2.2基本不等式(第二课时)
高中数学2-2基本不等式第2课时基本不等式的应用课时作业新人教A版必修第一册

2.2 基本不等式 第2课时 基本不等式的应用必备知识基础练1.[2022·广东惠州高一期末]若a >1,则a +1a -1有( ) A .最小值为3 B .最大值为3 C .最小值为-1 D .最大值为-1 2.函数y =x +16x +2(x >-2)取最小值时x 的值为( ) A .6 B .2 C . 3 D . 63.[2022·湖南衡阳高一期末]已知x ,y 均为正数,且x +y =1,求1x +4y的最值( )A .最大值9B .最小值9C .最大值4D .最小值44.在班级文化建设评比中,某班设计的班徽是一个直角三角形图案.已知该直角三角形的面积为50,则它周长的最小值为( )A .20B .10 2C .40D .102+205.若正实数m ,n 满足2m +1n=1,则2m +n 的最小值为( )A .4 2B .6C .2 2D .96.[2022·湖北武汉高一期末](多选)下列说法正确的是( ) A .x +1x(x >0)的最小值是2B .x 2+2x 2+2的最小值是 2C .x 2+5x 2+4的最小值是2D .2-3x -4x的最小值是2-4 37.若x >-1,则x +1x +1的最小值是________,此时x =________. 8.用一根铁丝折成面积为π的长方形的四条边,则所用铁丝的长度最短为________.关键能力综合练1.[2022·湖南长郡中学高一期末]已知p =a +1a -2(a >2),q =-b 2-2b +3(b ∈R ),则p ,q 的大小关系为( )A .p ≥qB .p ≤qC .p >qD .p <q2.已知a ,b ,c 都是正数,且a +2b +c =1,则1a +1b +1c的最小值是( )A .3+2 2B .3-2 2C .6-4 2D .6+4 23.[2022·福建莆田一中高一期末]函数f (x )=x 2-4x +5x -2(x ≥52)有( )A .最大值52B .最小值52C .最大值2D .最小值24.[2022·山东薛城高一期末]已知a ,b ∈R +,且a +2b =3ab ,则2a +b 的最小值为( ) A .3 B .4 C .6 D .95.[2022·湖南雅礼中学高一期末]近来猪肉价格起伏较大,假设第一周、第二周的猪肉价格分别为a 元/斤、b 元/斤,甲和乙购买猪肉的方式不同,甲每周购买20元钱的猪肉,乙每周购买6斤猪肉,甲、乙两次平均单价分别记为m 1,m 2,则下列结论正确的是( )A .m 1=m 2B .m 1>m 2C .m 2>m 1D .m 1,m 2的大小无法确定6.[2022·山东枣庄高一期末]设正实数m 、n 满足m +n =2,则( )A .n m +2n的最小值为2 2 B .m +n 的最小值为2 C .mn 的最大值为1 D .m 2+n 2的最小值为27.函数f (x )=4x 2+1x(x >0)取得最小值时x 的取值为________.8.[2022·河北唐山高一期末]当x >0时,函数f (x )=xx 2+1的最大值为________.9.已知x ,y ∈R +,且满足x +2y =2xy ,那么x +4y 的最小值?xy 的最小值?10.做一个体积为48 m 3,高为3米的无上边盖的长方体纸盒,底面造价每平方米40元,四周每平方米为50元,问长与宽取什么数值时总造价最低,最低是多少?核心素养升级练1.已知a >0,b >0,1a +1b=1,若不等式2a +b ≥m 恒成立,则m 的最大值为( )A .2+ 3B .3+ 2C .3+2 2D .52.一批货物随17列货车从A 市以v km/h 匀速直达B 市,已知两地铁路线长400 km ,为了安全,两列货车间距离不得小于(v20)2km ,那么这批物资全部运到B 市,最快需要________小时,(不计货车的车身长),此时货车的速度是________ km/h.3.在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题:(1)已知正实数x 、y 满足2x +y =1,求1x +12y 的最小值.甲给出的解法:由1=2x +y≥22x ·y ,得xy ≤24,所以1x +12y≥2 1x ·12y =2xy≥4,所以1x +12y 的最小值为4.而乙却说甲的解法是错的,请你指出其中的问题,并给出正确的解法;(2)结合上述问题(1)的结构形式,试求函数y =1x +12-3x (0<x <23)的最小值.第2课时 基本不等式的应用必备知识基础练1.答案:A解析:∵a >1,∴a -1>0, ∴a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a -1=1a -1即a =2时取等号,∴a +1a -1有最小值为3. 2.答案:B解析:因为x >-2,所以x +2>0, 所以y =x +16x +2=x +2+16x +2-2≥2 (x +2)·16x +2-2=6, 当且仅当x +2=16x +2且x >-2,即x =2时等号成立. 3.答案:B解析:因为x ,y 均为正数,且x +y =1, 则1x +4y =(1x +4y )(x +y )=5+y x +4xy≥5+2y x ·4xy=9, 当且仅当x =13,y =23时,1x +4y 有最小值9.4.答案:D解析:设两直角边分别为a ,b ,则斜边为a 2+b 2, 所以该直角三角形的面积为S =12ab =50,则ab =100,周长为a +b +a 2+b 2≥2ab +2ab =20+102,当且仅当a =b =10时等号成立,故周长的最小值为102+20. 5.答案:D解析:正实数m ,n 满足2m +1n=1,2m +n =(2m +n )(2m +1n )=5+2m n +2nm≥5+4=9,等号成立的条件为:m n =n m⇒m =n =3. 6.答案:AB解析:当x >0时,x +1x≥2x ·1x =2(当且仅当x =1x,即x =1时取等号),A 正确; x 2+2x 2+2=x 2+2,因为x 2≥0,所以x 2+2x 2+2=x 2+2≥2,B 正确; x 2+5x 2+4=x 2+4+1x 2+4=x 2+4+1x 2+4≥2,当且仅当x 2+4=1x 2+4,即x 2=-3时,等号成立,显然不成立,故C 错误;当x =1时,2-3x -4x=2-3-4=-5<2-43,D 错误.7.答案:1 0 解析:因为x >-1, 所以x +1x +1=x +1+1x +1-1≥2 (x +1)·1x +1-1=1, 当且仅当x +1=1x +1,即x =0时,等号成立, 所以其最小值是1,此时x =0. 8.答案:4π解析:设长方形的长宽分别为a ,b (a >0,b >0),所以ab =π,所用铁丝的长度为2(a +b )≥4ab =4π,当且仅当a =b =π时取等号.关键能力综合练1.答案:A解析:因为a >2,可得p =a +1a -2=(a -2)+1a -2+2≥2 (a -2)·1a -2+2=4, 当且仅当a -2=1a -2时,即a =3时,等号成立,即p ≥4, 又由q =-b 2-2b +3=-(b +1)2+4,所以q ≤4, 所以p ≥q . 2.答案:D解析:1a +1b +1c=⎝ ⎛⎭⎪⎫1a +1b +1c (a +2b +c )=4+2b a +c a +a b +c b +a c +2bc ≥4+22ba·a b+2c a ·a c+2c b ·2bc =6+42, 当且仅当2b a=a b ,c a =a c ,c b=2bc时,等号成立, 即a 2=c 2=2b 2时,等号成立. 3.答案:D解析:方法一 ∵x ≥52,∴x -2>0,则x 2-4x +5x -2=(x -2)2+1x -2=(x -2)+1(x -2)≥2,当且仅当x -2=1x -2,即x =3时,等号成立. 方法二 令x -2=t ,∵x ≥52,∴t ≥12,∴x =t +2.将其代入,原函数可化为y =(t +2)2-4(t +2)+5t =t 2+1t =t +1t≥2t ·1t=2,当且仅当t =1t,即t =1时等号成立,此时x =3.4.答案:A解析:因为a +2b =3ab ,故2a +1b=3,故2a +b =13(2a +b )(2a +1b )=13(5+2b a +2a b )≥13(5+4)=3,当且仅当a =b =1时等号成立, 故2a +b 的最小值为3. 5.答案:C解析:根据题意可得m 1=20+2020a +20b=2ab a +b ≤2ab2ab =ab ,当且仅当a =b 时等号成立,m 2=6a +6b 12=a +b2≥ab ,当且仅当a =b 时等号成立, 由题意可得a ≠b ,所以m 1<ab ,m 2>ab ,则m 2>m 1. 6.答案:CD解析:对于选项A ,因为m >0,n >0,m +n =2,所以n m +2n =n m+m +n n=n m +m n+1≥2n m ·mn+1=2+1=3,当且仅当n m =m n且m +n =2,即m =n =1时取等号,则A 错误;对于选项B, (m +n )2=m +n +2mn =2+2mn ≤2+m +n =4,当且仅当m =n =1时等号成立,则m +n ≤2,即m +n 的最大值为2,则B 错误;对于选项C ,m +n ≥2mn ,即mn ≤(m +n2)2=1,当且仅当m =n =1时,等号成立,则C正确;对于选项D, m 2+n 2=(m +n )2-2mn =4-2mn ≥4-2(m +n2)2=2,当且仅当m =n =1时,等号成立,则D 正确.7.答案:12解析:x >0,f (x )=4x +1x≥24x ·1x =4,当且仅当4x =1x ⇒x =12时取“=”.8.答案:12解析:∵x >0,∴f (x )=xx 2+1=1x +1x≤12x ×1x=12, 当且仅当x =1时取等号, 即函数f (x )=xx 2+1的最大值为12. 9.解析:x +2y =2xy ,则1x +12y=1,故x +4y =(x +4y )(1x +12y )=1+4y x +x 2y +2≥3+22,当且仅当4y x =x2y 即x =22y 时等号成立,x +4y 的最小值为3+2 2.又1x +12y =1≥2 12xy,解得xy ≥2,当且仅当x =2y =2时等号成立,xy 的最小值为2.10.解析:设长方体底面的长为a m ,宽为b m ,显然a ,b >0,则3ab =48,故b =16a,总造价为y 元,则y =2(3a +48a )×50+16×40=300(a +16a)+640≥300×2a ·16a+640=3 040,当且仅当a =16a,即a =b =4时等号成立,∴当底面的长与宽均为4米时总费用最少,最少为3 040元.核心素养升级练1.答案:C解析:由不等式2a +b ≥m 恒成立可知,只需m 小于等于2a +b 的最小值, 由a >0,b >0,1a +1b=1,可得2a +b =(2a +b )(1a +1b )=3+b a +2ab≥3+2b a ×2a b =3+22,当且仅当b a =2a b时取等号,∴m ≤3+22,∴m 的最大值为3+2 2.2.答案:8 100解析:设这批物资全部运到B 市用的时间为y 小时,因为不计货车的身长,所以设货车为一个点,可知最前的点与最后的点之间距离最小值为16×(v20)2千米时,时间最快.则y =(v20)2×16+400v =v 25+400v≥2v25×400v=8,当且仅当v 25=400v即v =100千米/小时时,时间y min =8小时.3.解析:(1)甲的解法中两次用到基本不等式,取到等号的条件分别是2x =y 和x =2y ,显然不能同时成立,故甲的解法是错的.正确的解法如下:因为x >0,y >0,且2x +y =1, 所以1x +12y =(2x +y )(1x +12y )=52+y x +x y ≥52+2 y x ·x y =92, 当且仅当y x =x y ,即x =y =13时取“=”,所以1x +12y 的最小值为92.(2)因为0<x <23,所以0<2-3x <2,所以y =1x +12-3x=12[3x +(2-3x )][1x +12-3x ] =12(4+3x 2-3x +2-3x x ) ≥12(4+2 3x 2-3x ·2-3xx)=2+3,当且仅当3x 2-3x =2-3xx ,即x =1-33∈(0,23)时取“=”, 所以y =1x +12-3x (0<x <23)的最小值为2+ 3.。
2.2 基本不等式(第二课时)高一数学课件(人教A版2019必修第一册)

解: ∵ >-1,∴ + >0.
当且仅当2( + ) =
即= −
+
∴ 函数 f(x) 的最小值是 −
取“=”号.
概念讲解
例2. 若 < <
,求函数 = ( − ) 的最大值.
分析: + ( − ) 不是 常数.而 + ( − ) = 为常数
人教A版2019必修第一册
第 2 章 一元二次函数(第二课时)
教学目标
1.熟练掌握基本不等式的应用条件,能够利用基本不等式求最值.
2.掌握常见的利用基本不等式求最值的题型
3.能够运用基本不等式解决生活中的应用问题.
01
温故知新
情景导入
1.基本不等式的两种常用变形形式
2
02
类型一:配凑法
概念讲解
例1. 求函数() = +
+
(x> -1) 的最小值.
解: ∵ >-1,∴ + >0.
当且仅当 + =
即=0
+
取“=”号.
∴当 =0 时, 函数 f(x) 的最小值是 1
概念讲解
练习. 求函数() = +
+
(x> -1) 的最小值.
解: ∵ < <
配凑系数
,∴ − > .
∴ = ( − ) =
=
当且仅当 = ( − ),即 =
时,取“=”号.
∴ = ( − ) 的最大值为
学案2:2.2 第2课时 基本不等式的应用

2.2 第2课时 基本不等式的应用不等式与最大(小)值阅读教材,完成下列问题. x ,y 都为正数时,下面的命题成立(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最 值 ; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最 值 . 思考:(1) 函数y =x +1x 的最小值是2吗?(2)设a >0,2a +3a取得最小值时,a 的值是什么?初试身手1.下列函数中,最小值为4的函数是( )A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x +4e -xD .y =log 3x +log x 812.当x >0时,x +9x 的最小值为________.3.当x ∈(0,1)时,x (1-x )的最大值为________.4.若点A (-2,-1)在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.【例1】 (1)已知x >2,则y =x +4x -2的最小值为________.(2)若0<x <12,则函数y =12x (1-2x )的最大值是________.规律方法在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件.跟踪训练1.(1)已知t>0,则函数y=t2-4t+1t的最小值为________.(2)设0<x≤2,则函数ƒ(x)=x(8-2x)的最大值为________.类型2利用基本不等式解实际应用题【例2】如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(如图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌面积最小?规律方法在应用基本不等式解决实际问题时,要注意以下四点:(1)先理解题意,设变量时一般把要求最值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最值问题;(3)在定义域内,求出函数的最值;(4)写出正确答案.跟踪训练2.(1)某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N +),则当每台机器运转________年时,年平均利润最大,最大值是________万元.(2)用一段长为36 m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?[1.(1)当x >0时,x 2+1x 有最大值,还是最小值?(2)当x >0时,xx 2+1有最大值,还是最小值?2.(1)设a >0,b >0,(a +b )⎝⎛⎭⎫1a +2b 的最小值是什么?(2)设a >0,b >0,且a +b =1,1a +2b 的最小值是什么?【例3】 (1)若对任意的x >0,xx 2+3x +1≤a 恒成立,求a 的取值范围.(2)设a >0,b >0,若3是3a 与3b 的等比中项,求1a +1b 的最小值.母体探究1.(变条件)(1)在例3(2)中,若3是3a 与3b 的等比中项,求1a +1b的最小值.(2)在例3(2)中,把条件换为“2a 和1b 的等差中项是12”,求2a +b 的最小值.2.(变条件)把例3(2)的条件换为“a >0,b >0,且a +b +ab =1”,求a +b 的最小值.规律方法最值法解答恒成立问题将不等式恒成立问题转化为求函数最值问题的处理方法,其一般类型有: (1)f (x )>a 恒成立⇔a <f (x )min . (2)f (x )<a 恒成立⇔a >f (x )max .课堂小结1.利用基本不等式求最值必须满足“一正、二定、三相等”三个条件,并且和为定值,积有最大值;积为定值,和有最小值.2.使用基本不等式求最值时,若等号取不到,则考虑用函数单调性求解.3.解决实际应用问题,关键在于弄清问题的各种数量关系,抽象出数学模型,利用基本不等式解应用题,既要注意条件是否具备,还要注意有关量的实际含义. 当堂达标1.若x >0,y >0且2(x +y )=36,则xy 的最大值为( )A .9B .18C .36D .812.一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝⎛⎭⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时.3.求函数f (x )=x x +1的最大值.参考答案新知初探不等式与最大(小)值 阅读教材,完成下列问题.(1)大 s 24;(2)小思考:(1) [提示] 不是,只有当x >0时,才有x +1x ≥2,当x <0时,没有最小值.(2) [提示] 2a +3a≥22a ×3a =26,当且仅当2a =3a ,即a =62时,取得最小值.初试身手1.【答案】C【解析】A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C . 2.【答案】6【解析】因为x >0,所以x +9x ≥2x ×9x =6,当且仅当x =9x,即x =3时等号成立. 3.【答案】14【解析】因为x ∈(0,1),所以1-x >0, 故x (1-x )≤⎝⎛⎭⎫x +1-x 22=14,当x =1-x , 即x =12时等号成立.4.【答案】8【解析】由已知点A 在直线mx +ny +1=0上所以2m +n =1,所以1m +2n =2m +n m +2(2m +n )n=4+⎝⎛⎭⎫n m +4m n ≥8. 【例1】【答案】(1)6 (2)116【解析】(1)因为x >2,所以x -2>0,所以y =x +4x -2=x -2+4x -2+2≥2(x -2)·4x -2+2=6,当且仅当x -2=4x -2,即x =4时,等号成立.所以y =x +4x -2的最小值为6.(2)因为0<x <12,所以1-2x >0,所以y =12x ·(1-2x )=14×2x ×(1-2x )≤14⎝⎛⎭⎫2x +1-2x 22=14×14=116,当且仅当2x =1-2x ,即当x =14时,y max =116. 规律方法在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件. 跟踪训练1.【答案】(1)-2 (2)22 【解析】(1)依题意得y =t +1t -4≥2t ·1t -4=-2,等号成立时t =1,即函数y =t 2-4t +1t(t >0)的最小值是-2.(2)因为0<x ≤2,所以0<2x ≤4,8-2x ≥4>0,故ƒ(x )=x (8-2x ) =12·2x ·(8-2x ) =12·2x ·(8-2x )≤12×82=22, 当且仅当2x =8-2x ,即x =2时取等号, 所以当x =2时,ƒ(x )=x (8-2x )的最大值为2 2.【例-20) cm ,⎝⎛⎭⎫y -252cm ,其中x >20,y >25,则两栏面积之和为2(x -20)×y -252=18 000,由此得y=18 000x -20+25, 所以广告牌的面积S =xy = x ⎝⎛⎭⎫18 000x -20+25=18 000x x -20+25x , 整理得S =360 000x -20+25(x -20)+18 500.因为x -20>0,所以S ≥2360 000x -20×25(x -20)+18 500=24 500. 当且仅当360 000x -20=25(x -20)时等号成立,此时有(x -20)2=14 400,解得x =140, 代入y =18 000x -20+25,得y =175.即当x =140,y =175时,S 取得最小值24 500.故当广告牌的高为140 cm ,宽为175 cm 时,可使矩形广告牌的面积最小. 法二:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000,其中a >0,b >0. 易知广告牌的高为(a +20) cm ,宽为(2b +25)cm.广告牌的面积S =(a +20)(2b +25)=2ab +40b +25a +500=18 500+25a +40b ≥18 500+225a ·40b =24 500,当且仅当25a =40b 时等号成立,此时b =58a ,代入ab =9 000得a =120,b =75.即当a =120,b =75时,S 取得最小值24 500.故当广告牌的高为140 cm ,宽为175 cm 时,可使矩形广告牌的面积最小.规律方法在应用基本不等式解决实际问题时,要注意以下四点: (1)先理解题意,设变量时一般把要求最值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最值问题; (3)在定义域内,求出函数的最值; (4)写出正确答案. 跟踪训练2.【答案】(1)5 8【解析】每台机器运转x 年的年平均利润为y x =18-⎝⎛⎭⎫x +25x ,且x >0,故yx ≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.(2)[解] 设矩形菜园的长为x m 、宽为y m ,则2(x +y )=36,x +y =18,矩形菜园的面积为xy m 2.由xy ≤x +y 2=182=9,可得xy ≤81,当且仅当x =y ,即x =y =9时,等号成立.因此,这个矩形的长、宽都为9 m 时,菜园的面积最大,最大面积为81 m 2.[1.[提示] (1)当x >0时,x 2+1x =x +1x ≥2x ×1x=2, 当x =1时等号成立,即x 2+1x有最小值2.(2)当x >0时,x x 2+1=1x +1x ,因为x +1x ≥2,所以x x 2+1≤12,故x x 2+1有最大值12.2.[提示] (1)(a +b )⎝⎛⎭⎫1a +2b =3+b a +2ab ≥3+22,当b =2a 时等号成立; (2)由于a +b =1,所以1a +2b=(a +b )⎝⎛⎭⎫1a +2b ≥22+3, 当b =2a ,即a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.【例3】[解] (1)设f (x )=xx 2+3x +1=1x +1x+3,∵x >0,∴x +1x ≥2,∴f (x )≤15,即f (x )max =15,∴a ≥15.(2)由题意得,3a ·3b =(3)2,即a +b =1,∴1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+b a +ab≥2+2b a ·ab=4, 当且仅当b a =a b ,即a =b =12时,等号成立.母体探究1.[解] (1)由3是3a 与3b 的等比中项,得3a +b =32,即a +b =2,故12(a +b )=1,所以1a +1b =12(a +b )⎝⎛⎭⎫1a +1b =12⎝⎛⎭⎫2+b a +a b ≥12⎝⎛⎭⎫2+2b a ×a b =2, 当a =b =1时等号成立.(2)由于2a 和1b 的等差中项是12,则2a +1b=1,故2a +b =(2a +b )⎝⎛⎭⎫2a +1b =5+2b a +2ab ≥5+22b a ×2ab=9. 当a =b =3时等号成立.2.[解] a +b +ab =1,得b =1-aa +1>0,故0<a <1,故a +b =a +1-a a +1=a +-1-a +2a +1=a +2a +1-1=a +1+2a +1-2≥2(a +1)×2a +1-2=22-2,当a +1=2a +1,即a =2-1时等号成立.当堂达标 1.【答案】A【解析】由2(x +y )=36得x +y =18.所以xy ≤x +y2=9,当且仅当x =y =9时,等号成立. 2.【答案】8【解析】设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝⎛⎭⎫v 202v=400v +16v400≥2400v ×16v 400=8(小时),当且仅当400v =16v400,即v =100时,等号成立,此时t =8小时. 3.[解] f (x )=xx +1=1x +1x ,因为x +1x≥2x ×1x =2,当x =1时等号成立,所以f (x )≤12.。
2.2基本不等式(两个课时)课件(人教版)

【详解】 x
0 ,y 0 ,z 0 ,
由基本不等式可得 x y 2 xy ,y z 2 yz ,z x 2 zx ,
由不等式的性质可得 x y y z z x 2 xy 2 yz 2 zx 8xyz ,
条件:“一正二定三相等”,属于基础题.
章节:
第二章一元二次函数、方程和不等式
标题:2.2基本不等式
第2课时
1.基本不等式的应用
课堂例题
例3 (1)用篱笆围一个面积为1002 的矩形菜园,当这个矩形的边长为多
少时,所用篱笆最短?最短篱笆的长度是多少?
(2)用一段长为36的篱笆围成一个矩形菜园,当这个矩形的边长为多少
析问题解决问题的能力.
2.通过创设具体情景,启动观察、分析、归纳、总结、抽
象概括等思维活动,培养学生的思维能力,体会数学概念
的学习方法,通过运用多媒体的教学手段,引领学生主动
探索基本不等式性质,体验成功的乐趣.
3.通过问题情境的设置,使学生认识到数学是从实际中来,
培养学生用数学的眼光看世界,通过数学思维认知世界,
天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.
项或配凑,在拆项与配凑的过程中,首先要考虑基本不等式使用的条件,
其次要明确基本不等式具有将“和式”转化为“积式”或者将“积式”
转化为“和式”的功能.
基本不等式:
+
∀ > 0, > 0, ≤
2
当且仅当=时,等号成立.
课本P46 练习
ab
1.已知 a 、 bR ,求证: ab
1 2 ( x 1)
新人教A版高中数学必修第一册2.2 基本不等式 教学设计(1)

第二章 一元二次函数、方程和不等式 2.2 基本不等式(共2课时)(第1课时)本节课是人教版普通高中课程标准实验教科书数学必修1第二章第二节《基本不等式》第1课时。
从内容上看学生原有知识的掌握情况为:初中的勾股定理知识及三角形相似的知识、圆的相关知识,会用作差比较法证明简单的不等式,所以在学法上要指导学生:从代数与几何的角度理解基本不等式。
引导学生学会观察几何图形,进行几何与代数的结合运用,培养数学结合的思想观点,发展学生数学抽象、直观想象、逻辑推理等数学核心素养。
1.教学重点:的证明过程,会用此不等式求某些简单函数的最值;2.教学难点:基本不等式ab ba ≤+2等号成立条件; 多媒体2a b+新人教A 版 必修第一册教学过程教学设计意图 核心素养目标 (一)、情景导学如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,赵爽是为了证明勾股定理而绘制了弦图。
弦图既标志着中国古代的数学成就,又象一只转动的风车,欢迎来自世界各地的数学家们。
教师引导学生从面积的关系去找相等关系或不等关系. 思考1:这图案中含有怎样的几何图形?思考2:你能发现图案中的相等关系或不等关系吗? (二)、探索新知1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形A BCD 中有4个全等的直角三角形.设直角三角形的两条直角边 长为a,b (a ≠b ),那么正方形的边长为.这样,4个直角三角形的面积的和是2ab ,正方形的面积为.由于4个直角三角形的面积之和小于正方形的面积,我们就得到了一个不等式:.当直角三角形变为等腰直角三角形,即a=b 时, 正方形EFGH 缩为一个点,这时有.(通过几何画板演示当a=b 时的图像)2.得到结论(重要不等式):一般的,对于任意实数a,b ,我们有,当且仅当a=b 时,等号成立。
3.思考证明:你能给出它的证明吗?(设计意图:证明:因为通过介绍第24届国际数学家大会会标 的背景,进行设问,引导学生观察分析,发现图形中蕴藏的基本不等式,培养学生数学抽象和逻辑推理的核心素养,同时渗透数学文化,和爱国主义教育。
第二章 2.2基本不等式的应用 第2课时

第2课时 基本不等式的应用学习目标 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点 用基本不等式求最值用基本不等式x +y2≥xy 求最值应注意:(1)x ,y 是正数;(2)①如果xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; ②如果x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(3)讨论等号成立的条件是否满足. 预习小测 自我检验1.已知0<x <12,则y =x (1-2x )的最大值为________.答案 18解析 y =x (1-2x )=12·2x ·(1-2x )≤12⎝ ⎛⎭⎪⎫2x +1-2x 22=18, 当且仅当2x =1-2x ,即x =14时取“=”.2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________. 答案 20解析 总运费与总存储费用之和 y =4x +400x ×4=4x +1 600x ≥24x ·1 600x=160,当且仅当4x =1 600x ,即x =20时取等号.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司每台机器年平均利润的最大值是________万元. 答案 8解析 年平均利润y x =-x +18-25x =-⎝⎛⎭⎫x +25x +18≤-225x·x +18=-10+18=8,当且仅当x =5时取“=”.4.已知x >2,则x +4x -2的最小值为________.答案 6解析 x +4x -2=x -2+4x -2+2,∵x -2>0,∴x -2+4x -2+2≥24+2=4+2=6.当且仅当x -2=4x -2,即x =4时取“=”.一、利用基本不等式变形求最值例1 已知x >0,y >0,且1x +9y =1,求x +y 的最小值.解 方法一 ∵x >0,y >0,1x +9y =1,∴x +y =⎝⎛⎭⎫1x +9y (x +y )=y x +9xy +10 ≥6+10=16, 当且仅当y x =9xy,又1x +9y =1,即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.方法二 由1x +9y =1,得(x -1)(y -9)=9(定值).由1x +9y =1可知x >1,y >9, ∴x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=16,当且仅当x -1=y -9=3, 即x =4,y =12时上式取等号, 故当x =4,y =12时,(x +y )min =16.延伸探究 若将条件换为:x >0,y >0且2x +8y =xy ,求x +y 的最小值. 解 方法一 由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2xx -8=x +(2x -16)+16x -8=(x -8)+16x -8+10≥2(x -8)×16x -8+10=18.当且仅当x -8=16x -8,即x =12时,等号成立.∴x +y 的最小值是18.方法二 由2x +8y -xy =0及x >0,y >0, 得8x +2y=1. ∴x +y =(x +y )⎝⎛⎭⎫8x +2y =8y x +2xy+10≥28y x ·2xy+10=18. 当且仅当8y x =2xy ,即x =2y =12时等号成立.∴x +y 的最小值是18.反思感悟 应根据已知条件适当进行“拆”“拼”“凑”“合”“变形”,创造应用基本不等式及使等号成立的条件.当连续应用基本不等式时,要注意各不等式取等号时的条件要一致,否则也不能求出最值;特别注意“1”的代换.跟踪训练1 已知正数x ,y 满足x +y =1,则1x +4y 的最小值是________.答案 9解析 ∵x +y =1, ∴1x +4y =(x +y )⎝⎛⎭⎫1x +4y =1+4+y x +4x y.∵x >0,y >0,∴y x >0,4xy >0,∴y x +4xy≥2y x ·4xy=4, ∴5+y x +4x y≥9.当且仅当⎩⎪⎨⎪⎧x +y =1,y x =4x y,即x =13,y =23时等号成立.∴⎝⎛⎭⎫1x +4y min =9.二、基本不等式在实际问题中的应用例2 “足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品二次加工后进行推广促销,预计该批产品销售量Q 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为Q =x +12(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本2⎝⎛⎭⎫Q +1Q 万元(不包含推广促销费用),若加工后的每件成品的销售价格定为⎝⎛⎭⎫2+20Q 元/件. 那么当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?(利润=销售额-成本-推广促销费) 解 设该批产品的利润为y , 由题意知y =⎝⎛⎭⎫2+20Q ·Q -2⎝⎛⎭⎫Q +1Q -x =2Q +20-2Q -2Q -x =20-2Q-x=20-4x +1-x =21-⎣⎢⎡⎦⎥⎤4x +1+(x +1),0≤x ≤3.∵21-⎣⎢⎡⎦⎥⎤4x +1+(x +1)≤21-24=17,当且仅当x =1时,上式取“=”, ∴当x =1时,y max =17.答 当推广促销费投入1万元时,利润最大为17万元.反思感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用基本不等式求最值,要注意验证等号是否成立. 跟踪训练2 2016年11月3日20点43分我国长征五号运载火箭在海南文昌发射中心成功发射,它被公认为是我国从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用了很多新技术新产品,甲工厂承担了某种产品的生产,并以x 千克/时的速度匀速生产时(为保证质量要求1≤x ≤10),每小时可消耗A 材料kx 2+9千克,已知每小时生产1千克该产品时,消耗A 材料10千克.消耗A 材料总重量为y 千克,那么要使生产1 000千克该产品消耗A 材料最少,工厂应选取何种生产速度?并求消耗的A 材料最少为多少. 解 由题意,得k +9=10,即k =1, 生产1 000千克该产品需要的时间是1 000x ,所以生产1 000千克该产品消耗的A 材料为y =1 000x (x 2+9)=1 000⎝⎛⎭⎫x +9x ≥1 000×29=6 000, 当且仅当x =9x,即x =3时,等号成立,且1<3<10.故工厂应选取3千克/时的生产速度,消耗的A 材料最少,最少为6 000千克.基本不等式在实际问题中的应用典例 围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图.已知旧墙的维修费用为45 元/m ,新墙的造价为180 元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解 设矩形的另一边长为a m ,则y =45x +180(x -2)+180×2a =225x +360a -360.由已知xa =360,得a =360x ,∴y =225x +3602x -360.∵x >0,∴225x +3602x ≥2225×3602=10 800.∴y =225x +3602x -360≥10 440.当且仅当225x =3602x时,等号成立.即当x =24 m 时,修建围墙的总费用最小,最小总费用是10 440元.[素养提升] 数学建模是对现实问题进行数学抽象,建立和求解模型的过程耗时费力,所以建立的模型要有广泛的应用才有价值.本例中所涉及的y =x +ax (a >0)就是一个应用广泛的函数模型.1.设x >0,则3-3x -1x 的最大值是( )A .3B .3-2 2C .-1D .3-2 3答案 D解析 ∵x >0,∴3x +1x≥23x ·1x =23,当且仅当x =33时取等号,∴-⎝⎛⎭⎫3x +1x ≤-23,则3-3x -1x≤3-23,故选D.2.已知x 2-x +1x -1(x >1)在x =t 时取得最小值,则t 等于( )A .1+ 2B .2C .3D .4答案 B解析 x 2-x +1x -1=x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x -1=1x -1,即x =2时,等号成立.3.将一根铁丝切割成三段做一个面积为2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m 答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C.4.已知正数a ,b 满足a +2b =2,则2a +1b 的最小值为________.答案 4解析 2a +1b =⎝⎛⎭⎫2a +1b ×12(a +2b ) =12⎝⎛⎭⎫4+a b +4b a ≥12(4+24)=4. 当且仅当a b =4b a ,即a =1,b =12时等号成立,∴2a +1b的最小值为4. 5.设计用32 m 2的材料制造某种长方体车厢(无盖),按交通法规定厢宽为2 m ,则车厢的最大容积是________ m 3. 答案 16解析 设车厢的长为b m ,高为a m. 由已知得2b +2ab +4a =32,即b =16-2aa +1,∴V =a ·16-2a a +1·2=2·16a -2a 2a +1.设a +1=t ,则V =2⎝⎛⎭⎫20-2t -18t ≤2⎝⎛⎭⎫20-22t ·18t =16,当且仅当t =3,即a =2,b =4时等号成立.1.知识清单: (1)已知x ,y 是正数.①若x +y =S (和为定值),则当x =y 时,积xy 取得最大值. ②若x ·y =P (积为定值),则当x =y 时,和x +y 取得最小值. 即:“和定积最大,积定和最小”. (2)求解应用题的方法与步骤.①审题,②建模(列式),③解模,④作答.2.方法归纳:注意条件的变换,常用“1”的代换方法求最值. 3.常见误区:缺少等号成立的条件.1.已知正数x ,y 满足8x +1y =1,则x +2y 的最小值是( )A .18B .16C .8D .10 答案 A解析 x +2y =(x +2y )⎝⎛⎭⎫8x +1y =10+16y x +x y ≥10+216=18,当且仅当16y x =xy ,即x =4y =12时,等号成立.2.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5 答案 C解析 由已知,可得6⎝⎛⎭⎫2a +1b =1, ∴2a +b =6⎝⎛⎭⎫2a +1b ×(2a +b ) =6⎝⎛⎭⎫5+2a b +2ba ≥6×(5+4)=54,当且仅当2a b =2ba 时,即a =b =18等号成立,∴9m ≤54,即m ≤6,故选C.3.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <ab B .v =ab C.ab <v <a +b2D .v =a +b2答案 A解析 设小王从甲地到乙地行驶的路程为s , ∵b >a >0,则v =2ss a +s b =2ab a +b <2ab 2ab =ab , 又2ab a +b >2ab2b=a ,故选A. 4.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( ) A.23 B.223 C.33 D.233答案 B解析 由x 2+3xy -1=0,可得y =13⎝⎛⎭⎫1x -x . 又x >0,所以x +y =2x 3+13x≥229=223⎝⎛⎭⎫当且仅当x =22时等号成立. 5.已知m >0,n >0,m +n =1且x =m +1m ,y =n +1n ,则x +y 的最小值是( )A .4B .5C .8D .10 答案 B解析 依题意有x +y =m +n +1m +1n =1+m +n m +m +n n =3+n m +mn ≥3+2=5,当且仅当m =n=12时取等号.故选B. 6.为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C (单位:mg·L -1)随时间t (单位:h)的变化关系为C =20t t 2+4,则经过_______ h 后池水中该药品的浓度达到最大.答案 2解析 C =20t t 2+4=20t +4t.因为t >0,所以t +4t ≥2t ·4t=4 ⎝⎛⎭⎫当且仅当t =4t ,即t =2时等号成立.所以C =20t +4t≤204=5,当且仅当t =4t , 即t =2时,C 取得最大值.7.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.答案 20解析 设矩形花园的宽为y ,则x 40=40-y40,即y =40-x ,矩形花园的面积S =x (40-x )≤⎝⎛⎭⎪⎫x +40-x 22=400,当且仅当x =20时,取等号,即当x =20 m 时,面积最大.8.某汽车运输公司购买一批豪华大客车投入营运,据市场分析每辆车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)满足关系y =-x 2+12x -25,则每辆客车营运________年时,年平均利润最大. 答案 5解析 ∵y =-x 2+12x -25,∴年平均利润为y x =-x 2+12x -25x=-⎝⎛⎭⎫x +25x +12≤-2x ·25x+12=2, 当且仅当x =25x ,即x =5时,等号成立.9.已知x >0,y >0且2x +5y =20. (1)求xy 的最大值; (2)求1x +1y的最小值.解 (1)∵2x +5y =20,x >0,y >0, ∴2x +5y ≥210xy ,∴210xy ≤20,即xy ≤10,当且仅当x =5,y =2时,等号成立,∴xy 的最大值为10.(2)1x +1y =⎝⎛⎭⎫1x +1y ·120(2x +5y ) =120⎝⎛⎭⎫2+5+5y x +2x y =120⎝⎛⎭⎫7+5y x +2x y ≥120(7+210), 当且仅当2x =5y 时,等号成立.∴1x +1y 的最小值为120(7+210). 10.某人准备租一辆车从孝感出发去武汉,已知从出发点到目的地的距离为100 km ,按交通法规定:这段公路车速限制在40~100(单位:km /h)之间.假设目前油价为7.2元/L ,汽车的耗油率为⎝⎛⎭⎫3+x 2360L /h ,其中x (单位:km/h)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为76.4元,不考虑其他费用,这次租车的总费用最少是多少?此时的车速x 是多少?(注:租车总费用=耗油费+司机的工资)解 设总费用为y 元.由题意,得y =76.4×100x +7.2×100x×⎝⎛⎭⎫3+x 2360 =9 800x +2x (40≤x ≤100). 因为y =9 800x+2x ≥219 600=280. 当且仅当9 800x=2x ,即x =70时取等号. 所以这次租车的总费用最少是280元,此时的车速为70 km/h.11.设0<x <1,则4x +11-x的最小值为( ) A .10 B .9 C .8 D.272答案 B解析 ∵0<x <1,∴1-x >0,4x +11-x =[x +(1-x )]·⎝ ⎛⎭⎪⎫4x +11-x =4+4(1-x )x +x 1-x+1≥5+24(1-x )x ·x 1-x=5+2×2=9. 当且仅当4(1-x )x =x 1-x, 即x =23时,等号成立. ∴4x +11-x的最小值为9. 12.设自变量x 对应的因变量为y ,在满足对任意的x ,不等式y ≤M 都成立的所有常数M 中,将M 的最小值叫做y 的上确界.若a ,b 为正实数,且a +b =1,则-12a -2b的上确界为( ) A .-92 B.92 C.14D .-4 答案 A解析 因为a ,b 为正实数,且a +b =1,所以12a +2b =⎝⎛⎭⎫12a +2b ×(a +b )=52+⎝⎛⎭⎫b 2a +2a b ≥52+2b 2a ×2a b =92,当且仅当b =2a ,即a =13,b =23时等号成立,因此有-12a -2b ≤-92,即-12a -2b 的上确界为-92. 13.一个矩形的周长为l ,面积为S ,则如下四组数对中,可作为数对(S ,l )的序号是( )①(1,4);②(6,8);③(7,12);④⎝⎛⎭⎫3,12. A .①③B .①③④C .②④D .②③④答案 A解析 设矩形的长和宽分别为x ,y ,则x +y =12l ,S =xy .对于①(1,4),则x +y =2,xy =1,根据基本不等式满足xy ≤⎝ ⎛⎭⎪⎫x +y 22,符合题意; 对于②(6,8),则x +y =4,xy =6,根据基本不等式不满足xy ≤⎝ ⎛⎭⎪⎫x +y 22,不符合题意; 对于③(7,12),则x +y =6,xy =7,根据基本不等式满足xy ≤⎝⎛⎭⎪⎫x +y 22,符合题意; 对于④⎝⎛⎭⎫3,12,则x +y =14,xy =3, 根据基本不等式不满足xy ≤⎝ ⎛⎭⎪⎫x +y 22,不符合题意. 综合,可作为数对(S ,l )的序号是①③.14.已知不等式2x +m +8x -1>0对任意的x >1恒成立,则实数m 的取值范围为________. 答案 {m |m >-10}解析 ∵2x +m +8x -1>0在x >1时恒成立, ∴m >-2x -8x -1=-2⎝ ⎛⎭⎪⎫x +4x -1 =-2⎝ ⎛⎭⎪⎫x -1+4x -1+1, 又x >1时,x -1>0,x -1+4x -1+1≥2(x -1)·4x -1+1=5, 当且仅当x -1=4x -1,即x =3时,等号成立, ∴-2⎝ ⎛⎭⎪⎫x -1+4x -1+1≤-2×5=-10. ∴m >-10,∴实数m 的取值范围为{m |m >-10}.15.若不等式ax 2+1x 2+1≥2-3a 3(a >0)恒成立,则实数a 的取值范围是________. 答案 ⎩⎨⎧⎭⎬⎫a ⎪⎪a ≥19 解析 原不等式可转化为a (x 2+1)+1x 2+1≥23, 又a >0,则a (x 2+1)+1x 2+1≥2a (x 2+1)·1x 2+1=2a , 当且仅当a (x 2+1)=1x 2+1, 即a =1(x 2+1)2时等号成立, 则根据恒成立的意义可知2a ≥23,解得a ≥19. 16.某厂家拟在2020年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-k m +1(k 为常数),如果不举行促销活动,该产品的年销量是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).那么该厂家2020年的促销费用为多少万元时,厂家的利润最大?最大利润为多少?解 设2020年该产品利润为y ,由题意,可知当m =0时,x =1,∴1=3-k ,解得k =2,∴x =3-2m +1, 又每件产品的销售价格为1.5×8+16x x元, ∴y =x ⎝⎛⎭⎪⎫1.5×8+16x x -(8+16x +m ) =4+8x -m =4+8⎝ ⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29,∵m≥0,16m+1+(m+1)≥216=8,当且仅当16m+1=m+1,即m=3时等号成立,∴y≤-8+29=21,∴y max=21.故该厂家2020年的促销费用为3万元时,厂家的利润最大,最大利润为21万元。
基本不等式(第二课时)
2.2基本不等式(第二课时)(人教A版普通高中教科书数学必修第一册第二章)一、教学目标1.结合具体实例,用基本不等式解决简单的求最大值或最小值的问题,发展数学运算和数学建模素养熟练掌握利用基本不等式求函数的最值问题,通过基本不等式求最值,提升数学运算素养.2.会用基本不等式求解实际应用题.借助基本不等式在实际问题中的应用,培养数学建模素养.二、教学重难点1.熟练掌握利用基本不等式求函数的最值问题.(重点)2.会用基本不等式求解实际应用题.(难点)三、教学过程1.复习回顾已知x、y都是正数,(1)若x+y=S(和为定值),则当x=y时,积xy取得最大值S2 4.(2)若xy=p(积为定值),则当x=y时,和x+y取得最小值2p.上述命题可归纳为口诀:积定和最小,和定积最大.1.1问题探究,引发思考例:(1)用篱笆围一个面积为100 m2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36 m 的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积时多少?追问(1):前面我们总结了能用基本不等式解决的两类最值问题,本问题中的两个问题属于那两类问题吗?【师生活动】学生思考后回答:属于。
第(1)题可以转化为:矩形的邻边之积为定值,边长多大时周长最短,实际上是已知两个正数的积为定值,求当这两个数取什么值时,它们的和有最小值的问题。
第(2)题可以转化为:矩形的邻边之和为定值,边长多大时面积最大,实际上是已知两个正数的和为定值,求当这两个数取什么值时,它们的积有最大值的问题。
追问(2):第1课时中的例2给出了用基本不等式解决问题的数学模型:(I)如果正数x、y的积xy等于定值p,那么当x=y时,和x+y取得最小值2p.;(II)如果正数x、y的和x+y等于定值S,那么当x=y时,和x+y取得最大值S2 4怎样把本题转化为为基本不等式的数学模型求解?【师生活动】学生思考后回答:第(1)题可以转化为数学模型(I)求解,第(2)题可以转化为数学模型(II)求解。
2.2基本不等式(第二课时)课件(人教版)
x2 x 2
[变式2]若x 0, 则
的最小值是_______ .
x 1
2
x2 x 2
x ( x 1) 2
2
解:
x
x 1
x 1
x 1
( x 1)
2
1 2 2 1
x 1
2
,
x 1
即x 2 1时等号成立 .
当且仅当 x 1
2m
8n
2m
1
1
=8+ +
+ 1,当且仅当 =
,即 m = , n = 时,等号成立,
m
n
m
n
2
4
4
n+2
所以 +
的最小值为17.
m
n
典型例题:常数代换法求最值
例6
若x, y 0且4 x y xy,
16
(1) xy的最小值是_______
9
(2) x y的最小值是______
.
析 : (1)4 x y 2 4 xy , 即xy 4 xy , xy 16.
证明 ∵ > , > , > ,且 + + = ,
∴ +
=+
+
=+
=
++
+
++
+ + + +
基本不等式(第2课时)(教学课件)-高一数学同步备课系列(人教A版2019必修第一册)
(2)S=3 030-6x-
Smax=2 430.即设计x=50 m,y=60 m时,运动场地面积最大,最大值为2
430 m2.
【巩固练习5】
某商品进货价为每件 50 元,据市场调查,当销售价格为每件
105
x(50≤x≤80)元时,每天销售的件数为
3 000
则y= x (6<x<500),
y-6
S=(x-4)a+(x-6)a=(2x-10)a=(2x-10)· 2 =(x-5)(y-6)=3 030-6x
15 000
- x (6<x<500).
15 000
15 000
≤3
030-2
6x·
x
x =3 030-2×300=2 430.
15 000
故当矩形的长为15 m,宽为7.5 m时,
菜园的面积最大,最大面积为112.5 m2.
3
2 做一个体积为32 m ,高为2 m的长方体纸盒,当底面的边长取什么
值时,用纸最少?
解:设底面的长为a,宽为b,
则由题意得2ab=32,即ab=16.
所以用纸面积为S=2ab+4a+4b=32+4(a+b)≥32+8 ab =64 ,
下面这些结论是否正确?错误的说明理由.
(1)若a>0,b>0,且a+b=16,则ab≤64.
(2)若ab=2,则a+b的最小值为2 2.
正确
错误,因为a,b不是正数
1
1
(3)当x>1时,函数y=x+−1≥2
1
(4)若x∈R,则 2 +2+ 2+2≥2.
2.2 基本不等式 教学设计(1) Word版
2.2.2 基本不等式(第2课时)本节课是人教版普通高中课程标准实验教科书数学必修1第二章第二节《基本不等式》第2课时。
从内容上看是对基本不等式在实际问题中应用的学习,通过问题解决,发展学生数学抽象、数学运算、数学建模、逻辑推理等数学核心素养。
在学法上要指导学生:从实际问题中列出数量关系式,进而运用基本不等式解应用题,数学建模能力也是本节要体现的重要素养。
对例题的处理可让学生先思考,然后师生共同对解题思路进行概括总结,使学生更深刻地领会和掌握解应用题的方法和步骤。
1.重点:在实际问题中建立不等关系,并能正确运用基本不等式求最值;2.难点:注意运用不等式求最大(小)值的条件多媒体(一)、小试牛刀1.判断正误.(正确的打“√”,错误的打“×”)(1)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (2)若xy =4,则x +y 的最小值为4.( ) (3)函数f (x )=x 2+2x 2+1的最小值为22-1.( )答案:(1) × (2)× (3) √2.已知x +y =1且x >0,y >0,则1x +1y 的最小值是( )A .2B .3C .4D .6 解析:法一:1x +1y =x +y xy =1xy ≥1⎝⎛⎭⎫x +y 22=4,当且仅当x =y =12时取等号,法二:1x +1y =x +y x +x +y y =2+y x +x y ≥4,当且仅当x =y =12时取等号.答案:C(二)、探索新知问题1.用篱笆围成一个面积为100m 的矩形菜园,问这个矩形的长、 宽各为多少时,所用篱笆最短。
最短的篱笆是多少?解:(1)设矩形菜园的长为x m,宽为y m,则100,xy =篱笆的长为2(x y +)m由2x yxy +≥, 可得 2100x y +≥,2(x y +)40≥等号当且仅当10x y x y ===时成立,此时,因此,这个矩形的长、宽为10 m 时,所用篱笆最短,最短篱笆为40m结论1:两个正变量积为定值,则和有最小值,当且仅当两变量值相通过课堂小测,了解学生对基本不等式的掌握情况,暴露问题及时纠正。