Black Hole--Scalar Field Interactions in Spherical Symmetry
阿贝成像空间滤波

图 1
按频谱分析理论,谱面上的每一点均具有以下四点明确的物理意义: (1)谱面上任一光点对应着物面上的一个空间频率成分。 (2)光点离谱面中心的距离,标志着物面上该频率成分的高低,离中心远的 点代表物面上的高频成分,反映物的细节部分。靠近中心的点,代表物面的低频 成分,反映物的粗轮廓。中心亮点是0 级衍射即零频,反映在像面上呈现均匀背 景。 (3)光点的方向,指出物平面上该频率成分的方向,例如横向的谱点表示物 面有纵向栅缝。 (4)光点的强弱则显示物面上该频率成分的幅度大小。 由以上定性分析可以看出, 阿贝的二次成像理论的第一次衍射是透镜对物作 空间傅里叶变换, 它把物的各种空间频率和相应的振幅一一展现在它的焦平面上。 一般情况下, 物体透过率的分布不是简单的空间周期函数,它们具有复杂的空间 频谱, 故透镜焦平面上的衍射图样也是极复杂的。第二次衍射是指空间频谱的衍 射波在像平面上的相干迭加。 如果在第二次衍射中,物体的全部空间频谱都参与 相干迭加成像, 则像面与物面完全相似。如果在展现物的空间频谱的透镜焦平面 上插入某种光学器件(称之为空间滤波器),使某些空间频率成分被滤掉或被改 变,则像平面上的像就会被改变,这就是空间滤波和光学信息处理的基本思想。 在实际光学成像系统中, 像和物不可能完全一样。这是由于透镜的孔径是有 限的,总有一些衍射角比较大的高次光线(高频信息)不能进入物镜而被丢掉。 所以像的信息总是比物的少些。由于高频信息主要反映物的细节,因此,无论显 微镜有多大的放大倍数, 也不可能在像面上分辨出这些细节。这是限制显微镜分 辨本领的根本原因。当物镜孔径极其小时,有可能只有零级衍射通过物镜,这时 像面上有亮的均匀背景而无像分布。 5.空间滤波和光信息处理 光信息处理是通过空间滤波器来实现的, 所谓空间滤波器是指在图1 中透镜的后
弯曲时空的引力透镜效应和时间延迟效应

弯曲时空的引力透镜效应和时间延迟效应From general relativity,we know that photons are deviated from their straight path when they pass close to a compact and massive body.The effect resulting from the deflection of light rays in a gravitational field is known as gravitational lensing,and the object causing a detectable deflection is usually named a gravi-tational lens.Similar to a natural and large telescope,gravitational lensing is an important astrophysical tool to extract information about distant stars which are too dim to be observed and detect the distribution of dark matter in theuniverse.Moreover,gravitational lensing can also be used to constrain the cosmological con-stants and examine a variety of different gravitational theories.Besides being bent by the gravitational field of the lens,the light rays are also delayed.And the time delay of light traveling from the source to the observer with the closest distance of approach is defined as the difference between the light travel time for the actual ray in the gravitational field of the lens(deflector)and the travel time for the straight path between the source and the observer in the absence of the lens(i.e.,if there were no gravitational fields).Time delay can be used to estimate the mass of the gravitational,lens,and can also be used to determine the Hubble constant when combining the measurement of angular image position of the gravitational lensing.In this paper,the gravitational lensing and time delay are studied as follows:First of all,we introduce the definition,classification and calculation methods of the strong gravitational lensing and time delay.And the deflection angle,ob-servables and time delay of Schwarzschild black hole are calculated by using these methods.Then,we investigate the strong gravitational lensing and time delay for black holes with scalar hair in massive gravity.We can see,with the increase of scalar hair,that the minimum impact parameter,angular image position and relative magnitudeincrease,while the deflection angle and the angle image separation decrease.At,the same time,we find the time delay decreases remarkably with the increase of angular source position,and the influence of scalar hair on time delay is very small but regular compared with the angular source position.Furthermore,the strong gravitational lensing and time delay for charged black holes with scalar hair inEinstein-Maxwell-Dilaton theory are studied.We find,with the increase of scalar hair,that the radius of the photon sphere,minimum impact parameter,angular image position and relative magnitude increase,while the deflection angle and angular image separation decrease.We also show,for the primary relativistic image which is formed by the light does not loop around the lens and situated on the same side of the source,that the scalar hair increases the time delay.Additionally,we study strong gravitational lensing for photons coupled to Weyl tensor in a regular phantom black hole by discussing the difference between the relativistic images on the same side of the source.We find that the deflection angle will be larger when the light gets to the black hole closer by investigating how the coupling constant and phantom hair affect the difference of photon sphere radius,minimum impact parameter and deflection angle.Then,we study the difference of angular image position and the relative magnitudes of the first rela-tivistic image between the two types of different polarized photons,and find that the two images for different polarizations separate further and easier to distinguish when the phantom hair decreases or the absolute value of the coupling constant increases,and the image is brighter when it seats closer to the optical axis.。
引力波观测原文PhysRevLett.116.061102

Observation of Gravitational Waves from a Binary Black Hole MergerB.P.Abbott et al.*(LIGO Scientific Collaboration and Virgo Collaboration)(Received21January2016;published11February2016)On September14,2015at09:50:45UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal.The signal sweeps upwards in frequency from35to250Hz with a peak gravitational-wave strain of1.0×10−21.It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole.The signal was observed with a matched-filter signal-to-noise ratio of24and a false alarm rate estimated to be less than1event per203000years,equivalent to a significance greaterthan5.1σ.The source lies at a luminosity distance of410þ160−180Mpc corresponding to a redshift z¼0.09þ0.03−0.04.In the source frame,the initial black hole masses are36þ5−4M⊙and29þ4−4M⊙,and the final black hole mass is62þ4−4M⊙,with3.0þ0.5−0.5M⊙c2radiated in gravitational waves.All uncertainties define90%credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems.This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.DOI:10.1103/PhysRevLett.116.061102I.INTRODUCTIONIn1916,the year after the final formulation of the field equations of general relativity,Albert Einstein predicted the existence of gravitational waves.He found that the linearized weak-field equations had wave solutions: transverse waves of spatial strain that travel at the speed of light,generated by time variations of the mass quadrupole moment of the source[1,2].Einstein understood that gravitational-wave amplitudes would be remarkably small;moreover,until the Chapel Hill conference in 1957there was significant debate about the physical reality of gravitational waves[3].Also in1916,Schwarzschild published a solution for the field equations[4]that was later understood to describe a black hole[5,6],and in1963Kerr generalized the solution to rotating black holes[7].Starting in the1970s theoretical work led to the understanding of black hole quasinormal modes[8–10],and in the1990s higher-order post-Newtonian calculations[11]preceded extensive analytical studies of relativistic two-body dynamics[12,13].These advances,together with numerical relativity breakthroughs in the past decade[14–16],have enabled modeling of binary black hole mergers and accurate predictions of their gravitational waveforms.While numerous black hole candidates have now been identified through electromag-netic observations[17–19],black hole mergers have not previously been observed.The discovery of the binary pulsar system PSR B1913þ16 by Hulse and Taylor[20]and subsequent observations of its energy loss by Taylor and Weisberg[21]demonstrated the existence of gravitational waves.This discovery, along with emerging astrophysical understanding[22], led to the recognition that direct observations of the amplitude and phase of gravitational waves would enable studies of additional relativistic systems and provide new tests of general relativity,especially in the dynamic strong-field regime.Experiments to detect gravitational waves began with Weber and his resonant mass detectors in the1960s[23], followed by an international network of cryogenic reso-nant detectors[24].Interferometric detectors were first suggested in the early1960s[25]and the1970s[26].A study of the noise and performance of such detectors[27], and further concepts to improve them[28],led to proposals for long-baseline broadband laser interferome-ters with the potential for significantly increased sensi-tivity[29–32].By the early2000s,a set of initial detectors was completed,including TAMA300in Japan,GEO600 in Germany,the Laser Interferometer Gravitational-Wave Observatory(LIGO)in the United States,and Virgo in binations of these detectors made joint obser-vations from2002through2011,setting upper limits on a variety of gravitational-wave sources while evolving into a global network.In2015,Advanced LIGO became the first of a significantly more sensitive network of advanced detectors to begin observations[33–36].A century after the fundamental predictions of Einstein and Schwarzschild,we report the first direct detection of gravitational waves and the first direct observation of a binary black hole system merging to form a single black hole.Our observations provide unique access to the*Full author list given at the end of the article.Published by the American Physical Society under the terms of the Creative Commons Attribution3.0License.Further distri-bution of this work must maintain attribution to the author(s)and the published article’s title,journal citation,and DOI.properties of space-time in the strong-field,high-velocity regime and confirm predictions of general relativity for the nonlinear dynamics of highly disturbed black holes.II.OBSERVATIONOn September14,2015at09:50:45UTC,the LIGO Hanford,W A,and Livingston,LA,observatories detected the coincident signal GW150914shown in Fig.1.The initial detection was made by low-latency searches for generic gravitational-wave transients[41]and was reported within three minutes of data acquisition[43].Subsequently, matched-filter analyses that use relativistic models of com-pact binary waveforms[44]recovered GW150914as the most significant event from each detector for the observa-tions reported here.Occurring within the10-msintersite FIG.1.The gravitational-wave event GW150914observed by the LIGO Hanford(H1,left column panels)and Livingston(L1,rightcolumn panels)detectors.Times are shown relative to September14,2015at09:50:45UTC.For visualization,all time series are filtered with a35–350Hz bandpass filter to suppress large fluctuations outside the detectors’most sensitive frequency band,and band-reject filters to remove the strong instrumental spectral lines seen in the Fig.3spectra.Top row,left:H1strain.Top row,right:L1strain.GW150914arrived first at L1and6.9þ0.5−0.4ms later at H1;for a visual comparison,the H1data are also shown,shifted in time by this amount and inverted(to account for the detectors’relative orientations).Second row:Gravitational-wave strain projected onto each detector in the35–350Hz band.Solid lines show a numerical relativity waveform for a system with parameters consistent with those recovered from GW150914[37,38]confirmed to99.9%by an independent calculation based on[15].Shaded areas show90%credible regions for two independent waveform reconstructions.One(dark gray)models the signal using binary black hole template waveforms [39].The other(light gray)does not use an astrophysical model,but instead calculates the strain signal as a linear combination of sine-Gaussian wavelets[40,41].These reconstructions have a94%overlap,as shown in[39].Third row:Residuals after subtracting the filtered numerical relativity waveform from the filtered detector time series.Bottom row:A time-frequency representation[42]of the strain data,showing the signal frequency increasing over time.propagation time,the events have a combined signal-to-noise ratio(SNR)of24[45].Only the LIGO detectors were observing at the time of GW150914.The Virgo detector was being upgraded, and GEO600,though not sufficiently sensitive to detect this event,was operating but not in observational mode.With only two detectors the source position is primarily determined by the relative arrival time and localized to an area of approximately600deg2(90% credible region)[39,46].The basic features of GW150914point to it being produced by the coalescence of two black holes—i.e., their orbital inspiral and merger,and subsequent final black hole ringdown.Over0.2s,the signal increases in frequency and amplitude in about8cycles from35to150Hz,where the amplitude reaches a maximum.The most plausible explanation for this evolution is the inspiral of two orbiting masses,m1and m2,due to gravitational-wave emission.At the lower frequencies,such evolution is characterized by the chirp mass[11]M¼ðm1m2Þ3=5121=5¼c3G596π−8=3f−11=3_f3=5;where f and_f are the observed frequency and its time derivative and G and c are the gravitational constant and speed of light.Estimating f and_f from the data in Fig.1, we obtain a chirp mass of M≃30M⊙,implying that the total mass M¼m1þm2is≳70M⊙in the detector frame. This bounds the sum of the Schwarzschild radii of thebinary components to2GM=c2≳210km.To reach an orbital frequency of75Hz(half the gravitational-wave frequency)the objects must have been very close and very compact;equal Newtonian point masses orbiting at this frequency would be only≃350km apart.A pair of neutron stars,while compact,would not have the required mass,while a black hole neutron star binary with the deduced chirp mass would have a very large total mass, and would thus merge at much lower frequency.This leaves black holes as the only known objects compact enough to reach an orbital frequency of75Hz without contact.Furthermore,the decay of the waveform after it peaks is consistent with the damped oscillations of a black hole relaxing to a final stationary Kerr configuration. Below,we present a general-relativistic analysis of GW150914;Fig.2shows the calculated waveform using the resulting source parameters.III.DETECTORSGravitational-wave astronomy exploits multiple,widely separated detectors to distinguish gravitational waves from local instrumental and environmental noise,to provide source sky localization,and to measure wave polarizations. The LIGO sites each operate a single Advanced LIGO detector[33],a modified Michelson interferometer(see Fig.3)that measures gravitational-wave strain as a differ-ence in length of its orthogonal arms.Each arm is formed by two mirrors,acting as test masses,separated by L x¼L y¼L¼4km.A passing gravitational wave effec-tively alters the arm lengths such that the measured difference isΔLðtÞ¼δL x−δL y¼hðtÞL,where h is the gravitational-wave strain amplitude projected onto the detector.This differential length variation alters the phase difference between the two light fields returning to the beam splitter,transmitting an optical signal proportional to the gravitational-wave strain to the output photodetector. To achieve sufficient sensitivity to measure gravitational waves,the detectors include several enhancements to the basic Michelson interferometer.First,each arm contains a resonant optical cavity,formed by its two test mass mirrors, that multiplies the effect of a gravitational wave on the light phase by a factor of300[48].Second,a partially trans-missive power-recycling mirror at the input provides addi-tional resonant buildup of the laser light in the interferometer as a whole[49,50]:20W of laser input is increased to700W incident on the beam splitter,which is further increased to 100kW circulating in each arm cavity.Third,a partially transmissive signal-recycling mirror at the outputoptimizes FIG. 2.Top:Estimated gravitational-wave strain amplitude from GW150914projected onto H1.This shows the full bandwidth of the waveforms,without the filtering used for Fig.1. The inset images show numerical relativity models of the black hole horizons as the black holes coalesce.Bottom:The Keplerian effective black hole separation in units of Schwarzschild radii (R S¼2GM=c2)and the effective relative velocity given by the post-Newtonian parameter v=c¼ðGMπf=c3Þ1=3,where f is the gravitational-wave frequency calculated with numerical relativity and M is the total mass(value from Table I).the gravitational-wave signal extraction by broadening the bandwidth of the arm cavities [51,52].The interferometer is illuminated with a 1064-nm wavelength Nd:Y AG laser,stabilized in amplitude,frequency,and beam geometry [53,54].The gravitational-wave signal is extracted at the output port using a homodyne readout [55].These interferometry techniques are designed to maxi-mize the conversion of strain to optical signal,thereby minimizing the impact of photon shot noise (the principal noise at high frequencies).High strain sensitivity also requires that the test masses have low displacement noise,which is achieved by isolating them from seismic noise (low frequencies)and designing them to have low thermal noise (intermediate frequencies).Each test mass is suspended as the final stage of a quadruple-pendulum system [56],supported by an active seismic isolation platform [57].These systems collectively provide more than 10orders of magnitude of isolation from ground motion for frequen-cies above 10Hz.Thermal noise is minimized by using low-mechanical-loss materials in the test masses and their suspensions:the test masses are 40-kg fused silica substrates with low-loss dielectric optical coatings [58,59],and are suspended with fused silica fibers from the stage above [60].To minimize additional noise sources,all components other than the laser source are mounted on vibration isolation stages in ultrahigh vacuum.To reduce optical phase fluctuations caused by Rayleigh scattering,the pressure in the 1.2-m diameter tubes containing the arm-cavity beams is maintained below 1μPa.Servo controls are used to hold the arm cavities on resonance [61]and maintain proper alignment of the optical components [62].The detector output is calibrated in strain by measuring its response to test mass motion induced by photon pressure from a modulated calibration laser beam [63].The calibration is established to an uncertainty (1σ)of less than 10%in amplitude and 10degrees in phase,and is continuously monitored with calibration laser excitations at selected frequencies.Two alternative methods are used to validate the absolute calibration,one referenced to the main laser wavelength and the other to a radio-frequencyoscillator(a)FIG.3.Simplified diagram of an Advanced LIGO detector (not to scale).A gravitational wave propagating orthogonally to the detector plane and linearly polarized parallel to the 4-km optical cavities will have the effect of lengthening one 4-km arm and shortening the other during one half-cycle of the wave;these length changes are reversed during the other half-cycle.The output photodetector records these differential cavity length variations.While a detector ’s directional response is maximal for this case,it is still significant for most other angles of incidence or polarizations (gravitational waves propagate freely through the Earth).Inset (a):Location and orientation of the LIGO detectors at Hanford,WA (H1)and Livingston,LA (L1).Inset (b):The instrument noise for each detector near the time of the signal detection;this is an amplitude spectral density,expressed in terms of equivalent gravitational-wave strain amplitude.The sensitivity is limited by photon shot noise at frequencies above 150Hz,and by a superposition of other noise sources at lower frequencies [47].Narrow-band features include calibration lines (33–38,330,and 1080Hz),vibrational modes of suspension fibers (500Hz and harmonics),and 60Hz electric power grid harmonics.[64].Additionally,the detector response to gravitational waves is tested by injecting simulated waveforms with the calibration laser.To monitor environmental disturbances and their influ-ence on the detectors,each observatory site is equipped with an array of sensors:seismometers,accelerometers, microphones,magnetometers,radio receivers,weather sensors,ac-power line monitors,and a cosmic-ray detector [65].Another∼105channels record the interferometer’s operating point and the state of the control systems.Data collection is synchronized to Global Positioning System (GPS)time to better than10μs[66].Timing accuracy is verified with an atomic clock and a secondary GPS receiver at each observatory site.In their most sensitive band,100–300Hz,the current LIGO detectors are3to5times more sensitive to strain than initial LIGO[67];at lower frequencies,the improvement is even greater,with more than ten times better sensitivity below60Hz.Because the detectors respond proportionally to gravitational-wave amplitude,at low redshift the volume of space to which they are sensitive increases as the cube of strain sensitivity.For binary black holes with masses similar to GW150914,the space-time volume surveyed by the observations reported here surpasses previous obser-vations by an order of magnitude[68].IV.DETECTOR VALIDATIONBoth detectors were in steady state operation for several hours around GW150914.All performance measures,in particular their average sensitivity and transient noise behavior,were typical of the full analysis period[69,70]. Exhaustive investigations of instrumental and environ-mental disturbances were performed,giving no evidence to suggest that GW150914could be an instrumental artifact [69].The detectors’susceptibility to environmental disturb-ances was quantified by measuring their response to spe-cially generated magnetic,radio-frequency,acoustic,and vibration excitations.These tests indicated that any external disturbance large enough to have caused the observed signal would have been clearly recorded by the array of environ-mental sensors.None of the environmental sensors recorded any disturbances that evolved in time and frequency like GW150914,and all environmental fluctuations during the second that contained GW150914were too small to account for more than6%of its strain amplitude.Special care was taken to search for long-range correlated disturbances that might produce nearly simultaneous signals at the two sites. No significant disturbances were found.The detector strain data exhibit non-Gaussian noise transients that arise from a variety of instrumental mecha-nisms.Many have distinct signatures,visible in auxiliary data channels that are not sensitive to gravitational waves; such instrumental transients are removed from our analyses [69].Any instrumental transients that remain in the data are accounted for in the estimated detector backgrounds described below.There is no evidence for instrumental transients that are temporally correlated between the two detectors.V.SEARCHESWe present the analysis of16days of coincident observations between the two LIGO detectors from September12to October20,2015.This is a subset of the data from Advanced LIGO’s first observational period that ended on January12,2016.GW150914is confidently detected by two different types of searches.One aims to recover signals from the coalescence of compact objects,using optimal matched filtering with waveforms predicted by general relativity. The other search targets a broad range of generic transient signals,with minimal assumptions about waveforms.These searches use independent methods,and their response to detector noise consists of different,uncorrelated,events. However,strong signals from binary black hole mergers are expected to be detected by both searches.Each search identifies candidate events that are detected at both observatories consistent with the intersite propa-gation time.Events are assigned a detection-statistic value that ranks their likelihood of being a gravitational-wave signal.The significance of a candidate event is determined by the search background—the rate at which detector noise produces events with a detection-statistic value equal to or higher than the candidate event.Estimating this back-ground is challenging for two reasons:the detector noise is nonstationary and non-Gaussian,so its properties must be empirically determined;and it is not possible to shield the detector from gravitational waves to directly measure a signal-free background.The specific procedure used to estimate the background is slightly different for the two searches,but both use a time-shift technique:the time stamps of one detector’s data are artificially shifted by an offset that is large compared to the intersite propagation time,and a new set of events is produced based on this time-shifted data set.For instrumental noise that is uncor-related between detectors this is an effective way to estimate the background.In this process a gravitational-wave signal in one detector may coincide with time-shifted noise transients in the other detector,thereby contributing to the background estimate.This leads to an overestimate of the noise background and therefore to a more conservative assessment of the significance of candidate events.The characteristics of non-Gaussian noise vary between different time-frequency regions.This means that the search backgrounds are not uniform across the space of signals being searched.To maximize sensitivity and provide a better estimate of event significance,the searches sort both their background estimates and their event candidates into differ-ent classes according to their time-frequency morphology. The significance of a candidate event is measured against the background of its class.To account for having searchedmultiple classes,this significance is decreased by a trials factor equal to the number of classes [71].A.Generic transient searchDesigned to operate without a specific waveform model,this search identifies coincident excess power in time-frequency representations of the detector strain data [43,72],for signal frequencies up to 1kHz and durations up to a few seconds.The search reconstructs signal waveforms consistent with a common gravitational-wave signal in both detectors using a multidetector maximum likelihood method.Each event is ranked according to the detection statistic ηc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2E c =ð1þE n =E c Þp ,where E c is the dimensionless coherent signal energy obtained by cross-correlating the two reconstructed waveforms,and E n is the dimensionless residual noise energy after the reconstructed signal is subtracted from the data.The statistic ηc thus quantifies the SNR of the event and the consistency of the data between the two detectors.Based on their time-frequency morphology,the events are divided into three mutually exclusive search classes,as described in [41]:events with time-frequency morphology of known populations of noise transients (class C1),events with frequency that increases with time (class C3),and all remaining events (class C2).Detected with ηc ¼20.0,GW150914is the strongest event of the entire search.Consistent with its coalescence signal signature,it is found in the search class C3of events with increasing time-frequency evolution.Measured on a background equivalent to over 67400years of data and including a trials factor of 3to account for the search classes,its false alarm rate is lower than 1in 22500years.This corresponds to a probability <2×10−6of observing one or more noise events as strong as GW150914during the analysis time,equivalent to 4.6σ.The left panel of Fig.4shows the C3class results and background.The selection criteria that define the search class C3reduce the background by introducing a constraint on the signal morphology.In order to illustrate the significance of GW150914against a background of events with arbitrary shapes,we also show the results of a search that uses the same set of events as the one described above but without this constraint.Specifically,we use only two search classes:the C1class and the union of C2and C3classes (C 2þC 3).In this two-class search the GW150914event is found in the C 2þC 3class.The left panel of Fig.4shows the C 2þC 3class results and background.In the background of this class there are four events with ηc ≥32.1,yielding a false alarm rate for GW150914of 1in 8400years.This corresponds to a false alarm probability of 5×10−6equivalent to 4.4σ.FIG.4.Search results from the generic transient search (left)and the binary coalescence search (right).These histograms show the number of candidate events (orange markers)and the mean number of background events (black lines)in the search class where GW150914was found as a function of the search detection statistic and with a bin width of 0.2.The scales on the top give the significance of an event in Gaussian standard deviations based on the corresponding noise background.The significance of GW150914is greater than 5.1σand 4.6σfor the binary coalescence and the generic transient searches,respectively.Left:Along with the primary search (C3)we also show the results (blue markers)and background (green curve)for an alternative search that treats events independently of their frequency evolution (C 2þC 3).The classes C2and C3are defined in the text.Right:The tail in the black-line background of the binary coalescence search is due to random coincidences of GW150914in one detector with noise in the other detector.(This type of event is practically absent in the generic transient search background because they do not pass the time-frequency consistency requirements used in that search.)The purple curve is the background excluding those coincidences,which is used to assess the significance of the second strongest event.For robustness and validation,we also use other generic transient search algorithms[41].A different search[73]and a parameter estimation follow-up[74]detected GW150914 with consistent significance and signal parameters.B.Binary coalescence searchThis search targets gravitational-wave emission from binary systems with individual masses from1to99M⊙, total mass less than100M⊙,and dimensionless spins up to 0.99[44].To model systems with total mass larger than 4M⊙,we use the effective-one-body formalism[75],whichcombines results from the post-Newtonian approach [11,76]with results from black hole perturbation theory and numerical relativity.The waveform model[77,78] assumes that the spins of the merging objects are alignedwith the orbital angular momentum,but the resultingtemplates can,nonetheless,effectively recover systemswith misaligned spins in the parameter region ofGW150914[44].Approximately250000template wave-forms are used to cover this parameter space.The search calculates the matched-filter signal-to-noiseratioρðtÞfor each template in each detector and identifiesmaxima ofρðtÞwith respect to the time of arrival of the signal[79–81].For each maximum we calculate a chi-squared statisticχ2r to test whether the data in several differentfrequency bands are consistent with the matching template [82].Values ofχ2r near unity indicate that the signal is consistent with a coalescence.Ifχ2r is greater than unity,ρðtÞis reweighted asˆρ¼ρ=f½1þðχ2rÞ3 =2g1=6[83,84].The final step enforces coincidence between detectors by selectingevent pairs that occur within a15-ms window and come fromthe same template.The15-ms window is determined by the10-ms intersite propagation time plus5ms for uncertainty inarrival time of weak signals.We rank coincident events basedon the quadrature sumˆρc of theˆρfrom both detectors[45]. To produce background data for this search the SNR maxima of one detector are time shifted and a new set of coincident events is computed.Repeating this procedure ∼107times produces a noise background analysis time equivalent to608000years.To account for the search background noise varying acrossthe target signal space,candidate and background events aredivided into three search classes based on template length.The right panel of Fig.4shows the background for thesearch class of GW150914.The GW150914detection-statistic value ofˆρc¼23.6is larger than any background event,so only an upper bound can be placed on its false alarm rate.Across the three search classes this bound is1in 203000years.This translates to a false alarm probability <2×10−7,corresponding to5.1σ.A second,independent matched-filter analysis that uses adifferent method for estimating the significance of itsevents[85,86],also detected GW150914with identicalsignal parameters and consistent significance.When an event is confidently identified as a real gravitational-wave signal,as for GW150914,the back-ground used to determine the significance of other events is reestimated without the contribution of this event.This is the background distribution shown as a purple line in the right panel of Fig.4.Based on this,the second most significant event has a false alarm rate of1per2.3years and corresponding Poissonian false alarm probability of0.02. Waveform analysis of this event indicates that if it is astrophysical in origin it is also a binary black hole merger[44].VI.SOURCE DISCUSSIONThe matched-filter search is optimized for detecting signals,but it provides only approximate estimates of the source parameters.To refine them we use general relativity-based models[77,78,87,88],some of which include spin precession,and for each model perform a coherent Bayesian analysis to derive posterior distributions of the source parameters[89].The initial and final masses, final spin,distance,and redshift of the source are shown in Table I.The spin of the primary black hole is constrained to be<0.7(90%credible interval)indicating it is not maximally spinning,while the spin of the secondary is only weakly constrained.These source parameters are discussed in detail in[39].The parameter uncertainties include statistical errors and systematic errors from averaging the results of different waveform models.Using the fits to numerical simulations of binary black hole mergers in[92,93],we provide estimates of the mass and spin of the final black hole,the total energy radiated in gravitational waves,and the peak gravitational-wave luminosity[39].The estimated total energy radiated in gravitational waves is3.0þ0.5−0.5M⊙c2.The system reached apeak gravitational-wave luminosity of3.6þ0.5−0.4×1056erg=s,equivalent to200þ30−20M⊙c2=s.Several analyses have been performed to determine whether or not GW150914is consistent with a binary TABLE I.Source parameters for GW150914.We report median values with90%credible intervals that include statistical errors,and systematic errors from averaging the results of different waveform models.Masses are given in the source frame;to convert to the detector frame multiply by(1þz) [90].The source redshift assumes standard cosmology[91]. Primary black hole mass36þ5−4M⊙Secondary black hole mass29þ4−4M⊙Final black hole mass62þ4−4M⊙Final black hole spin0.67þ0.05−0.07 Luminosity distance410þ160−180MpcSource redshift z0.09þ0.03−0.04。
AdsCft在凝聚态中应用简介

Why AdS/CMT ?
• Understand strongly coupled quantum many body systems is difficult.
(Non-fermion liquid, High T SC, interplay between disorder and interaction, metal/insulator phase transition)
The Duality Dictionary
Finite Temperature
Gauge/Gravity Duality as a LAB
Black hole full of answers (Nature 448, 1000-1001 (30 August 2007))
Some Applications
Another example: Area laws for the entanglement entropy - a review,J. Eisert, M. Cramer, M.B. Plenio, arXiv:0808.3773
Ancient thoughts源自• 天地万物莫大于秋毫。《庄子》 • 一花一世界。 •
• What is AdS/CFT?
Applied AdS/CFT
• How it works? • Two typical examples of AdS/CMT • Conclusion and future
What is Gauge/Gravity duality and the position of it
The Conclusion Of Gauge/Gravity (AdS/CFT) Duality Maldacena 1997
1915年诺贝尔物理学奖——X射线晶体结构分析

1915年诺贝尔物理学奖——X射线晶体结构分析(fēnxī) 1915年诺贝尔物理学奖授予英国伦敦大学的亨利·布拉格(Sir William Henry Bragg,1862—1942)和他的儿子英国曼彻斯特维克托利亚大学的劳伦斯·布拉格(Sir William Lawrence Bragg,1890—1971),以表彰他们用X射线对晶体结构的分析(fēnxī)所作的贡献。
1912年,劳厄关于X射线衍射(yǎnshè)的论文发表之后不久,就引起了布拉格父子的关注.当时,亨利·布拉格正在利兹大学当物理学教授,劳伦斯·布拉格则刚从剑桥大学卡文迪什实验室毕业,留在该实验室工作,开始从事科学研究。
劳伦斯·布拉格对X射线衍射发生兴趣,起源于他父亲的启发。
对于X射线的本性,亨利·布拉格十分关注,从1907年起就一直和巴克拉公开争论X射线的本性是粒子性还是波动性。
亨利·布拉格主张粒子性,并坚持这一观点。
可是劳厄所发现的X射线衍射现象却不可避免地会加重波动性的份量。
对此,他感到疑惑。
1912年暑期,布拉格一家在约克郡的海滨度假时,父子俩便围绕着劳厄的论文讨论起来。
由于亨利·布拉格是X射线的微粒论者,他试图用X 射线的微粒理论来解释劳厄的照片,因而他的尝试未能取得成功。
劳伦斯·布拉格并无成见,当他返回剑桥后反复研究,终于领悟到这是一种波的衍射效应。
他还进一步注意到劳厄对闪锌矿晶体衍射照片所作的定量分析中存在的问题,即按照劳厄确定的五种波长本来应该形成的某些衍射斑实际上并未在照片上出现。
经过反复思考,他摆脱了劳厄的特定波长的假设,利用原子面反射的概念(图15-1),立刻成功地解释了劳厄的实验事实。
他以更为简洁的方式清楚地解释了X射线晶体衍射的形成,并且提出(tí chū)了著名的布拉格方程:nλ=2dsinθ其中n是一整数,λ是X射线的波长(bōcháng),d是原子面的间距,θ是射线的掠射角。
人教版高中物理必修课件-第一节 普朗克黑体辐射理论PPT课件

3)英国物理学家瑞利在1900 年,提出了辐射强度按波 长分布的瑞利公式。瑞利公式在长波区与实验基本一致, 但在短波区与实验严重不符。
紫外灾难
物
理 黑体辐射与“紫外灾难” 量子化理论
学
两
大
灾
迈克尔逊-莫雷实验结果
难
和以太漂移说相矛盾
相对论
4).1900年10月,普朗克提出量子化理论,给予 黑体辐射以完美的解释
请输入文本请输入文本
请输入您的小标题
请输入文本请输入文本请输入文本 请输入文本请输入文本请输入文本
请输入文本请输入文本
请输入您的小标题
请输入文本请输入文本请输入文本 请输入文本请输入文本请输入文本
请输入文本请输入文本
精品文档
最新文档
12
学习互动
例1 关于黑体辐射电磁波的强度与波长的关系, 图4-1-1中正确的是 ( B )
精品文档
最新文档
9
2. 普朗克的量子化理论
普朗克认为:物体发射或吸收的能量不是连 续的,而是一份一份的。每一份叫做一个能 量子,每一个能量子的能ɛ=hγ
h~普朗克常量 h 6.63 1034j • s γ~ 电磁波的频率
请在此输入您的大标题
请输入您的小标题
请输入文本请输入文本请输入文本 请输入文本请输入文本请输入文本
图4-1-1
[解析] 黑体辐射 电磁波的强度与 温度有关,温度 越高,辐射强度 越大.随着温度 的升高,黑体辐 射强度的极大值 向波长较短的方 向移动,故B正确.
学习互动
例2 萤火虫是一种能发光的小昆虫,我国古代有人叫它“夜照”.萤火虫 主要生活在树丛中、小河边.夏天的夜晚,它在空中飞来飞去,尾部那 黄绿色的光点一闪一闪的,像一盏盏小灯笼.通常情况下灯泡只有10% 的功率用以发光,其余的90%全都转化成热浪费了.而萤火虫却不发热, 可以使其功率全部用以发光.若萤火虫发光的功率P=0.01 W,设其发光
林德勒加速度对修正史瓦西黑洞引力势及光的轨迹的影响
第41卷第2期2023年4月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)V o l.41N o.2A p r.2023文章编号:16735862(2023)0216805林德勒加速度对修正史瓦西黑洞引力势及光的轨迹的影响李慧玲,黄雨萌,李瑶(沈阳师范大学物理科学与技术学院,沈阳110034)摘要:主要研究林德勒加速度对修正史瓦西黑洞周围引力势变化及光的轨迹的影响㊂引入拉格朗日方程,得到修正史瓦西黑洞周围引力势变化和光在赤道平面内的偏折规律㊂在黑洞附近,由于势垒的存在,一部分光在到达黑洞时发生反射;而光子球附近的光将围绕黑洞旋转很多次,然后逃逸到无穷远处,使得黑洞周围产生更大的亮度,这也是黑洞周围 光环 形成的原因;当碰撞参数增大时,势垒逐渐变小,直至消失,这部分光由于没有遇到势垒,进入黑洞内部,形成黑洞内部 阴影 ㊂此外,还讨论了不同林德勒加速度对修正史瓦西黑洞事件视界半径㊁光子球半径及碰撞参数的影响,林德勒加速度越大,对应的事件视界半径㊁光子球半径和碰撞参数越小㊂关键词:林德勒加速度;引力势;事件视界;碰撞参数中图分类号:140.1540文献标志码:Ad o i:10.3969/j.i s s n.16735862.2023.02.013E f f e c t o f t h eR i n d l e ra c c e l e r a t i o no nt h e g r a v i t a t i o n p o t e n t i a la n dt h et r a j e c t o r y t h el i g h ta r o u n da m o d i f i e dS c h w a r z s c h i l db l ac kh o l eL IH u i l i n g,HU A N GY u m e n g,L IY a o(C o l l e g e o f P h y s i c a l S c i e n c e a n dT e c h n o l o g y,S h e n y a n g N o r m a lU n i v e r s i t y,S h e n y a n g110034,C h i n a)A b s t r a c t:I n t h i s p a p e r,w em a i n l y s t u d y t h e i n f l u e n c e o f L i n d l e r a c c e l e r a t i o n o n t h e g r a v i t a t i o n a lp o t e n t i a l c h a n g e a n dt h e t r a j e c t o r y o f t h e l i g h t a r o u n dt h e m o d i f i e dS c h w a r z s c h i l db l a c kh o l e.B yi n t r o d u c i n g t h eL a g r a n g e e q u a t i o n,w e o b t a i n t h e g r a v i t a t i o n a l p o t e n t i a l c h a n g e a r o u n d t h em o d i f i e dS c h w a r z s c h i l db l a c kh o l e a n d t h e d e f l e c t i o n l a wo f t h e l i g h t a r o u n d t h em o d i f i e dS c h w a r z s c h i l d b l a c kh o l e i n t h e e q u a t o r i a l p l a n e.D u e t o t h e e x i s t e n c e o f t h e p o t e n t i a l b a r r i e r,p a r t o f t h e l i g h t n e a r t h eb l ac kh o l e i s r e f l e c t e dw h e n i t r e a c h e s t h eb l a c kh o l e.T h e l i g h t n e a r t h e p h o t o ns p h e r ew i l l r o t a t ea r o u n d t h eb l ac kh o l e m a n y t i m e s,a n dt h e ne s c a p et oi n f i n i t y,r e s u l t i n g i n g r e a t e rb r i g h t n e s sa r o u n d t h eb l ac kh o l e,w h i c hi sa l s ot h er e a s o nf o r t h ef o r m a t i o no f t h e p h o t o nr i n g a r o u n dt h eb l ac kh o l e.W h e n t h e c o l l i s i o n p a r a m e t e r i n c r e a s e s,t h eb a r r i e r g r ad u a l l y be c o m e ss m a l l e ru n t i l i td i s a p pe a r s.T h i s p a r t of t h e l igh t e n t e r s t h eb l a c kh o l e,b e c a u s ei t d o e sn o t e n c o u n t e r t h eb a r r i e r,f o r m i ng th e s h a d o wi n s i d et h eb l a c kh o l e.I na d d i t i o n,w ea l s od i s c u s st h e i n f l u e n c eo fd i f f e r e n tL i n d l e r a c c e l e r a t i o n s o n t h e c o r r e c t e dS c h w a r z s c h i l db l a c kh o l e e v e n t h o r i z o n r a d i u s,p h o t o n s p h e r e r a d i u s a n di m p a c t p a r a m e t e r.T h el a r g e rt h e L i n d l e r a c c e l e r a t i o n v a l u ei s,t h e s m a l l e rt h ec o r r e s p o nd i n ge v e n t h o r i z o n r a d i u s,p h o t o n s p h e r e r a d i u s a n d i m p a c t p a r a m e t e r a r e.K e y w o r d s:R i n d l e r a c c e l e r a t i o n;g r a v i t a t i o n p o t e n t i a l;e v e n t h o r i z o n;i m p a c t p a r a m e t e r收稿日期:20221028基金项目:辽宁省教育厅科学研究经费项目(L J KM20221474)㊂作者简介:李慧玲(1977 ),女,辽宁沈阳人,沈阳师范大学教授,博士㊂关于黑洞的讨论由来已久,尤其是在2019年,事件视界望远镜合作组织发布第一张黑洞图像[1],由此关于黑洞图像的相关研究引起人们广泛关注㊂G r a l l a 等[2]研究了史瓦西黑洞附近光的阴影,由于引力势的存在,使光发生偏转,导致了黑洞附近出现光环㊂在四维高斯-博纳特黑洞附近的引力势的研究中发现,不同的耦合常数也将影响引力势变化[3]㊂暗物质对黑洞附近引力势大小也有影响,由于宇宙视界的存在,不同参数会导致引力势变化,进而影响黑洞附近光的偏折[4]㊂H u 和Z h a n g [5]研究了非奇异H a y w a r d 黑洞的引力势及光子运动轨道㊂P e d r a z a 等[6]利用基塞列夫得到的解研究了被q u i n t e s s e n c e 暗能量包围的H a y w a r d 黑洞,通过分析H a y w a r d 黑洞的零测地线和引力势,得到H a y w a r d 黑洞的不同能级对应的轨道类型㊂G u e r r e r o 等[7]分析了具有薄盘吸积的b l a c kb o u n c e s 的测地线方程,并且得到了有效势变化㊂G u o 等[8]得到了K e r r 时空中引力势方程,并分析了光子运动轨迹㊂更多关于引力势的讨论在文献[911]中也有研究㊂本文考虑的林德勒修正的史瓦西黑洞[12]最初是由G r u m i l l e r 提出的,以解释恒定的径向力[13]㊂H a l i l a o y 等[14]研究了具有林德勒修正的史瓦西黑洞的测地线㊂关于林德勒加速度如何影响G r u m i l l e r 黑洞光谱学的研究在文献[15]中做了详细讨论,更多关于林德勒加速度对黑洞的影响也已经得到了深入的研究[1621]㊂在本文中,主要考虑了林德勒加速度对黑洞周围引力势及光的轨迹的影响㊂对于不同的参数,黑洞势垒发生改变,进而影响黑洞周围光的偏折轨迹,对黑洞周围光环亮度产生影响㊂1 林德勒修正的史瓦西黑洞度规和事件视界格鲁米勒构建了一个星系外中心物体引力的有效模型,称为林德勒修正的史瓦西黑洞几何㊂黑洞时空中的林德勒项导致测试粒子测地线的加速度异常㊂林德勒修正的史瓦西黑洞是由下列作用量所描述的一般有效引力理论的解[17]:S =-ʏd 2x -g [Φ2R +2(췍Φ)2+8a Φ-6ΛΦ2+2](1)这里:g 是度规张量的行列式;Φ表示标量场;Λ是宇宙常数;R 是里奇标量;a 代表林德勒加速度㊂将变分原理应用于作用量并求解相应的场方程后,可以得到以下模拟红外引力的球对称度规:d s 2=-f (r )d t 2+f (r )-1d r 2+r 2d θ2+r 2s i n 2θd φ2(2)其中f (r )=1-2M r-Λr 2+2a r (3)这里M 是黑洞质量㊂当a =Λ=0时,将回到史瓦西黑洞㊂此外,如果M =Λ=0,将变成二维林德勒度规㊂由于本文的讨论不包含Λ,故取Λ=0㊂式(3)可以改写为f (r )=1-2M r +2a r (4)解方程f (r )=0,可以得到事件视界:r +=-1+1+16a M 4a (5)2 林德勒修正的史瓦西黑洞附近的引力势及光的偏折规律首先引入拉格朗日方程:d d λ췍L 췍̇x æèçöø÷μ=췍L 췍x μ(6)这里λ是仿射参量,̇x μ是四速度,L是角动量,其形式如下:L =12g μν̇x μ̇x ν=12-f (r )̇t 2+̇r 2f (r)+r 2(̇θ2+s i n 2θ̇ψ2éëêêùûúú)(7) 一般来说,关注的是赤道平面内的光的偏折,即θ=π2和̇θ=0㊂考虑到拉格朗日方程中不包含t 和ψ,即췍L 췍t=0(8)961 第2期 李慧玲,等:林德勒加速度对修正史瓦西黑洞引力势及光的轨迹的影响췍L 췍ψ=0(9) 它们对应着守恒量E 和L ,即全部的能量和全部的角动量㊂结合式(4)㊁式(6)和式(7),可以得到时间㊁方位角和四速度下的径向分量的表达式:̇t =1b 1-2M r +2æèçöø÷a r (10)̇φ=ʃ1r 2(11)̇r 2+1r 21-2M r +2æèçöø÷a r =1b 2(12)其中方程(11)的 - 号和 + 号分别表示为方位角沿着顺时针和逆时针方向,而参数b 满足b =L E ㊂通过改写方程(12)可以得到̇r 2+V (r )=1b2(13)V ᶄ(r )=0(14)这里V ᶄ(r )表示对r 求导,基于方程(13)和(14),能得到光子球的半径r p h 和碰撞参数b ph ㊂不同的a 对应不同的r +,r p h 和b p h ,结果见表1㊂显然,r +,r p h 和b ph 都随着a 的增大而减小㊂表1 M =1时不同a 下事件视界r +,光子环半径r p h 和碰撞参数b p h T a b l e1 T h en u m e r i c a l r e s u l t s o f r +,r p h ,b ph f o r d i f f e r e n t a w i t h M =1a =0.0001a =0.001a =0.02a =0.05a =0.1a =0.4a =0.55a =0.8r +1.99921.99211.86141.70821.53111.07520.96840.8483r ph 2.99912.99112.83882.64912.41621.76041.59711.4098b p h 5.19155.14994.43873.70972.98431.56071.30201.0401(a )a =0.001(b )a =0.02图1 M =1时有效势的变化,区域1对应的是V (r )<1/b 2p h ,区域2对应的是V (r )=1/b 2p h ,而区域3对应的是V (r )>1/b 2p h F i g .1 O v e r v i e wo f t h ee f f e c t i v e p o t e n t i a l w i t h M =1.R e g i o n 1c o r r e s p o n d s t o V (r )<1/b 2p h ,r e g i o n 2c o r r e s p o n d s t o V (r )=1/b 2p h ,a n d r e g i o n 3c o r r e s p o n d s t o V (r )>1/b 2p h 图1分别表示出了a =0.001和a =0.02时的有效势㊂可以看出,在事件视界处有效势消失,而在光子球处,有效势达到最大值,随后又随着r 的增大而减小㊂当光沿着径向移动的时候,有效势将影响它的运动轨迹㊂在区域1,光线遇到势垒后向外辐射;在区域2,光渐进地接近光子球,由于角速度是非零的,光将绕着黑洞旋转很多次;在区域3,光将继续向内移动,并且没有遇见势垒,最后进入黑洞内部㊂基于运动方程,结合式(11),光的运动轨迹可以表示为d r d φ=ʃr 21b 2-1r 21-2M r +2æèçöø÷a r (15)把u =1/r 带入式(15),可以得到071沈阳师范大学学报(自然科学版) 第41卷d u d φ=1b 2-u 21-2M u +2a æèçöø÷u ʉH (u )(16)解式(16),可以得到光的轨迹,即图2㊂光从右侧进入黑洞,在区域1(b <b p ),光由于没有遇到势垒而进入到黑洞内部;在区域2(b =b p ),光围绕黑洞旋转很多次;在区域3(b >b p ),由于势垒作用,光轨迹发生偏折,不能进入黑洞㊂这与图1相对应㊂(a )a =0.001(b )a =0.02图2 设M =1时,a =0.001和a =0.02的极坐标(r ,φ)图像(所有射线的碰撞参数的间距为0.2,黑洞用黑色圆盘表示)F i g .2 T r a c k sw i t h M =1i n p o l a r c o o r d i n a t e s (r ,φ),f o r a =0.001a n d a =0.02(t h e i m p a c t p a r a m e t e r s f o r a l l r a y s h a v ea s p a c i n g o f 0.2,b l a c kh o l e s a r e r e p r e s e n t e db y b l a c kd i s k s )3 结 论本文讨论了林德勒加速度对修正史瓦西黑洞周围引力势及光的轨迹的影响㊂黑洞附近的光在引力的作用下会偏转,黑洞周围出现不同的亮度㊂由于势垒的存在,一些光被反射㊂光子球附近的光围绕黑洞旋转无数次,从而产生更大的亮度㊂当b 小于b p 时,势垒不再阻碍光的运动,光进入黑洞内部㊂通过计算,得到了不同林德勒加速度对应的事件视界半径㊁光子环半径和碰撞参数的大小㊂显然,随着林德勒加速度的增加,事件视界半径㊁光子环半径和碰撞参数都在减小,这改变了观测者与事件视界之间的距离,并影响了观测图像㊂本文只讨论了修正常数对黑洞引力势及光的轨迹的影响,有关黑洞周围阴影及光子环的其他问题,在本文并没有讨论㊂在未来的工作中,也可以进一步计算黑洞周围光子环和阴影的变化㊂参考文献:[1]A K I Y AMA K ,A L B E R D IA ,A L E F W ,e ta l .F i r s t M 87e v e n th o r i z o nt e l e s c o p er e s u l t s .Ⅳ.I m a g i n g th ec e n t r a l s u p e r m a s s i v eb l a c kh o l e [J ].A s t r o p h ys JL e t t ,2019,875(1):L 4.[2]G R A L L ASE ,HO L ZD E ,WA L D R M.B l a c kh o l es h a d o w s ,p h o t o nr i n g s ,a n d l e n s i n g r i n g s [J ].P h ysR e vD ,2019,100(2):024018.[3]Z E N G X X ,Z HA N G H Q ,Z HA N G H.S h a d o w sa n d p h o t o n s p h e r e s w i t h s p h e r i c a la c c r e t i o n si nt h ef o u r -d i me n s i o n a lG a u s s -B o n n e t b l a c kh o l e [J ].E u rP h y s JC ,2020,80(9):872.[4]Z E N G XX ,Z HA N G H Q.I nf l u e n c eo f q u i n t e s s e n c ed a r ke n e rg y o nth es h a d o wo fb l a c kh o l e [J ].E u rP h ysJC ,2020,80(11):1058.[5]HUJP ,Z HA N G Y.O r b i t a lm o t i o no f t e s t p a r t i c l e s i nr e g u l a r H a y w a r db l a c kh o l es p a c e -t i m e [J ].C a nJP h y s ,2019,97(1):5862.[6]P E D R A Z A O ,L ÖP E ZLA ,A R C E O R ,e t a l .G e o d e s i c s o fH a y w a r db l a c kh o l e s u r r o u n d e db y qu i n t e s s e n c e [J ].G e n R e lG r a v ,2021,53:24.[7]G U E R R E R O M ,O L MO G J ,R U B I E R A -G A R C I A D ,e ta l .S h a d o w sa n do p t i c a la p p e a r a n c eo fb l a c k b o u n c e s 171 第2期 李慧玲,等:林德勒加速度对修正史瓦西黑洞引力势及光的轨迹的影响271沈阳师范大学学报(自然科学版)第41卷i l l u m i n a t e db y a t h i na c c r e t i o nd i s k[J].J C A P,2021,2021(8):36.[8]G U O H,L I U Y,Z HA N G C,e ta l.D e t e c t i o no fs c a l a rf i e l d sb y e x t r e m e m a s sr a t i oi n s p i r a l s w i t ha K e r rb l a c kh o l e[J].P h y sR e vD,2022,106(2):024047.[9]WA N G M Z,C H E NSB,J I N GJL.C h a o t i cs h a d o w so fb l a c kh o l e s:As h o r t r e v i e w[J].C o mm u nT h e o rP h y s, 2022,74:097401.[10]G U OS,H EKJ,L IGR,e t a l.T h e s h a d o wa n d p h o t o n s p h e r e o f t h e c h a r g e db l a c kh o l e i nR a s t a l l g r a v i t y[J].C l a s s Q u a n t u m G r a v,2021,38(16):165013.[11]U N I Y A L A,P A N T I G R C,ÖV GÜN A.P r o b i n g an o n-l i n e a r e l e c t r o d y n a m i c sb l a c kh o l ew i t ht h i na c c r e t i o nd i s k, s h a d o w,a n dd e f l e c t i o na n g l ew i t h M87*a n dS g rA*f r o m E H T[J].P h y sD a r kU n i v e r s e,2023,40:101178.[12]G R UM I L L E RD.M o d e l f o r g r a v i t y a t l a r g e d i s t a n c e s[J].P h y sR e vL e t t,2010,105(21):211303.[13]G R UM I L L E RD,P R E I SF.R i n d l e r f o r c e a t l a r g e d i s t a n c e s[J].I n t JM o dP h y sD,2011,20(14):1102058.[14]HA L I L S O Y M,G U R T U G O,MA Z HA R I MO U S A V IS.R i n d l e r m o d i f i e dS c h w a r z s c h i l d g e o d e s i c s[J].G e n R e lG r a v,2013,45(11):23632381.[15]S A K A L I I,M I R E K H T I A R Y S.S p e c t r o s c o p y o fR i n d l e r m o d i f i e dS c h w a r z s c h i l db l a c kh o l e[J].A s t r o p h y sS p a c e S c i,2014,350(2):727731.[16]B A G C H IA,B A N N E R J E E A,C HA K R A B O R T T YS.R i n d l e r p h y s i c s o n t h e s t r i n g w o r l d s h e e t[J].P h y sR e vL e t t, 2021,126(3):031601.[17]B O U L WA R ED G.Q u a n t u mf i e l d t h e o r y i nS c h w a r z s c h i l da n dR i n d l e r s p a c e s[J].P h y sR e vD,1975,11(6):1404.[18]M I R E K H T I A R YS,S A K A L L I I,B A S H I R Y V.F e r m i o nt u n n e l i n g,i n s t a b i l i t y,a n df i r s t l a wo fR i n d l e rm o d i f i e d S c h w a r z s c h i l db l a c kh o l e a s a t h e r m o d y n a m i c s y s t e m[J].C a n JP h y s,2021,99(2):118124.[19]S A K A L L II,O V G U N A.H a w k i n g r a d i a t i o na n dd e f l e c t i o no fl i g h tf r o m R i n d l e r m o d i f i e dS c h w a r z s c h i l db l a c kh o l e[J].E P L-E u r o p h y sL e t t,2017,118(6):60006.[20]UMA RF A R O O Q M,N A S E E M A.S p h e r i c a l a c c r e t i o n f l o w s o n t om o d i f i e dS c h w a r z s c h i l db l a c kh o l e[J].A s t r o p h y s S p a c eS c i,2019,364(10):166.[21]F R O L O V V,N O V I K O VI,I S E N B E R GJ.B l a c kh o l e p h y s i c s:B a s i cc o n c e p t sa n dn e w d e v e l o p m e n t s[J].P h y s T o d a y,2000,53(7):5658.。
2014
2014 诺贝尔化学奖:透视生命体分子运动作者:于达维来源:《中国民商》2014年第10期10 月 8 日下午,瑞典皇家科学院宣布,美国科学家埃里克·贝茨格和威廉·莫尔纳,德国科学家斯蒂凡·黑尔获得 2014 年诺贝尔化学奖。
他们分别为超分辨率荧光显微技术(fluorescence microscopy)的发展做出了贡献。
长期以来,光学显微技术一直被认为存在一个极限,就是分辨率无法小于波长的一半,由于可见光波长范围是 400 纳米到 700 纳米,200 纳米则成为一个难以突破的极限,而对于大多数让科学家感兴趣的生物大分子来说,这些分子都比 200 纳米要小,无法被直接观察到。
就像可以看到一个城市的建筑,但是不能看到人们的活动。
这一极限,是 1873 年德国物理学家恩斯特·阿贝提出的,他认为由于可见光会发生衍射,因而光束不能无限聚焦,能聚焦的最小直径是光波波长的二分之一,也就是 200 纳米。
一个多世纪以来,200 纳米的“阿贝极限”一直被认为是光学显微镜理论上的分辨率极限,小于这个尺寸的物体必须借助电子显微镜或隧道扫描显微镜才能观察。
但是对生物分子来说,这不仅会造成破坏,而且无法对所需要观察的分子进行追踪。
这一极限在被提出后,100 多年没有人能够突破,甚至很多人把他当作一个物理定律理所当然的接受。
但是也有很多人,一直无法放弃突破这一极限的尝试。
而这次三位科学家的贡献,就是天才般的绕过了这个极限。
挑战“极限”的黑尔1990 年在德国海德堡大学获得博士学位后,黑尔就想要挑战这个根深蒂固上百年的极限,但是德国的主流科学家都对他的想法持怀疑态度。
2000 年,斯蒂凡·黑尔提出了受激发光消除技术(stimulated emission depletion ,STED),就是同时用两束激光照射分子其中一束使其闪光,一束激光去抵消分子的发光,但是留下一个纳米量级的窗口,这样只有这个窗口中的分子发光,这样就是一纳米一纳米的扫描生物分子,得到一张分辨率超越阿贝极限的图像。
【高中化学】美国市高分子化学家艾伦 J 黑格
【高中化学】美国市高分子化学家艾伦 J 黑格【高中化学】美国市高分子化学家?艾伦-j-黑格艾伦·J·希格教授于1936年12月22日出生于爱荷华州的苏族。
1957,他毕业于内布拉斯加大学物理系,获物理学学位。
他于1961获加利福尼亚大学伯克利物理学博士学位。
1962至1982年间,他曾在宾夕法尼亚大学物理系任职,并于1967在大学物理系任教授。
自1982以来,他被转入圣巴巴拉加利福尼亚大学物理系教授,并担任该校高分子和有机固体研究所所长。
为了加速科研成果的产业化,他与该校材料系教授P.Smith于1990年共同创立了uniax公司,并担任该公司董事长和总裁。
alanj.heeger教授作为国际知名物理学家屡获奖励,其中最重要的有1983年获美国物理学会olivere.buckley凝聚态物理奖,1995年获balzan基金会的新材料科学奖。
此外alanj.heeger还被授予美国及一些国际知名大学颁发的名誉博士学位。
2000年?月我国国务院学位委员会批准华南理工大学授予alanj.heeger教授名誉博士学位。
Alan J.Heeger在有机和聚合物光电材料和器件的物理和材料科学研究领域的主要开拓性贡献包括:1973年发表对ttf?tcnq类具有金属电导的有机电荷转移复合物的研究,开创了有机金属导体及有机超导体研究的先河;1976年发表的聚乙炔掺杂研究开创了导电聚合物的研究领域,也促进了低维物理理论的发展。
1990年,他与苏武培和J.R.施里弗一起发表了SSH模型,以解释聚乙炔中的基本激发;1991年提出用可溶性共轭聚合物实现高效聚合物发光器件,为聚合物发光器件的实用开辟了新途径;1992年提出了“离子诱导可加工性”的新概念,实现了人们多年来开发高导电性和可加工性导电聚合物的梦想,为导电聚合物的实际应用提出了新的方向;1996年首次发表共轭聚合物固态下的光泵浦激光。
艾伦·J·希格非常重视科研成果向生产力的转化。
量子化概念
玻尔原子
玻尔原子
03
波粒二象性
Wave particle duality
波粒二象性
经典
波动性和颗粒性是宏观客体的两种基本属性, 在宏观层次有下面的结论:具有颗粒性的物体 不表现出波动性,具有波动性的客体不表现出 粒子性。因此在经典物理学对客体的描述方式 不同:描述客体粒子性的理论是经典 运动学理论,对应的基本物理量是动量和能量, 描述客体波动性的理论是波动学理论,对应的 基本物理量是波长和频率。
在光量子概念的启发下,德布罗意采用类比的方法对微观粒子进行 了研究,提出物质波假设:实物粒子(静止质量不为零的粒子,如电 子等)具有粒子和波动两重性,其粒子性与波动性的关系与光量子相 同。
04
summary
总结
总结
THANK YOU
黑体
理想的辐射体被称为黑体。
黑体辐射
瑞利-金斯理论 物体吸收热量是由于固体内部原子的振动所引起的。
分析 经典理论在长波波长与实验观察的结果相吻合。 但在超短波波长段实验和理论却总是不一致。
黑体辐射
黑体辐射定律
普朗克对黑体作了如下两点假设: (1)黑体是由无穷多个各种固有频率的简谐振子构成的发射 体,而每个频率的简谐振子的能量只能取最小的能量E=hv的整 数倍:E,2E,3E,.....,nE,其中h为普朗克常数,v为简谐振子的频 率。 (2)简谐振子不能连续发射或吸收能量,只能以E=hv为单位 一份一份的跳跃式进行。因此,简谐振子只能从一个能级跃迁 到另一个能级,而不能处于两个能级间的某一能量状态,简谐 振子跃迁时伴随着辐射的发射或吸收。
量子化概念
Quantization concept
报告小组:
黑体辐射 玻尔原子 -body radiation
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
have been summarized in Appendix A. In Sec. III, we examine the issue of regularity at the origin, r = 0, with the principal result that use of the coordinate system must be restricted to cases where matter never reaches r = 0. We follow with a detailed description of our finite difference approximations in Sec. IV and a discussion of initial data in Sec. V. We discuss the convergence and stability of our difference solutions in Sec. VI—the evidence presented there suggests that the scheme can be used to carry out arbitrarily long evolutions. Various physical and coordinate effects which have emerged from our studies are discussed in sections Sec. VII–Sec. XI and we end with some concluding remar96)
arXiv:gr-qc/9607034v1 15 Jul 1996
We examine the interactions of a black hole with a massless scalar field using a coordinate system which extends ingoing Eddington-Finkelstein coordinates to dynamic spherically symmetric-spacetimes. We avoid problems with the singularity by excising the region of the black hole interior to the apparent horizon. We use a second-order finite difference scheme to solve the equations. The resulting program is stable and convergent and will run forever without problems. We are able to observe quasi-normal ringing and power-law tails as well an interesting nonlinear feature.
The plan of the remainder of the paper is as follows. In Sec. II, and following some unpublished previous work [9,10], we define the minimally-modified ingoing Eddington-Finkelstein (MMIEF) coordinate system and derive equations of motion for the gravitational and scalar fields which are specialized to this coordinate system. This derivation is based on detailed calculations of the Einstein-Klein-Gordon equations of motion in a general spherically symmetric coordinate system [11] which
Black Hole–Scalar Field Interactions in Spherical Symmetry
R. L. Marsa Department of Physics and Astronomy
The University of Pittsburgh Pittsburgh, PA
M. W. Choptuik Center for Relativity The University of Texas at Austin
I. INTRODUCTION
A longstanding goal of relativists has been the longtime numerical evolution of a black hole spacetime. Such an evolution is difficult because of the physical singularity the spacetime contains. Despite their early promise, it has not sufficed to use slicings (choices of time coordinate) which avoid the physical singularity. Invariably, such coordinate systems develop coordinate singularities in the vicinity of the event horizon and computationally, physical and coordinate singularities are essentially equally pathological. Many years ago, Unruh suggested that it might help to consider evolution of only the exterior of a black hole. In fact, he argued, since the black hole interior is, by definition, causally disconnected from the rest of the universe, evolution of events within the horizon constituted wasted computational effort. In the necessary absence of exact information concerning the spatial location of the event horizon at any instant during the evolution of given black hole initial data, Unruh proposed that the apparent horizon be tracked and used as an approximation to the true horizon. Thornburg developed these ideas, first in the context of generating initial data for n black holes (each of which could have arbitrary momentum and spin) [1], and then in a program of research for solving the vacuum axisymmetric Einstein equations [2,3]. However, the first clearly successful application of the black-hole excising technique in a dynamical situation came with the work of Seidel and Suen who studied spherical evolution of the vacuum (Schwarzschild) as well as a self-gravitating massless scalar field [4]. Extensions of this work are discussed in Anninos et. al. [5].
The Seidel and Suen paper is also notable for the introduction of a general technique, termed causal differencing, which ensures that, independently of the details of the coordinate system adopted, the difference scheme’s numerical domain of dependence contains the physical domain of dependence (i.e. is causal). Alcubierre and Schutz have used a similar but somewhat more general technique which they call causal reconnection to treat the wave equation on an arbitrarily moving grid [6]. Scheel et. al. have recently used black hole excising in a study of gravitational collapse in Brans-Dicke gravity [7,8].