之所以要设是因为不去求出它 ,即“设而不求”) 3.联立方程组; 5.根据条件重转化; 常有以下类型: ②“点在圆内、圆上、圆外问题” x i X 2 y i y 0>0 ; 转化为坐标与弦长公式问题 (提醒:注意两个面积公式 的 合理选择); 6化简与计算; 1.设直线与方程; x=my+ n 的区别) 2.设交点坐标; 4.消元韦达定理; (提醒:抛物线时经常是把抛物线方程代入直线方程反而简单 監) ①“以弦AB 为直径的圆过点0” (提醒: 需讨论K 是否存在) OA OB K I ?K 2 uuo uuu OA?OB 0 X i X 2 yy 0 “直角、锐角、钝角问题” “向量的数量积大于、等于、小于 0问题” ③“等角、角平分、 角互补问题” 斜率关系(K I K 2 0或K I K 2); ④“共线问题” uur (如: AQ uuu QB 数的角度:坐标表示法;形的角度:距离转化 (如 r : A 、0、 B 三点共线 直线OA 与OB 斜率相等); ⑤“点、线对称问题” 坐标与斜率关系; ⑥“弦长、面积问题”

7.细节问题不忽略; ①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现 0. 二、基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无 关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求 出定点;⑵也可先取参数的特殊值探求定点,然后给出证明, 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值) 三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性, 关键是积累“转化”的经验; 椭圆中的定值、定点问题 、常见基本题型: 在几何问题”中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过 取参数和特殊值「来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。 (1)直线恒过定点问题 2 1、已知点P(X0,y0)是椭圆E:— y2 1上任意一点,直线丨的方程为△必y o y 1,直 22

椭圆的极坐标方程及其应用(供参考)

椭圆的极坐标方程及其应用 如图,倾斜角为θ且过椭圆22 22:1(0)x y C a b a b +=>>的右焦点2F 的直线l 交椭圆C 于,P Q 两点,椭圆 C 的离心率为e ,焦准距为p ,请利用椭圆的第二定义推导22,,PF QF PQ ,并证明: 22 11 PF QF +为定值 改为:抛物线2 2(0)y px p => 呢? 例1.(10年全国Ⅱ)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为3 2,过右焦点F 且斜率为(0)k k >的 直线与C 相交于,A B 两点.若3AF FB =,求k 。 练习1. (10年辽宁理科)设椭圆C :22 221(0)x y a b a b +=>>的右焦点为F ,过点F 的直线l 与椭圆C 相交于 A , B 两点,直线l 的倾斜角为60o ,2AF FB =,求椭圆C 的离心率; 例2. (07年全国Ⅰ)已知椭圆22 132 x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P ,求四边形ABCD 的面积的最值. 练习2. (05年全国Ⅱ)P 、Q 、M 、N 四点都在椭圆12 2 2 =+y x 上,F 为椭圆在y 轴正半轴上的焦点.已知.0,,=?MF PF FN MF FQ PF 且线与共线与求四边形PMQN 的面积的最小值和最大值. 例3. (07年重庆理)如图,中心在原点O 的椭圆的右焦点为)0,3(F ,右准线l 的方程为12=x . (Ⅰ)求椭圆的方程; (Ⅱ)在椭圆上任取三个不同点123,,P P P ,使133221FP P FP P FP P ∠=∠=∠,证明: | |1 ||1||1321FP FP FP ++为定值,并求此定值. Q y O x P 2F A y O x B F

椭圆 专项训练

圆锥曲线 椭圆 专项训练 【例题精选】: 例1 求下列椭圆的标准方程: (1)与椭圆x y 22416+=有相同焦点,过点P (,)56; (3)两焦点与短轴一个端点为正三角形的顶点,焦点到椭圆的最短距离为3。 例5 过椭圆14 16 2 2 =+ y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线 方程。 小结:有关中点弦问题多采用“点差法”即设点做差的方法,也叫“设而不求”。 例6 C y x B A 的两个顶点,是椭圆 、125 16 )5,0()0,4(2 2 =+ 是 椭圆在第一象限内部分上的一点,求?ABC 面积的最大值。 小结:已知椭圆的方程求最值或求范围,要用不等式的均值 定理,或判别式来求解。(圆中用直径性质或弦心距)。要有耐心,处理好复杂运算。 【专项训练】: 一、 选择题: 1.椭圆6322 2 =+y x 的焦距是 ( ) A .2 B .)23(2- C .52 D .)23(2+ 2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点) 23,25( -,则椭圆方程是( ) A . 14 8 2 2 =+ x y B . 16 10 2 2 =+ x y C . 18 4 2 2 =+ x y D .16 10 2 2 =+ y x 4.方程22 2 =+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( ) A .),0(+∞ B .(0,2) C .(1,+∞) D .(0,1) 5. 过椭圆1242 2 =+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的

椭圆综合练习2(含答案)

椭圆综合练习2 一、选择题 1. 如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A . 2 3 B .3 C . 2 7 D .4 3. 过椭圆22 221x y a b +=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦 点,若1260F PF ∠=o ,则椭圆的离心率为( ) A . 22 B .33 C .12 D .13 4. 椭圆141622=+y x 有两点P 、Q ,O 为原点,若OP 、OQ 斜率之积为4 1-,则2 2OQ OP + 为( ) A .4 B.64 C.20 D.不确定 5.若椭圆)0(12222>>=+b a b y a x 和圆c c b y x (,)2 (222+=+为椭圆的半焦距),有四个不 同的交点,则椭圆的离心率e 的取值范围是( ) A .)53,55( B.)55,52( C.)53,52( D.)5 5,0( 6. 已知c 是椭圆)0(12222>>=+b a b y a x 的半焦距,则a c b +的取值范围是 ( ) A (1, +∞) B ),2(∞+ C )2,1( D ]2,1( 二、填空题: 7. 椭圆14 92 2=+y x 的焦点为21,F F ,点P 为其上的动点,当21PF F ∠ 为钝角时,点P 横坐标的取值范围是____________________.

椭圆和双曲线综合

椭圆和双曲线综合练习卷 1. 设椭圆122 22=+n y m x , 双曲线122 22=-n y m x ,(其中0>>n m )的离心率分别为12e ,e ,则( ) A .121e ,e > B .121e ,e < C .121e ,e = D .12e ,e 与1大小不确定 【答案】B m n m e 2 21-= , m n m e 2 22+= ,所以1144 2 4421<-=-=m n m n m e e ,故选B. 2. 已知双曲线:C 22 221(0,0)x y a b a b -=>>的左焦点为F ,过点F 作双曲线C 的一条渐近线的垂 线,垂足为H ,点P 在双曲线上,且3FP FH =,则双曲线的离心率为( ) A . D 【答案】C 设H 在渐近线b y x a =-上,直线FH 方程为()a y x c b =+,由()b y x a a y x c b ?=-????=+??,得 2 a x c ab y c ?=-??? ?=?? ,即2(,)a ab H c c -,由3FP FH =,得233(2,)a ab P c c c -+,因为P 在双曲线上,所以 2222222 (23)91c a a a c c --=,化简得22 413c a = ,2c e a ==.故选C . 3. 已知0,>b a ,若圆2 2 2 b y x =+与双曲线122 22=-b y a x 有公共点,则该双曲线离心率的取值范围 是( ) A .),2[+∞ B .]2,1( C .)3,1( D .)2,2( 【答案】A 由圆及双曲线的对称性可知,当a b ≥,即 1≥a b 时,圆222b y x =+与双曲线

(2015-2017)三年高考真题精编解析一专题17-椭圆及其综合应用

1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A . 13 3 B . 53 C . 23 D . 59 【答案】B 【分析】 试题分析:945 33 e -= = ,选B . 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且 以线段A 1A 2 为直径的圆和直线20bx ay ab -+=相切,则C 的离心率为 A 6 B 3 C 2 D . 13 【答案】A 【分析】 试题分析:以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为 222x y a +=, 直线20bx ay ab -+=和圆相切,所以圆心到直线的距离等于半径,即:2 2 d a a b ==+, 整理可得2 2 3a b =,即() 222223,23a a c a c =-=, 从而22 223 c e a ==,椭圆的离心率26 3c e a ===, 故选A .

【考点】椭圆的离心率的求解;直线和圆的位置关系 【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式e = c a ; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)和双曲线C 2:22x n –y 2 =1(n >0)的焦点重合, e 1,e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m >的左 焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 和线段PF 交于点M , 和y 轴交于 点E .若直线BM 经过OE 的中点,则C 的离心率为() (A ) 1 3 (B )12 (C ) 23 (D ) 34 【答案】A 【分析】 试题分析:由题意设直线l 的方程为()y k x a =+,分别令x c =-和0x =得点

椭圆综合专题整理(供参考)

椭 圆专题总结 一、直线与椭圆问题的常规解题方法: 1.设直线与方程; (提醒:①设直线时分斜率存在与不-存在;②设为y=kx+b 与x=my+n 的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组; 4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型: ①“以弦AB 为直径的圆过点0”(提醒:需讨论K 是否存在) ②“点在圆内、圆上、圆外问题” ?“直角、锐角、钝角问题” ?“向量的数量积大于、等于、小于0问题” ?12120x x y y +>>0; ③“等角、角平分、角互补问题” ?斜率关系(120K K +=或12K K =); ④“共线问题” (如:AQ QB λ= ?数的角度:坐标表示法;形的角度:距离转化法); (如:A 、O 、B 三点共线?直线OA 与OB 斜率相等); ⑤“点、线对称问题” ?坐标与斜率关系; ⑥“弦长、面积问题”?转化为坐标与弦长公式问题(提醒:注意两个面积公式 的 合理选择); 6.化简与计算; 7.细节问题不忽略;

①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无 关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求 出定点;⑵也可先取参数的特殊值探求定点,然后给出证明, 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、 三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性, 关键是积累“转化”的经验; 椭圆中的定值、定点问题 一、常见基本题型: 在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。 (1)直线恒过定点问题 1、已知点00(,)P x y 是椭圆2 2:12 x E y +=上任意一点,直线l 的方程为0012 x x y y +=,直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

椭圆综合测试题(含答案)

椭圆测试题 一、选择题:(本大题共12小题,每小题5分,共60分) 1、离心率为 32 ,长轴长为6的椭圆的标准方程是( ) (A )22195x y += (B )22195x y +=或22 159x y += (C ) 2213620x y += (D )2213620x y +=或22 12036 x y += 2、动点P 到两个定点1F (- 4,0)、2F (4,0)的距离之和为8,则P 点的轨迹为( ) A.椭圆 B.线段12F F C.直线12F F D .不能确定 3、已知椭圆的标准方程2 2 110 y x +=,则椭圆的焦点坐标为( ) A.( B.(0, C.(0,3)± D.(3,0)± 4、已知椭圆22 159 x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是( ) A.3 B.2 C.3 D.6 5、如果22 212 x y a a + =+表示焦点在x 轴上的椭圆,则实数a 的取值范围为( ) A.(2,)-+∞ B.()()2,12,--?+∞ C.(,1)(2,)-∞-?+∞ D.任意实数R 6、关于曲线的对称性的论述正确的是( ) A.方程2 2 0x xy y ++=的曲线关于X 轴对称 B.方程3 3 0x y +=的曲线关于Y 轴对称 C.方程2 2 10x xy y -+=的曲线关于原点对称 D.方程3 3 8x y -=的曲线关于原点对称 7、方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22 221x y a b +=(a >b >0)表示的椭圆( ). A.有相同的离心率 B.有共同的焦点 C.有等长的短轴.长轴 D.有相同的顶点. 8、已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于 A B 、两点.若3AF FB =u u u r u u u r ,则k =( ) (A )1 (B (C (D )2 9、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A. 54 B.53 C. 52 D. 5 1 10、若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP u u u r u u u r g 的最大值为( ) A .2 B .3 C .6 D .8 11、椭圆()22 2210x y a a b +=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段

(完整word版)高中椭圆基础知识专题练习题(有答案)

一、选择题: 1.下列方程表示椭圆的是() A. 22199 x y += B.22 28x y --=- C.221259x y -= D.22(2)1x y -+= 2.动点P 到两个定点1F (- 4,0).2F (4,0)的距离之和为8,则P 点的轨迹为() A.椭圆 B.线段12F F C.直线12F F D .不能确定 3.已知椭圆的标准方程2 2 110 y x +=,则椭圆的焦点坐标为() A.( B.(0, C.(0,3)± D.(3,0)± 4.椭圆2222 222222 222 11()x y x y a b k a b a k b k +=+=>>--和的关系是 A .有相同的长.短轴B .有相同的离心率 C .有相同的准线 D .有相同的焦点 5.已知椭圆22 159 x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是() A.3 B.2 C.3 D.6 6.如果22 212 x y a a + =+表示焦点在x 轴上的椭圆,则实数a 的取值范围为() A.(2,)-+∞ B.()()2,12,--?+∞ C.(,1)(2,)-∞-?+∞ D.任意实数R 7.“m>n>0”是“方程2 2 1mx ny +=表示焦点在y 轴上的椭圆的”() A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 8.椭圆的短轴长是4,长轴长是短轴长的 3 2 倍,则椭圆的焦距是() B.4 C.6 D.9.关于曲线的对称性的论述正确的是() A.方程2 2 0x xy y ++=的曲线关于X 轴对称 B.方程3 3 0x y +=的曲线关于Y 轴对称 C.方程2 2 10x xy y -+=的曲线关于原点对称 D.方程33 8x y -=的曲线关于原点对称

椭圆方程及性质的应用

椭圆方程及性质的应用 教学目标 1.掌握直线与椭圆的位置关系.(重点) 2.通过一元二次方程根与系数关系的应用,解决有关椭圆的简单综合问题.(重点) 3.能利用椭圆的有关性质解决实际问题.(难点) 教材整理1 点与椭圆的位置关系 设点P(x0,y0),椭圆x2 a2+ y2 b2=1(a>b>0). (1)点P在椭圆上?x20 a2+ y20 b2=1;(2)点P在椭圆内? x20 a2+ y20 b2<1; (3)点P在椭圆外?x20 a2+ y20 b2>1. 课堂练习 已知点(2,3)在椭圆x2 m2+ y2 n2=1上,则下列说法正确的是________ ①点(-2,3)在椭圆外②点(3,2)在椭圆上 ③点(-2,-3)在椭圆内④点(2,-3)在椭圆上【解析】由椭圆的对称性知点(2,-3)也在椭圆上.【答案】④ 教材整理2 直线与椭圆的位置关系 1.直线与椭圆的位置关系及判定 直线y=kx+m与椭圆x2 a2+ y2 b2=1(a>b>0)联立 ?? ? ?? y=kx+m, x2 a2+ y2 b2=1, 消去y得一个 一元二次方程.

2.弦长公式 设直线y =kx +b 与椭圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|= 1+1 k 2·|y 1-y 2|. 判断(正确的打“√”,错误的打“×”) (1)点P (2,1)在椭圆x 24+y 2 9=1的内部.( ) (2)过椭圆外一点一定能作两条直线与已知椭圆相切.( ) (3)过点A (0,1)的直线一定与椭圆x 2 +y 2 2=1相交.( ) (4)长轴是椭圆中最长的弦.( ) 【答案】 (1)× (2)√ (3)√ (4)√ 例题分析 (1)若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 2 4=1的交点个数为( ) A.2个 B.至多一个 C.1个 D.0个 (2)已知椭圆4x 2+y 2=1及直线y =x +m ,问m 为何值时,直线与椭圆相切、相交? 【精彩点拨】 利用几何法判断直线与椭圆的位置关系. 【自主解答】 (1)若直线与圆没有交点,则d = 4m 2 +n 2 >2, ∴m 2+n 2<4,即m 2+n 24<1.∴m 29+n 24<1,∴点(m ,n )在椭圆的内部,故直 线与椭圆有2个交点. 【答案】 A (2)将y =x +m 代入4x 2+y 2=1, 消去y 整理得5x 2+2mx +m 2-1=0. Δ=4m 2-20(m 2-1)=20-16m 2.

椭圆综合

高2017级高二下椭圆综合练习题 命 题 人:何优良 审核人:李长久 考试时间:120分钟 分 值:120分 一 选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.椭圆36922=+y x 的短轴长为( ) A .2 B .4 C .6 D .12 2.若曲线 1112 2=++-k y k x 表示椭圆,则k 的取值范围是( ) A .1>k B .1-m )的焦距为4,则长轴长是( ) A .3 B .6 C .52 D .5 4.设AB 是椭圆122 22=+b y a x (0>>b a )的长轴,若把线段AB 100等分,过每个分点作AB 的垂线,交椭圆的 上半部分于1P 、2P 、...、99P ,1F 为椭圆的左焦点,则B F P F P F P F A F 199121111...+++++的值是( ) A .a 98 B .a 99 C .a 100 D .a 101 5.在椭圆122 22=+b y a x (0>>b a )中,1F 、2F 分别是其左右焦点,P 是椭圆上一点,若212PF PF =,则该 椭圆离心率的取值范围是( ) A .)131(, B .)131[, C .)310(, D .]3 1 0(, 6.已知椭圆C :13 42 2=+y x ,其左、右焦点分别为1F 、2F ,P 为椭圆上一动点,则满足21PF F ∠为?45的点P 有( ) A .0个 B .1个 C .2个 D .4个 7.若AB 是过椭圆14 82 2=+y x 中心的弦,F 为椭圆的一个焦点,则FAB ?面积的最大值为( ) A .4 B .8 C .12 D .24 8.椭圆C : 122 22=+b y a x (0>>b a )的左,右焦点分别为1F 、2F ,点P 在椭圆C 上,且2POF ?为等边三角形,则椭圆C 的离心率=e ( ) A .13- B . 22 C .21 D .3 3 9.已知A 、B 、C 为椭圆12 22 =+y x 上三个不同的点,O 为坐标原点,若=++,则ABC ?的面积为( ) A . 833 B .36 C .463 D .3 6 2 10.已知P 为曲线10)3()3(2 222=+-+++y x y x 上的一点,M 、N 分别为圆1)3(22=++y x 和圆 4)3-(22=+y x 上的点,则PN PM +的最小值为( ) A .5 B .7 C .13 D .15 二 填空题(本大题共5小题,每小题5分,共25分,把正确的答案填在横线上) 11.已知椭圆 116252 2=+y x 上的点P 到一个焦点的距离为3,则P 到另一个焦点的距离为________. 12.椭圆 150 252 2=+y x 的焦距是________. 13.已知椭圆122 22=+b y a x (0>>b a )的右焦点为)03(, F ,过F 点的直线交椭圆于A 、B 两点.若线段AB 的中点坐标为)11(-, ,则椭圆的方程为__________________. 14.已知椭圆12222=+b y a x (0>>b a )的半焦距为c ,且满足02 2<+-ac b c ,则该椭圆的离心率e 的取值范围 是________. 15.如图,1F 、2F 分别是椭圆122 22=+b y a x (0>>b a )的左右焦点, 以21F F 为直径的圆O 与椭圆交于点A 、B 、C 、D ,若AB 所在直线垂直平分线段2OF ,则椭圆的离心率e 为_____.

椭圆综合测试题(含答案)

椭圆测试题 一、选择题: ( 本大题共 12 小题,每小题 5 分,共 60 分) 1、离心率为 2 3 ,长轴长为 6 的椭圆的标准方程是( ) (A ) 2 2 x y 9 5 1 (B ) 2 2 x y 9 5 1 或 2 2 x y 5 9 1 (C ) 2 2 x y 36 20 1 (D ) 2 2 x y 36 20 1 或 2 2 x y 20 36 1 2、动点 P 到两个定点 F (- 4 ,0)、 F 2 (4,0)的距离之和为 8,则 P 点的轨迹为( ) 1 A. 椭圆 B. 线段 F F C. 直线 F 1F 2 D .不能确定 1 2 3、已知椭圆的标准方程 2 y 2 1 x ,则椭圆的焦点坐标为( ) 10 A. ( 10,0) B. (0, 10) C. (0, 3) D. ( 3,0) 4、已知椭圆 2 2 x y 5 9 1 上一点 P 到椭圆的一焦点的距离为 3,则 P 到另一焦点的距离是( ) A. 2 5 3 B.2 C.3 D.6 5、如果 2 2 x y 2 1 a a 2 表示焦点在 x 轴上的椭圆,则实数 a 的取值范围为( ) A. ( 2, ) B. 2, 1 2, C. ( , 1) (2, ) D.任意实数 R 6、关于曲线的对称性的论述正确的是( ) A. 方程 2 2 0 x xy y 的曲线关于 X 轴对称 B.方程 3 3 0 x y 的曲线关于 Y 轴对称 C.方程 2 2 10 x xy y 的曲线关于原点对称 D.方程 3 3 8 x y 的曲线关于原点对称 7、方程 2 2 x y 2 2 1 (a >b >0,k >0 且 k ≠1)与方程 ka kb 2 2 x y 2 2 1 (a >b >0)表示的椭圆( ). a b A.有相同的离心率 B.有共同的焦点 C.有等长的短轴 .长轴 D. 有相同的顶点 . 8、已知椭圆 2 2 x y C : 1(a b 0) > > 的离心率为 2 2 a b 3 2 ,过右焦点 F 且斜率为 k( k >0) 的直线与 C 相交于 A 、 B 两点.若 AF 3FB ,则 k ( ) (A )1 (B ) 2 (C ) 3 (D )2 9、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 ( )

(完整版)椭圆练习题(含答案)

解析几何——椭圆精炼专题 一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆6322 2 =+y x 的焦距是( ) A .2 B .)23(2- C .52 D .)23(2+ 2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)2 3,25(-,则椭圆方程是 ( ) A .14 8 2 2=+x y B .16102 2=+x y C .18 42 2=+x y D .16 102 2=+y x 4.方程22 2 =+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( ) A .),0(+∞ B .(0,2) C .(1,+∞) D .(0,1) 5. 过椭圆1242 2 =+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ?,那么2 ABF ?的周长是( ) A . 22 B . 2 C . 2 D . 1 6.已知椭圆的对称轴是坐标轴,离心率为 3 1 ,长轴长为12,则椭圆方程为( ) A . 112814422=+y x 或114412822=+y x B . 14 62 2=+y x C . 1323622=+y x 或1363222=+y x D . 16422=+y x 或1462 2=+y x 7. 已知k <4,则曲线 14 92 2=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴 8.椭圆 19 252 2=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .8 9.椭圆13 122 2=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( ) A .4倍 B .5倍 C .7倍 D .3倍 10.椭圆144942 2 =+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y x C .014494=-+y x D . 014449=-+y x 11.椭圆14 162 2=+y x 上的点到直线022=-+y x 的最大距离是 ( ) A .3 B .11 C .22 D .10 12.过点M (-2,0)的直线M 与椭圆12 22 =+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ) ,直线OP 的斜率为k 2,则k 1k 2的值为( ) A .2 B .-2 C . 21 D .-2 1 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.) 13.椭圆 2214x y m +=的离心率为1 2 ,则m = . 14.设P 是椭圆2 214 x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 . 15.直线y =x -2 1被椭圆x 2+4y 2=4截得的弦长为 . 16.已知圆Q A y x C ),0,1(25)1(:2 2及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程 为 .

椭圆综合测试题(含答案)

椭圆测试题 一、选择题:(本大题共12小题,每小题5分,共60分) 1、离心率为 32 ,长轴长为6的椭圆的标准方程是( ) (A )22195x y += (B )22195x y +=或22 159x y += (C ) 2213620x y += (D )2213620x y +=或22 12036 x y += 2、动点P 到两个定点1F (- 4,0)、2F (4,0)的距离之和为8,则P 点的轨迹为( ) A.椭圆 B.线段12F F C.直线12F F D.不能确定 3、已知椭圆的标准方程2 2 110 y x +=,则椭圆的焦点坐标为( ) A.( B.(0, C.(0,3)± D.(3,0)± 4、已知椭圆22 159 x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是( ) ( A.3 5、如果22 212 x y a a + =+表示焦点在x 轴上的椭圆,则实数a 的取值范围为( ) A.(2,)-+∞ B.()()2,12,--?+∞ C.(,1)(2,)-∞-?+∞ D.任意实数R 6、关于曲线的对称性的论述正确的是( ) A.方程22 0x xy y ++=的曲线关于X 轴对称 B.方程3 3 0x y +=的曲线关于Y 轴对称 C.方程2 2 10x xy y -+=的曲线关于原点对称 D.方程3 3 8x y -=的曲线关于原点对称 7、方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22 221x y a b +=(a >b >0)表示的椭圆( ). A.有相同的离心率 B.有共同的焦点 C.有等长的短轴.长轴 D.有相同的顶点. 8、已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于 A B 、两点.若3AF FB =,则k =( ) (A )1 (B (C (D )2 9、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A. 54 B.53 C. 52 D. 5 1 10、若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为( ) A .2 B .3 C .6 D .8 11、椭圆()22 2210x y a a b +=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段

2014年高考椭圆综合题做题技巧与方法总结

2014年高考椭圆综合题做题技巧与方法总结 知识点梳理: 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x )0(12 22 2>>=+b a b x a y 性 质 参数关系 222c b a += 焦点 )0,(),0,(c c - ),0(),,0(c c - 焦距 c 2 范围 b y a x ≤≤||,|| b x a y ≤≤||,|| 顶点 ),0(),,0(),0,(),0,(b b a a -- )0,(),0,(),,0(),,0(b b a a -- 对称性 关于x 轴、y 轴和原点对称 离心率 )1,0(∈=a c e

准线 c a x 2 ±= c a y 2 ±= 考点1 椭圆定义及标准方程 题型1:椭圆定义的运用 [例1 ] 椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a B .2(a -c) C .2(a+c) D .以上答案均有可能 [解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c); (3)A Q B P A ----此时小球经过的路程为4a,故选D 总结:考虑小球的运行路径要全面 练习 1.短轴长为5,离心率3 2 = e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A.3 B.6 C.12 D.24 [解析]C. 长半轴a=3,△ABF 2的周长为4a=12 2.已知P 为椭圆22 12516 x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆 22(3)4x y -+=上的点,则PM PN +的最小值为( ) A . 5 B . 7 C .13 D . 15 [解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴ PD PC ,PM PN +的最小值为10-1-2=7 题型2 求椭圆的标准方程 [例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程. 【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来 [解析]设椭圆的方程为122 22=+b y a x 或)0(12222>>=+b a a y b x , O x y D P A B C Q

椭圆的应用

选修2-1 第一节 椭圆的定义与标准方程的应用 解析几何在日常生活中应用广泛,行星绕太阳的轨道、人造卫星绕地球的轨道是椭圆形,古希腊的音乐厅及现代化的美国国会议厅(U.S. Capitol )和摩门教大礼拜堂(Mormon Tabernacle )也是椭圆形。如何把实际问题转化为数学问题是解决应用题的关键,而建立数学模型是实现应用问题向数学问题转化的常用方法本节主要通过椭圆的应用,说明数学建 模的方法,理解函数与方程、等价转化、分类讨论等数学思想 【引例】 某检验员通常用一个直径为2cm 和一个直径为1cm 的标准圆柱,检测一个直径为3cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径是多少? 简析:研究圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程。 解:设直径为3,2,1的三个圆的圆心分别为O,A,B.问题转化为求两个等圆P 、Q 使它们与⊙O 相内切,与⊙A 、⊙B 相外切。 建立如图坐标系,并设⊙P 的半径为r ,则 |PA|+|PO|=1+r+1.5-r=2.5 ∴点P 在以A 、O 为焦点,长轴长为2.5的椭圆上, 其方程为 2 2 116() 24125 3 x y + + = ① 同理点P 在以O 、B 为焦点,长轴长为2的椭圆上,其方程为2 2 14()12 3 x y - + = ② 由①②得P 9 12 ( ,)1414 ,Q 9 12 (,)1414 ,332 7 r ∴= -= 故所求圆的直径为67 。 一、 椭圆的定义: 1、 第一定义:平面里到 2、 第二定义 3 、 椭圆的标准方程: 一、类型1:椭圆定义的应用

相关文档
最新文档